TILING A CIRCULAR DISC WITH CONGRUENT PIECES

ÁRPÁD KURUSA, LÁNGI ZSOLT, AND VIKTOR VÍGH

ABSTRACT. In this note we prove that any monohedral tiling of the closed circular unit disc with $k \leq 3$ topological discs as tiles has a k-fold rotational symmetry. This result yields the first nontrivial estimate about the minimum number of tiles in a monohedral tiling of the circular disc in which not all tiles contain the center, and the first step towards answering a question of Stein appearing in the problem book of Croft, Falconer and Guy in 1994.

1. INTRODUCTION

A tiling of a convex body \mathcal{K} in Euclidean *d*-space \mathbb{R}^d is a finite family of compact sets in \mathbb{R}^d with mutually disjoint interiors, called *tiles*, whose union is \mathcal{K} . A tiling is *monohedral*, if all tiles are congruent.

In this paper we deal with the monohedral tilings of the closed circular unit disc \mathcal{B}^2 with center O, in which the tiles are Jordan regions; i.e. are homeomorphic to a closed circular disc. The easiest way to generate such tilings, which we call rotationally generated tilings, is to rotate around O a simple, continuous curve connecting O to a point on the boundary \mathcal{S}^1 of \mathcal{B}^2 . The following question, based on the observation that any tile of such a monohedral tiling of \mathcal{B}^2 contains O, seems to arise regularly in recreational mathematical circles [13]:

Question 1. Are there monohedral tilings of \mathcal{B}^2 in which not all of the tiles contain O?

The answer to Question 1 is affirmative; the usual examples to show this are the first two configurations in Figure 1. The following harder variant is attributed to Stein by Croft, Falconer and Guy in [2, last paragraph on p. 87].

Question 2 (Stein). Are there monohedral tilings of \mathcal{B}^2 in which O is in the interior of a tile?

A systematic investigation of monohedral tilings of \mathcal{B}^2 was started in [6] by Haddley and Worsley. In their paper they called a monohedral tiling *radially generated*,

²⁰¹⁰ Mathematics Subject Classification. 52C20; 52C22.

Key words and phrases. tiling, dissection, monohedral, topological disc, Jordan region.

Å. Kurusa's research was supported by NFSR of Hungary (NKFIH) under grant numbers K 116451 and KH_18 129630, and by the Ministry of Human Capacities, Hungary grant 20391-3/2018/FEKUSTRAT..

Z. Lángi's research is supported by the NFSR of Hungary (NKFIH) under grant number K-119670, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and grants BME FIKP-VÍZ and the ÚNKP-19-4 New National Excellence Program by the Ministry for Innovation and Technology.

V. Vígh's research was supported by NFSR of Hungary (NKFIH) under grant number K 116451, and by the Ministry of Human Capacities, Hungary grant 20391-3/2018/FEKUSTRAT.

if every tile is *radially generated*, meaning that its boundary is a continuous simple curve consisting of three parts: a circular arc of length α and two other curves one of which is the rotation of the other one about their common point by angle α . The following ambitious conjecture appears in [6, Conjecture 6.1].

Conjecture 1 (Haddley and Worsley). *Every monohedral tiling is a subtiling of a radially generated tiling.*

A similar problem was investigated in [5] by Goncharov, who, for any O-symmetric convex body in \mathbb{R}^d , determined the smallest number of congruent copies of a subset of the body that cover the body. In the spirit of this approach we raise the following variant of Question 1:

Question 3. What is the minimum cardinality $n(\mathcal{B}^2)$ of a monohedral tiling of \mathcal{B}^2 in which not all of the tiles contain O?

As the configurations in Figure 1 show, we have $n(\mathcal{B}^2) \leq 12$. On the other hand, the lower bound $n(\mathcal{B}^2) \geq 3$ is also relatively easy to prove: it was posed as a problem in 2000 on the Russian Mathematical Olympiads [14]. Presently, to the authors' knowledge, the best bounds on $n(\mathcal{B}^2)$ are still the trivial ones: $3 \leq n(\mathcal{B}^2) \leq 12$.

FIGURE 1. A non-radially¹, a radially, and a rotationally generated monohedral tiling of \mathcal{B}^2 . In contrast to these three, the rightmost, radially generated monohedral tiling is not rotationally invariant.

Our main result is the following.

Theorem 1.1. Any monohedral tiling of \mathcal{B}^2 with at most three topological discs is rotationally generated.

This result implies Conjecture 1 for tilings with at most 3 tiles, yields the first nontrivial lower bound for $n(\mathcal{B}^2)$, and in particular proves that the answer for Question 2 is refuting for tilings with at most three tiles.

¹ It may be worth noting that this configuration also appears regularly in various places: this was chosen, for example, as the logo of the MASS program at Penn State University, it appears on the front page of five issues of the Hungarian problem-solving mathematical journal Középiskolai Matematikai Lapok [10], and it can be found also in the book [2, Figure C8].

Corollary 1.2. We have $n(\mathcal{B}^2) \geq 4$.

Corollary 1.3. There is no monohedral tiling of \mathcal{B}^2 with at most three topological discs as tiles such that the center of \mathcal{B}^2 is contained in exactly one of them.

In Section 2 we introduce the notions used in the paper, investigate the basic properties of monohedral tilings of \mathcal{B}^2 , and prove a series of lemmas that we use in the proof of Theorem 1.1. In Section 3 we prove Theorem 1.1.

Finally, in Section 4 we collect our additional remarks and propose some open problems.

2. NOTATIONS AND PRELIMINARIES

Throughout the proof, we denote by \mathcal{B}^2 the closed unit circular disc with the origin O = (0,0) as its center, and its boundary by $\mathcal{S}^1 = \partial \mathcal{B}^2$. We say that two points $P, Q \in \mathcal{S}^1$ are *antipodal* if d(P,Q) = 2, where $d(\cdot, \cdot)$ denotes Euclidean distance. For points $P, Q \in \mathbb{R}^2$, the closed segment with endpoints P, Q is denoted by \overline{PQ} .

For any $P, Q \in \mathbb{R}^2$ with $d(P, Q) \leq 2r$, the *r*-spindle $\ominus_{P,Q}^r$ of two points P, Q is by definition (cf. [1] or [3]) the intersection of all Euclidean discs of radius r > 0 that contain P and Q. In other words, $\ominus_{P,Q}^r$ is the region bounded by the two circular arcs of radius r > 0 that connect P and Q and are not longer than a half-circle.

A set homeomorphic to \mathcal{B}^2 is called a *topological disc*. The boundary of a topological disc is a simple, closed, continuous curve, called *Jordan curve*. On the other hand, the Jordan–Schoenflies theorem [17] yields that every Jordan curve is the boundary of a topological disc. We remark that since all topological discs are compact, they are Lebesgue measurable; we denote their measure by area(·). Nevertheless, there are topological discs (see, e.g. the Koch snowflake, or for more examples [16]) whose boundary is not rectifiable. Our next lemma, which we use in the proof, holds for these topological discs as well.

Lemma 2.1. Let Γ be a Jordan curve and C be a simple, continuous curve. Then Γ contains finitely many congruent copies of C which are mutually disjoint, apart from possibly their endpoints.

Proof. Assume for contradiction that Γ contains infinitely many congruent copies C_n (n = 1, 2, ...) of C which are mutually disjoint, apart from possibly their endpoints. Let P_n and Q_n denote the endpoints of C_n . Since Γ is compact, we may assume that $\lim_{n\to\infty} P_n = P$ and $\lim_{n\to\infty} Q_n = Q$ for some $P, Q \in \Gamma$. By the properties of congruence, $P \neq Q$. On the other hand, since Γ is homeomorphic to S^1 , the congruent copies of C correspond to mutually nonoverlapping circular arcs on S^1 . Clearly, this implies that P = Q, a contradiction.

Lemma 2.2. Let $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$, where $\mathcal{D}, \mathcal{D}_1$ and \mathcal{D}_2 are topological discs, and int $\mathcal{D}_1 \cap \operatorname{int} \mathcal{D}_2 = \emptyset$. Then $\mathcal{S}_1 = \mathcal{D}_1 \cap \partial \mathcal{D}$, $\mathcal{S}_2 = \mathcal{D}_2 \cap \partial \mathcal{D}$ and $\mathcal{S} = \partial \mathcal{D}_1 \cap \partial \mathcal{D}_2$ are simple continuous curves.

Proof. As \mathcal{D} is a topological disc, we have a homeomorphism χ such that $\chi(\mathcal{D}) = \mathcal{B}^2$. Since the statement of the lemma is topologically invariant, it is sufficient to prove it in the case $\mathcal{D} = \mathbf{B}^2$. Thus, we may assume that $\mathcal{S}_i = \mathcal{S}^1 \cap \mathcal{D}_i$ for i = 1, 2, where we observe that since \mathcal{D}_i and \mathcal{S}^1 are closed, so is \mathcal{S}_i .

First, we show that S_1 and S_2 are connected. Assume, for example, that some $X_1, Y_1 \in S_1$ cannot be connected by an arc in S_1 . Then there are some points $X_2, Y_2 \notin S_1$ that separate X_1 and Y_1 in S^1 . Clearly, we have $X_2, Y_2 \in S_2$. For any i = 1, 2, since \mathcal{D}_i is a topological disc, there is a simple, continuous curve γ_i with endpoints X_i, Y_i such that apart from these points γ_i is contained in int S_i . By continuity, $\gamma_1 \cap \gamma_2 \neq \emptyset$, implying that int $\mathcal{D}_1 \cap \operatorname{int} \mathcal{D}_2 \neq \emptyset$, a contradiction. Thus, S_1 and S_2 are connected, which yields that they are closed circular arcs in S^1 . Let the (common) endpoints of these arcs be P and Q.

The points $P, Q \in S_1 \cap S_2$ are also in $\partial \mathcal{D}_1 \cap \partial \mathcal{D}_2$, hence they are connected by a simple continuous curve in $\partial \mathcal{D}_1 \setminus S_1$ and also in $\partial \mathcal{D}_2 \setminus S_2$. These curves coincide because $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$, hence it is S, and the proof of Lemma 2.2 is complete. \Box

Lemma 2.3. Let $\{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3\}$ be a tiling of the topological disc \mathcal{D} where for $i = 1, 2, 3, \mathcal{D}_i$ is a topological disc such that $S_i = \mathcal{D}_i \cap \partial \mathcal{D}$ is a nondegenerate simple continuous curve. Then $\mathcal{D}_1 \cap \mathcal{D}_2 \cap \mathcal{D}_3$ is a singleton $\{M\}$, and for any $i \neq j$, $\mathcal{D}_i \cap \mathcal{D}_j$ is a simple continuous curve connecting M and a point in $\partial \mathcal{D}$.

Proof. Suppose for contradiction that there are two distinct points $M_1, M_2 \in \mathcal{D}_i$ for i = 1, 2, 3. For any i, let Γ_i be a simple, continuous curve connecting M_1 and M_2 which is contained in \mathcal{D}_i , apart from M_1 and M_2 . Note that for any $i \neq j$, $\Gamma_i \cup \Gamma_j$ is a simple, closed, continuous curve. Thus, the union of a pair of the curves, say $\Gamma_1 \cup \Gamma_2$ encloses the third one. This implies that $\Gamma_1 \cup \Gamma_2$ encloses \mathcal{D}_3 . Since $M_1, M_2 \notin S^1$ by our conditions, it follows that \mathcal{D}_3 is disjoint from S^1 ; a contradiction. Thus, $\mathcal{D}_1 \cap \mathcal{D}_2 \cap \mathcal{D}_3$ contains at most one point. On the other hand, since the closure \mathcal{X}_1 of $(\partial \mathcal{D}_1) \setminus S_1$ is a simple, connected curve and it can be decomposed into the closed sets $\mathcal{X}_1 \cap \mathcal{D}_2$ and $\mathcal{X}_1 \cap \mathcal{D}_3$, it follows that these sets intersect, that is $\mathcal{D}_1 \cap \mathcal{D}_2 \cap \mathcal{D}_3$ is not empty. Thus, $\mathcal{D}_1 \cap \mathcal{D}_2 \cap \mathcal{D}_3 = \{M\}$ for some $M \in \text{int } \mathcal{D}$.

To prove the second part of Lemma 2.3, we may apply an argument like in the proof of Lemma 2.2. $\hfill \Box$

By the *circumcircle* of a topological disc \mathcal{D} we mean the unique smallest closed Euclidean circle encompassing \mathcal{D} . The convex hull of the circumcircle is the *circumdisc* of \mathcal{D} , the radius of the circumcircle is the *circumradius* of \mathcal{D} . Observe that the center of the circumcircle \mathcal{C} of \mathcal{D} is in $\operatorname{conv}(\mathcal{C} \cap \mathcal{D})$, as otherwise a smaller circle would encompass \mathcal{D} . **Lemma 2.4.** Assume that S^1 is the common circumcircle of the non-overlapping congruent topological discs \mathcal{D}_1 and \mathcal{D}_2 . Then there is a diameter \overline{PQ} of \mathcal{B}^2 separating $S_1 = \mathcal{D}_1 \cap S^1$ and $S_2 = \mathcal{D}_2 \cap S^1$. Furthermore, any congruence g with $g(\mathcal{D}_1) = \mathcal{D}_2$ is either the reflection about the line of \overline{PQ} , or the reflection about O.

Proof. Using the idea of the proof of Lemma 2.2, it follows that there are no pairs of points $X_1, Y_1 \in S_1$ and $X_2, Y_2 \in S_2$ that strictly separate each other on S^1 . In other words, there is a line ℓ separating S_1 and S_2 . On the other hand, as $O \in \operatorname{conv} S_1 \cap \operatorname{conv} S_2$, ℓ contains O and $\ell \cap S^1 \subseteq S_1 \cap S_2$, proving the first statement with $\{P, Q\} = \ell \cap S^1$. We note that from this argument it also follows that $S_1 \cap S_2 = \{P, Q\}$.

Consider some isometry g with $g(\mathcal{D}_1) = \mathcal{D}_2$. The uniqueness of the circumcircle clearly implies that $g(\mathcal{S}^1) = \mathcal{S}^1$, and thus, $g(\{P,Q\}) = \{P,Q\}$. This implies that gis either the reflection about the line of \overline{PQ} , the reflection about the line bisecting \overline{PQ} , or the reflection about O. We show that the conditions of the lemma exclude the second case: Consider a simple, continuous curve Γ from P to Q such that $\Gamma \setminus \{P,Q\} \subset \operatorname{int} \mathcal{D}_1$. Then at least one point R of Γ lies on the line ℓ^{\perp} bisecting \overline{PQ} . If g is the reflection about ℓ^{\perp} , then g(R) = R, and hence, $R \in \operatorname{int} \mathcal{D}_1 \cap \operatorname{int} \mathcal{D}_2$; a contradiction. \Box

In the remaining part of Section 2, we deal only with a monohedral tiling of \mathcal{B}^2 , where the tiles \mathcal{D}_i , i = 1, 2, ..., n, are congruent copies of a topological disc \mathcal{D} . For any $j \neq 1$, we fix an isometry g_{1j} mapping \mathcal{D}_1 into \mathcal{D}_j , and for any values of i, j, we set $g_{ij} = g_{1i}^{-1} \circ g_{1j}$. Then, by definition, we have $g_{ji} = g_{ij}^{-1}$ for all values of i, j. Finally, we set $\mathcal{S}_i = \mathcal{D}_i \cap \mathcal{S}^1$ for all values of i.

Lemma 2.5. If \mathcal{D} contains two points at the distance 2, then n = 1 or n = 2, and the tiling is rotationally generated.

Proof. If \mathcal{D} contains two points at the distance 2, then each tile contains two antipodal points of \mathcal{B}^2 . Thus, \mathcal{B}^2 is the circumdisc of each tile, which implies that $g_{ij}(\mathcal{B}^2) = \mathcal{B}^2$ for all values of i, j. Since $O \in \mathcal{D}_i$ for some value of i, it also yields that $O \in \mathcal{D}_i$ for all values of i. Then, by Lemma 2.4, there is a diameter \overline{PQ} of \mathcal{B}^2 whose endpoints belong to every tile, and the congruence between any two of them is either a reflection about the line through \overline{PQ} , or the reflection about the midpoint of \overline{PQ} . This implies that there are at most two tiles.

To prove that the tiling is rotationally generated, assume that n = 2, and \mathcal{D}_2 is a reflected copy of \mathcal{D}_1 about the line through \overline{PQ} . Since in this case \mathcal{D}_1 and \mathcal{D}_2 are the two closed half discs of \mathcal{B}^2 containing \overline{PQ} in their boundaries, the statement follows.

Lemma 2.6. For all values of i, S_i (i = 1, ..., n) is a closed, connected arc in S^1 .

Proof. As S_1 is compact, there are points $P, Q \in S_1$ farthest from each other in S_1 . If P, Q are antipodal points of S^1 , then every $\mathcal{D}_i = g_{1i}(\mathcal{D}_1)$ (i = 1, ...) contains

antipodal points, hence \mathcal{B}^2 is the circumdisc of every tile. Then Lemma 2.5 yields that n = 1 or n = 2. The case n = 1 is trivial, and if n = 2, then by Lemma 2.4, there is a diameter \overline{PQ} separating \mathcal{S}_1 and \mathcal{S}_2 , which implies that \mathcal{S}_1 and \mathcal{S}_2 are closed half-circles. Thus, we may assume that P, Q are not antipodal.

Let $\Gamma \subset S^1$ be the shorter arc connecting P and Q. We show that $\Gamma \subset \mathcal{D}_1$.

For contradiction, suppose that a point $X \in \Gamma$ does not belong to \mathcal{D}_1 . Then, without loss of generality, we may assume that $X \in \mathcal{D}_2$, and that $X \neq P$, $X \neq Q$.

Let r > 0 be the radius of the circumdisc \mathcal{B} of \mathcal{D}_1 . Since \mathcal{D}_1 is compact, and it does not contain antipodal points of \mathcal{S}^1 , we have r < 1, implying that $\ominus_{P,Q}^r$ contains $\Gamma \setminus \{P,Q\}$ in its interior. Thus $\Gamma \subset \mathcal{B}$, and $\Gamma \setminus \{P,Q\} \subset \operatorname{int} \mathcal{B}$. Let Γ' be a continuous curve connecting P and Q such that $\Gamma' \setminus \{P,Q\} \subset \operatorname{int} \mathcal{D}_1$. This yields that $\Gamma \cup \Gamma'$ is a simple, continuous, closed curve in \mathcal{B} enclosing \mathcal{D}_2 . which, by the congruence of \mathcal{D}_1 and \mathcal{D}_2 , implies that the \mathcal{B} is the circumdisc of \mathcal{D}_2 as well. Hence, by Lemma 2.4 it follows that $\operatorname{conv}(\partial \mathcal{B} \cap \mathcal{D}_1 \cap \mathcal{D}_2)$ is a diameter δ of \mathcal{B} . As P, Q are the only points of $\Gamma \cup \Gamma'$ that may fall on $\partial \mathcal{B}$, we have $\delta = \overline{PQ}$.

From Lemma 2.4 it also follows that g_{12} is the reflection about the line of \overline{PQ} , or the reflection about the midpoint of \overline{PQ} , and in particular $g_{21} = g_{12}$. On the other hand, observe that $g_{12}(\oplus_{P,Q}^1) = \oplus_{P,Q}^1 = \mathcal{B}^2 \cap g_{12}(\mathcal{B}^2)$. Since $\mathcal{D}_1 \subset \mathcal{B}^2$ and $\mathcal{D}_1 = g_{12}(\mathcal{D}_2) \subset g_{12}(\mathcal{B}^2)$, this implies that $\mathcal{D}_1, \mathcal{D}_2 \subset \oplus_{P,Q}^1$. Now, if there is a point $R \in \mathcal{D}_2 \cap \partial \oplus_{P,Q}^1 \setminus \Gamma$ then R and X can be connected with a continuous curve in int \mathcal{D}_2 , while $P, Q \in \text{int } \mathcal{D}_1$, a contradiction. Hence $\mathcal{D}_2 \cap \partial \oplus_{P,Q}^1 \subset \Gamma$, and accordingly $\mathcal{D}_1 \cap S^1 = \{P, Q\}$, and, in particular, $\mathcal{D}_1 \cap \Gamma = \{P, Q\}$.

Assume that there is an interior point Y of Γ that belongs to, say, \mathcal{D}_3 . Since $P, Q \in \mathcal{D}_2$, we may repeat the argument in the previous paragraph, replacing \mathcal{D}_1 and \mathcal{D}_2 by \mathcal{D}_2 and \mathcal{D}_3 , respectively, and obtain that $\mathcal{D}_2 \cap \Gamma = \{P, Q\}$ contradicting our assumption that there is an interior point $X \in \mathcal{D}_2$ of Γ . Thus, $\Gamma \subset \mathcal{D}_2$, which yields by Lemma 2.4 that $\mathcal{D}_2 \cap \mathcal{S}^1 = \Gamma$ and $\ominus_{P,Q}^1 = \mathcal{D}_1 \cup \mathcal{D}_2$. From this, in particular, it follows that $\operatorname{area}(\mathcal{D}_1) = \operatorname{area}(\mathcal{D}_2) = \operatorname{area}(\ominus_{P,Q}^1)/2$.

Since for all values of i, $g_{2i}(\{P,Q\}) \subset \mathcal{B}^2$, the definition of 1-spindle implies that $\mathcal{D}_i \subset \ominus^1_{g_{2i}(P),g_{2i}(Q)} \subset \mathcal{B}^2$, and $g_{2i}(\mathcal{D}_2) \setminus \Gamma \subset \operatorname{int} \ominus^1_{g_{2i}(P),g_{2i}(Q)}$ is disjoint from \mathcal{S}^1 . In other words, the sets $g_{2i}(\Gamma)$ cover \mathcal{S}^1 . Note that these arcs may intersect each other only at their endpoints, and if $|\mathcal{S}^1 \cap g_{2i}(\Gamma)| \geq 3$, then $g_{2i}(\Gamma) \subset \mathcal{S}^1$. Thus, \mathcal{S}^1 can be decomposed into finitely many, say k < n circular arcs, each of which is congruent to Γ .

Let $s = 2\pi/k$ denote the arclength of Γ . Then $ks = 2\pi$ on one hand, and

$$\frac{\pi}{n} = \frac{\operatorname{area}(B^2)}{n} = \operatorname{area}(\mathcal{D}_2) = \frac{\operatorname{area}(\ominus_{P,Q}^1)}{2} = \frac{s - \sin s}{4} = \frac{\frac{2\pi}{k} - \sin \frac{2\pi}{k}}{4}$$

on the other hand. Thus, we have $\sin \frac{2\pi}{k} = \pi (\frac{2}{k} - \frac{4}{n})$. The left-hand side is an algebraic number (see, e.g. [18, Theorem 2.1]), from which $\frac{2}{k} = \frac{4}{n}$ follows, hence

 $\sin \frac{2\pi}{k} = 0$, implying that k is a divisor of 2, contradicting our assumption that Γ is shorter than a half-circle.

Remark 2.7. Since $S_i \subset \partial \operatorname{conv} \mathcal{D}_i$, it follows that for all values of i, j, we have $g_{ij}(S_i) \subset \partial \operatorname{conv} \mathcal{D}_j$.

Remark 2.8. For any values of i, j, k, the arcs $g_{ik}(S_i)$ and $g_{jk}(S_j)$ share at most some of their endpoints, or they coincide.

Proof. Observe that since for any i, S_i is contained in the convex hull of \mathcal{D}_i , if the arcs $g_{ik}(S_i)$ and $g_{jk}(S_j)$ are not disjoint apart from (possibly) their endpoints, then $g_{ik}(S_i) \cap g_{jk}(S_j)$ is a nondegenerate unit circular arc, and thus, $g_{ik}(S_i) \cup g_{jk}(S_j)$ lies on a unit circle S.

Since $S_i = g_{ki}(g_{ik}(S_i)) \subset S^1$, we have $g_{ki}(S) = S^1$. Thus, $S_i \cup g_{ki}(g_{jk}(S_j)) \subset S^1 \cap \mathcal{D}_i = S_i$. This implies that $g_{jk}(S_j) \subseteq g_{ik}(S_i)$. The containment relation $g_{ik}(S_i) \subseteq g_{jk}(S_j)$ can be obtained using a similar argument, which yields the desired equality.

Lemma 2.9. Let $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n$ be a monohedral tiling of \mathcal{B}^2 , where n > 1. Then at least two of the arcs $\mathcal{S}_1, g_{21}(\mathcal{S}_2), \ldots, g_{n1}(\mathcal{S}_n)$ coincide.

Proof. Suppose for contradiction that the arcs $S_1, g_{21}(S_2), \ldots, g_{n1}(S_n)$ are disjoint apart from possibly their endpoints. By our earlier observation these arcs are in $\partial \operatorname{conv} \mathcal{D}_1$. As the total turning angle of these n arcs is 2π , and the total turning angle along the boundary of a convex body is also 2π , $\partial \operatorname{conv} \mathcal{D}_1$ may only consist in excess of these arcs some segments that connect the endpoints of these arcs in a smooth way. In other words, $\operatorname{conv} \mathcal{D}_1 = \mathcal{P} + \mathcal{B}^2$ for some convex n-gon \mathcal{P} . This implies that the circumradius of \mathcal{D}_1 is at least 1, with equality if and only if $\mathcal{D}_1 = \mathcal{B}^2$, a contradiction.

Definition 2.10. A multicurve (cf. also [11]) is a finite family of continuous simple curves, called the members of the multicurve, which are parameterized on non-degenerate closed finite intervals, and any point of the plane belongs to at most one member, or it is the endpoint of exactly two members. If \mathcal{F} and \mathcal{G} are multicurves, $\bigcup \mathcal{F} = \bigcup \mathcal{G}$, and every member of \mathcal{F} is the union of some members of \mathcal{G} , we say that \mathcal{G} is a partition of \mathcal{F} .

Definition 2.11. Let \mathcal{F} and \mathcal{G} be multicurves. If there are partitions \mathcal{F}' and \mathcal{G}' of \mathcal{F} and \mathcal{G} , respectively, and a bijection $f: \mathcal{F}' \to \mathcal{G}'$ such that $f(\mathcal{C})$ is congruent to \mathcal{C} for all $\mathcal{C} \in \mathcal{F}'$, we say that \mathcal{F} and \mathcal{G} are *equidecomposable*.

The following lemma can be proved very similarly to the analogous statement for equidecomposability of polygons [4], thus we omit the proof.

Lemma 2.12. Equidecomposability is an equivalence relation on the family of multicurves in \mathbb{R}^2 . **Corollary 2.13.** If \mathcal{F} and \mathcal{G} are multicurves with $\bigcup \mathcal{F} = \bigcup \mathcal{G}$, then \mathcal{F} and \mathcal{G} are equidecomposable.

Proof. Clearly, it is sufficient to prove the statement for the connected components of $\bigcup \mathcal{F}$, and by Lemma 2.12 we may assume that one of the multicurves, say \mathcal{G} , is a simple continuous curve. But then \mathcal{F} is a partition of \mathcal{G} , in which case the statement is obvious.

Corollary 2.14. If \mathcal{F} and \mathcal{G} are equidecomposable, and their subfamilies $\mathcal{F}' \subseteq \mathcal{F}$ and $\mathcal{G}' \subseteq \mathcal{G}$ are equidecomposable, then $\mathcal{F} \setminus \mathcal{F}'$ and $\mathcal{G} \setminus \mathcal{G}'$ are equidecomposable.

Proof. By Lemma 2.12, we may assume that $\bigcup \mathcal{F} = \bigcup \mathcal{G}$. Without loss of generality, we may also assume that $\bigcup \mathcal{F}$ is connected, which yields that we may regard both \mathcal{F} and \mathcal{G} as different partitions of the same simple, continuous curve. More specifically, after reparametrizing if necessary, we may assume that there is some curve $\mathcal{C}: [a, b] \to \mathbb{R}^2$, and partitions P_F and P_G of [a, b] such that the elements of \mathcal{F} and \mathcal{G} are the restrictions of \mathcal{C} to the subintervals of P_F and P_G , respectively. By Corollary 2.13, a multicurve is equidecomposable with any of its partitions, and hence, we may assume that $P_F = P_G$, and there is a bijection between the elements of \mathcal{F}' and \mathcal{G}' such that the corresponding elements are congruent. Since congruence is an equivalence relation, it is clear that any such bijection can be extended to all subintervals of P_F , which proves the assertion.

3. Proof of Theorem 1.1

First, consider a monohedral tiling of \mathcal{B}^2 with the topological discs \mathcal{D}_1 and \mathcal{D}_2 . The containment $O \in \mathcal{D}_1 \cap \mathcal{D}_2$ can be proved in a number of elementary ways (see, e.g. [7]); here we also show that the tiling is rotationally generated.

By Lemma 2.6, for $i = 1, 2, S_i = \mathcal{D}_i \cap S^1$ is a connected arc and hence, S_1 or S_2 is an arc of length at least π . Thus, \mathcal{D}_1 or \mathcal{D}_2 contains a pair of antipodal points of \mathcal{B}^2 , which, by Lemma 2.5, implies that the tiling is rotationally generated.

From now on, we consider the case that \mathcal{B}^2 is decomposed into three congruent topological discs $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$, and for i = 1, 2, 3, we set $\mathcal{S}_i = \mathcal{D}_i \cap \mathcal{S}^1$. By Lemmas 2.6 and 2.5, we may assume that each tile intersects \mathcal{S}^1 in a nondegenerate cicle arc, which is smaller than a half-circle.

By Lemma 2.3, we have that $\mathcal{D}_1 \cap \mathcal{D}_2 \cap \mathcal{D}_3$ consists of a single point $M \in \operatorname{int} \mathcal{B}^2$, and that for any $i \neq j$, $\mathcal{D}_i \cap \mathcal{D}_j$ is a simple, continuous curve connecting M and a point of \mathcal{S}^1 .

To prove the assertion, we distinguish some cases. Before we do it, we observe that by Remark 2.8, any pair of the curves S_1 , $g_{21}(S_2)$ and $g_{31}(S_3)$ intersect in at most a common endpoint, or they coincide.

Case 1: No pair of the arcs S_1 , $g_{21}(S_2)$ and $g_{31}(S_3)$ coincide.

In this case we immediately have a contradiction by Lemma 2.9.

Case 2: Two of the arcs S_1 , $g_{21}(S_2)$ and $g_{31}(S_3)$ coincide, the third one is different. Using a suitable relabeling of the tiles, we may assume that $S_1 = g_{21}(S_2)$. Let the arclength of this arc be $0 < \alpha < \pi$, and the arclength of S_3 be β . The equality $S_1 = g_{21}(S_2)$ implies, in particular, that g_{21} is an isometry of S^1 ; or more generally that it is either the reflection about the symmetry axis ℓ of $S_1 \cup S_2$ or a rotation around O with angle α . We may assume without loss of generality that ℓ is the *y*-axis, the common point of S_1 and S_2 is (0, 1), and $S_1 \subset \{(x, y) : x \leq 0\}$. Furthermore, in the proof we set $C_1 = \mathcal{D}_1 \cap \mathcal{D}_3$, and $C_2 = \mathcal{D}_2 \cap \mathcal{D}_3$.

Subcase 2.a: g_{21} is the reflection about ℓ .

If there is a point $P \in \operatorname{int} \mathcal{D}_1 \cap \{(x, y) : x > 0\}$, then a continuous curve Γ in int \mathcal{D}_1 connects P and the midpoint of \mathcal{S}_1 , so $g_{12}(\Gamma)$ connects the midpoint of \mathcal{S}_2 to $g_{12}(P)$ in $\operatorname{int} \mathcal{D}_2$. This implies that $\Gamma \cap g_{12}(\Gamma)$ is in $\operatorname{int} \mathcal{D}_1 \cap \operatorname{int} \mathcal{D}_2 = \emptyset$, which is a contradiction. Thus we have $\mathcal{D}_1 \subset \{(x, y) : x \leq 0\}$ and also $\mathcal{D}_2 \subset \{(x, y) : x \geq 0\}$.

Observe that $g_{13}(S_1) = g_{23}(g_{12}(S_1)) = g_{23}(S_2)$, and $\mathcal{D}_3 = \operatorname{cl}(\mathcal{B}^2 \setminus (\mathcal{D}_1 \cup \mathcal{D}_2))$ is symmetric in ℓ . We denote this arc of length α by $\mathcal{S} = g_{13}(S_1)$. Note that by the conditions of Case $2 \mathcal{S} \neq S_3$, and $\mathcal{S} \subset \partial \operatorname{conv} \mathcal{D}_3$ by Remark 2.7. Furthermore, $\partial \operatorname{conv} \mathcal{D}_3$ does not contain any arc of length α apart from \mathcal{S} and possibly \mathcal{S}_3 , as otherwise the idea of the proof of Lemma 2.9 yields a contradiction. Thus, \mathcal{S} is symmetric in the *y*-axis.

Since \mathcal{D}_3 is connected, and every point of ℓ belongs either to \mathcal{D}_3 , or to both \mathcal{D}_1 and \mathcal{D}_2 , the segment connecting the midpoint X of S and the midpoint Y of S_3 belongs to \mathcal{D}_3 . Let the length of \overline{XY} be $\delta > 0$, and note that the fact $X, Y \in \partial \operatorname{conv} \mathcal{D}_3$ yields that the line through \overline{XY} intersects \mathcal{D}_3 exactly in \overline{XY} and $\overline{XY} \setminus \{X,Y\} \subset \operatorname{int} \mathcal{D}_3$. For $i = 1, 2, g_{3i}(\overline{XY})$ is the segment of length δ in \mathcal{B}^2 , starting at the midpoint of S_i , and perpendicular to it. Thus, if $\delta < 1$, then $O \notin \mathcal{D}_i$ for any value of i, if $\delta > 1$, then $O \in \operatorname{int} \mathcal{D}_i$ for all values of i, and if $\delta = 1$, then O is the midpoint of a unit circle arc in the boundary of each of the \mathcal{D}_i s, which is a contradiction.

Subcase 2.b: g_{21} is the rotation around O by angle α in counterclockwise direction. As O is a fixed point of g_{21} , it follows that either $O \in \mathcal{D}_1 \cap \mathcal{D}_2$, or $O \notin \mathcal{D}_1 \cup \mathcal{D}_2$. By the definition of tiling and our assumptions, in the first case $O \in \partial \mathcal{D}_1 \cap \partial \mathcal{D}_2$, and in the second case $O \in \operatorname{int} \mathcal{D}_3$.

First, consider the case that $O \in \partial \mathcal{D}_1 \cap \partial \mathcal{D}_2$.

Recall that by Lemma 2.3, $D_1 \cap D_2 \cap D_3$ is a single point M, and for any $i \neq j$, $\mathcal{D}_i \cap \mathcal{D}_j$ is a simple continuous curve connecting M to a point of S^1 . Thus, if O = M, then $g_{21}(\mathcal{D}_1 \cap \mathcal{D}_2) = \mathcal{D}_1 \cap \mathcal{D}_3$, and $g_{12}(\mathcal{D}_1 \cap \mathcal{D}_2) = \mathcal{D}_2 \cap \mathcal{D}_3$. Since $\partial \mathcal{D}_1$ and $\partial \mathcal{D}_3$ are equidecomposable, this implies that S_1 and S_3 are congruent, and hence $\alpha = 2\pi/3$. In other words, if O = M, then the tiling is rotationally generated. Thus, we assume that $O \notin \mathcal{D}_3$, which by the compactness of \mathcal{D}_3 yields the existence of a small closed circular disc \mathcal{B} centered at O such that $\mathcal{B} \cap \mathcal{D}_3 = \emptyset$. Let $t \mapsto \mathcal{C}(t)$ be a continuous parameterization of the curve $\mathcal{D}_1 \cap \mathcal{D}_2$ satisfying $O = \mathcal{C}(0)$, and let $t_+ = \sup\{t : \mathcal{C}([0,t])) \subset \mathcal{B}\}$ and $t_- = \inf\{t : \mathcal{C}([t,0]) \subset \mathcal{B}\}$. Then $g_{12}(\mathcal{C}(t_{\pm})) = \mathcal{C}(t_{\mp})$, which implies that g_{12} is the reflection about O. Thus $\alpha = \pi$ and $\beta = 0$, which contradicts our assumptions.

In the remaining part of Subcase 2.b, we assume that $O \in \operatorname{int} \mathcal{D}_3$.

Let $M_1 = g_{21}(M)$ and $M_2 = g_{12}(M)$. Since $\alpha > 0$, we have $M_2 \neq M$. On the other hand, we clearly have $M_2 \in \partial \mathcal{D}_2$ and $M_2 \notin S^1$.

Let \mathcal{B} be the circular disc in \mathcal{D}_3 that is centered at O and is of maximum radius r > 0. Then \mathcal{B} is tangent to at least one of the curves \mathcal{C}_1 and \mathcal{C}_2 , say \mathcal{C}_2 touches \mathcal{B} in $X_2 \in \partial \mathcal{B} \cap \mathcal{C}_2$. Let $X_1 = g_{21}(X_2)$. Then $X_1 \in \mathcal{B} \cap \mathcal{D}_1 = \mathcal{B} \cap \mathcal{C}_1$ clearly, hence $X_2 \in g_{12}(\mathcal{C}_1) \cap \mathcal{C}_2 \neq \emptyset$. Since $g_{12}(\mathcal{C}_1)$ is a continuous curve in $\partial \mathcal{D}_2$, connecting the intersection point of \mathcal{S}_1 and \mathcal{S}_2 to M_2 in int \mathcal{B}^2 , it follows that $M \in g_{12}(\mathcal{C}_1)$, that is, $M_1 \in \mathcal{C}_1$, implying also $M_2 \in \mathcal{C}_2$.

Thus, M_1 divides the curve C_1 into two parts: one from M to M_1 , which we denote by C_1^M , and the other one from M_1 to a point of S_1 , which we denote by C_1^S . We define the parts C_2^M and C_2^S of C_2 similarly, using M_2 in place of M_1 . Furthermore, we set $C_3^S = \mathcal{D}_1 \cap \mathcal{D}_2$.

FIGURE 2. \mathcal{B}^2 is dissected into three topological discs.

We clearly have $g_{21}(\mathcal{C}_2^M) = \mathcal{C}_1^M$, $g_{21}(\mathcal{C}_2^S) = \mathcal{C}_3^S$ and $g_{21}(\mathcal{C}_3^S) = \mathcal{C}_1^S$. Observe that since $\mathcal{D}_1, \mathcal{D}_2$ and \mathcal{D}_3 are congruent, their boundaries are equidecomposable. Furthermore, as $\mathcal{C}_1^S, \mathcal{C}_2^S$, and \mathcal{C}_3^S , and also \mathcal{C}_1^M and \mathcal{C}_2^M are congruent, we obtain by Corollary 2.14 that \mathcal{S}_1 and $\mathcal{C}_1^M \cup \mathcal{S}_3$ are equidecomposable. Thus we deduce that \mathcal{C}_1^M (and also \mathcal{C}_2^M) is a multicurve such that its every member curve is a unit circular arc, and their total length is $\alpha - \beta \geq 0$.

If a unit circular arc \mathcal{C} is contained in the boundary of a tile \mathcal{D}_i , it may happen that the convex side of \mathcal{C} belongs to $\operatorname{int} \mathcal{D}_i$, and the concave side of \mathcal{C} does not belong to \mathcal{D}_i . In this case we say that \mathcal{C} is a *convex circular arc* of \mathcal{D}_i , and in the opposite case that it is a *concave circular arc* of \mathcal{D}_i . Clearly, if \mathcal{C} is a unit circular arc in $\mathcal{D}_i \cap \mathcal{D}_j$ for some $i \neq j$, then it is a convex circular arc of exactly one of \mathcal{D}_i and \mathcal{D}_j . Let x and y denote the total length of the convex and concave unit circular arcs of \mathcal{D}_1 in \mathcal{C}_1^M . Since \mathcal{C}_1^M and \mathcal{C}_2^M are congruent, the total length of the convex and concave unit circular arcs of \mathcal{D}_2 in \mathcal{C}_2^M is also x and y, respectively. Thus, the total length of the convex and concave unit circular arcs of \mathcal{D}_3 in $\mathcal{C}_1^M \cup \mathcal{C}_2^M$ is 2yand 2x, respectively. The congruence of the tiles \mathcal{D}_i and the curves \mathcal{C}_i^S for i = 1, 2, 3 yields that the total lengths of the convex and concave unit circular arcs of \mathcal{D}_1 in $\mathcal{S}_1 \cup \mathcal{C}_1^M$ is equal to the total lengths of the convex and the concave unit circular arcs of \mathcal{D}_3 in $\mathcal{S}_3 \cup \mathcal{C}_1^M \cup \mathcal{C}_2^M$, respectively. This equality for convex circular arcs implies that $\alpha + x = \beta + 2y$, and the equality for concave arcs implies y = 2x. From these equations it follows that $x = (\alpha - \beta)/3$ and $y = 2(\alpha - \beta)/3$. Thus, in particular, it follows that if $\beta = \alpha$, then x = y = 0 and $M = M_1 = M_2$, which yields that $\alpha = 0$, a contradiction. This means that $\beta < \alpha$.

We show that M is not an interior point of a unit circular arc in $\partial \mathcal{D}_3$ longer than $\alpha - \beta$. Suppose for contradiction that M is an interior point of such a circular arc \mathcal{C} . If one of M_1 or M_2 , say, $M_1 \in \mathcal{C}$, then $\mathcal{C}_1^M \subset \mathcal{C}$, which yields that $\mathcal{C}_2^M = g_{21}(\mathcal{C}_1^M)$ is also a unit circular arc, implying that $\mathcal{C}_1^M \cup \mathcal{C}_2^M$ belongs to the same unit circle $\hat{\mathcal{S}}$. Since this circle is invariant under a rotation around O, we have $\hat{\mathcal{S}} = \mathcal{S}^1$, which contradicts our assumption that $M, M_1, M_2 \in \text{int } \mathcal{B}^2$. Assume that $M_1, M_2 \notin \mathcal{C}$, and let \mathcal{C}^1 and \mathcal{C}^2 denote $\mathcal{C} \cap \mathcal{C}_1^M$ and $\mathcal{C} \cap \mathcal{C}_2^M$, respectively. Then $g_{21}(\mathcal{C}^2)$ is a unit circular arc in \mathcal{C}_1^M whose length is equal to that of \mathcal{C}^2 . Thus, $g_{21}(\mathcal{C}^2)$ and \mathcal{C}^1 intersect in a unit circular arc, which yields that $g_{21}(\mathcal{C}^2) \cup \mathcal{C}^1 = \mathcal{C}_1^M$ is a unit circular arc, which leads to a contradiction in a similar way.

Let us say that a unit circular arc in $\partial \mathcal{D}_i$ is maximal, if it is not a proper subset of another unit circular arc in $\partial \mathcal{D}_i$. By Lemma 2.1, $\partial \mathcal{D}_1$ contains finitely many, say $m \geq 1$ maximal unit circular arcs of length α , one of which is \mathcal{S}_1 . Thus, $\partial \mathcal{D}_3$ also contains m maximal unit circular arcs of length α . By the previous paragraph, any of these arcs is contained in $\mathcal{C}_1^S \cup \mathcal{C}_1^M$ or in $\mathcal{C}_2^S \cup \mathcal{C}_2^M$. Assume that all these arcs are contained in \mathcal{C}_1^S or in \mathcal{C}_2^S . Since \mathcal{C}_1^S , \mathcal{C}_2^S and \mathcal{C}_3^S are congruent, we have that the total number of unit circular arcs of length α in \mathcal{C}_i^S is equal to m/2. Thus, $\partial \mathcal{D}_1$ contains m + 1 arcs, which is a contradiction.

Finally, consider the case that some maximal unit circular arc S_{α} of length α in $\partial \mathcal{D}_3$ is not contained in $\mathcal{C}_1^S \cup \mathcal{C}_2^S$. Since $\alpha > \alpha - \beta$, M is not an interior point of S_{α} , but M_1 or M_2 is. Without loss of generality, we may assume that M_1 is in the interior of S_{α} . This implies that M is in the interior of $g_{12}(S_{\alpha}) \subseteq \mathcal{C}_3^S \cup \mathcal{C}_2^M$ (similarly as Figure 2 shows). Hence, M is not an interior point of a unit circular arc in $\partial \mathcal{D}_1$, which implies that M_2 is not an interior point of any unit circular arc in $\partial \mathcal{D}_2$. On the other hand, again by Lemma 2.1, $\partial \mathcal{D}_3$ contains k maximal unit circular arcs of length β for some $k \geq 1$, one of which is S_3 . By our previous argument, any of these arcs is contained in one of \mathcal{C}_i^M or \mathcal{C}_i^S for some $i \in \{1, 2\}$. Let $k_M \geq 0$ and $k_S \geq 0$ denote the number of these arcs in \mathcal{C}_1^M and \mathcal{C}_1^S , respectively. Then \mathcal{C}_1^M and \mathcal{C}_1^S contain exactly k_M and k_S of these arcs, respectively. From this it readily follows that $k = 2k_M + 2k_S + 1$. Furthermore, since $\partial \mathcal{D}_1$ also contains k maximal unit circular arcs of length β , we have $k = k_M + 2k_S$. This yields that $k_M = -1$, which is a contradiction.

Case 3: all of the arcs S_1 , $g_{21}(S_2)$ and $g_{31}(S_3)$ coincide.

In this case g_{21} and g_{31} are either reflections about a line through O, or rotations

around O. In particular, O is a fixed point of both of them and thus it is the unique common point M of all tiles. For any $i \neq j$, let $C_{ij} = \mathcal{D}_i \cap \mathcal{D}_j$. If both g_{12} and g_{13} are rotations around O, then the tiling is clearly rotationally generated. Hence, assume that one of g_{12} and g_{13} , say g_{12} is a reflection about a line ℓ through O. Then $g_{12}(\mathcal{C}_{13} \cup \mathcal{C}_{12}) = \mathcal{C}_{12} \cup \mathcal{C}_{23}$ yields that \mathcal{C}_{12} is a straight line segment in ℓ , which, by the congruence of the tiles implies also that C_{ij} is a segment for all $i \neq j$. Thus, also in this case the tiling is rotationally generated, and the assertion follows.

4. Remarks and open problems

First, we observe that the quantity $n(\mathcal{K})$ can be similarly defined for any *O*-symmetric convex body \mathcal{K} in \mathbb{R}^d playing the role of \mathcal{B}^2 . On the other hand, Theorem 1.1 cannot be generalized for any *O*-symmetric convex body even in the case d = 2. Indeed, taking a parallelogram and dissecting it into three congruent parallelograms with two lines parallel to a pair of sides of the parallelogram shows that there are *O*-symmetric plane convex bodies \mathcal{K} with $n(\mathcal{K}) = 3$. However, it is easy to see that the following generalization of Theorem 1.1 holds.

Theorem 4.1. If there is a monohedral tiling of an O-symmetric, strictly convex, smooth body \mathcal{K} in \mathbb{R}^2 with $k \leq 3$ topological discs, then both K and its tiling has a k-fold symmetry. In particular, for any O-symmetric, strictly convex plane body \mathcal{K} of smooth boundary we have $n(\mathcal{K}) \geq 4$.

This raises the question what happens if smoothness or the strictness of the convexity is dropped from the conditions.

Following [5], we generalize Question 1 for balls in arbitrary dimensions.

Question 4. Are there monohedral tilings of the closed unit ball \mathcal{B}^d such that the center of the ball is not contained in all of the tiles? More specifically, what are the values of d for which it is possible?

We also raise the following, related problem:

Question 5. If \mathcal{B}^2 has a tiling with similar copies of some topological disc \mathcal{D} , does it follow that the tiles are congruent? Does it follow that \mathcal{B}^2 has a tiling with congruent copies of \mathcal{D} ? Do these properties hold under some additional assumption on the tiles, e.g. if they have piecewise analytic boundaries?

We should finally mention the *divisibility problem*, in which the topological conditions on the tiles are dropped: A subset of \mathbb{R}^d is *m*-*divisible* if it can be decomposed into $m \in \mathbb{N}$ mutually *disjoint* congruent subsets. It is proved that typical convex bodies are not divisible [15], but balls are not typical in this sense, and they are *m*-divisible for large values of *m* if *d* is divisible by three [8] or *d* is even [9].

References

 K. Bezdek, Z. Lángi, M. Naszódi, and P. Papez, Ball-polyhedra, Discrete Comput. Geom. 38 (2007), no. 2, 201–230. (3)

- [2] H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1994. (1, 2)
- [3] F. Fodor, Á. Kurusa, and V. Vígh, Inequalities for hyperconvex sets, Adv. Geom. 16 (2016), no. 3, 337–348, https://doi.org/10.1515/advgeom-2016-0013. (3)
- [4] G. Frederickson, Dissections: Plane & Fancy, Cambridge University Press, 1997. (7)
- [5] S. V. Goncharov, On covering a ball by congruent subsets in normed spaces, arXiv (2017), https://arxiv.org/abs/1708.01598. (2, 12)
- [6] J. A. Haddley and S. Worsley, Infinite families of monohedral disk tilings, arXiv (2015), https://arxiv.org/abs/1512.03794. (1, 2)
- [7] A. Ya. Kanel-Belov, Solution of Problem 1.5., Matem. Prosvesch. 3rd ser. 6 (2002), 139–140 (Russian). (8)
- [8] G. Kiss and M. Laczkovich, Decomposition of balls into congruent pieces, Mathematika 57 (2011), no. 1, 89–107, https://doi.org/10.1112/S0025579310001658. (12)
- [9] G. Kiss and G. Somlai, Decomposition of ball in ℝ^d, Mathematika 62 (2016), no. 2, 378–405, https://doi.org/10.1112/S0025579315000248. (12)
- [10] M. Salát, Cover image, Középiskolai Matematikai és Fizikai Lapok 51 (2001), http://db. komal.hu/scan/2001/01/B01011B.PS.png (Hungarian). (2)
- [11] Á. Kurusa, Can you see the bubbles in a foam?, Acta Sci. Math. (Szeged) 82 (2016), no. 3-4, 663-694, https://doi.org/10.14232/actasm-015-299-1. (7)
- [12] MASS Program at Penn State, About our Logo, https://math.psu.edu/mass/content/ about-our-logo.
- [13] Math Overflow, Is it possible to dissect a disk into congruent pieces, so that a neighborhood of the origin is contained within a single piece?, https://mathoverflow.net/questions/ 17313. (1)
- [14] R. Fedorov, A. Belov, and A. Kovaldzhi (eds.), Moscow Mathematical Olympiads, 2000-2005, MSRI Mathematical Circles Library, vol. 7, Mathematical Sciences Research Institute, Berkeley, CA; American Mathematical Society, Providence, RI, 2011, https://books.google.hu/ books?id=HTR-AwAAQBAJ&pg=PA139&lpg=PA139#v=onepage&q&f=false. Partial translation of the 2006 Russian original; Translated by Vladimir Dubrovsky. (2)
- [15] C. Richter, Most convex bodies are isometrically indivisible, J. Geom. 89 (2008), no. 1-2, 130–137, https://doi.org/10.1007/s00022-008-2033-0. (12)
- [16] H. Sagan, Space-filling curves, Universitext, Springer-Verlag, New York, 1994, https://doi. org/10.1007/978-1-4612-0871-6. (3)
- [17] A. Schoenflies, Beiträge zur Theorie der Punktmengen III, Mathematische Annalen 62 (1906), no. 2, 286–328, https://doi.org/10.1007/BF01449982. (3)
- [18] Pinthira Tangsupphathawat, Algebraic trigonometric values at rational multipliers of π, Acta Comm. Univ. Tartuensis Math. 18 (2004), 9–18, https://doi.org/10.12697/ACUTM.2014.
 18.02. (6)

Á. KURUSA, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1053 Budapest, Hungary; *and* Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6725 Szeged, Hungary.

E-mail address: kurusa@math.u-szeged.hu

URL: http://www.math.u-szeged.hu/tagok/kurusa

Z. LÁNGI, MTA-BME Morphodynamics Research Group and Dept. of Geometry, Budapest University of Technology, Egry József u. 1., 1111 Budapest, Hungary.

E-mail address: zlangi@math.bme.hu

URL: http://math.bme.hu/~zlangi/

V. VíGH, Dept. of Geometry, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary *and* Dept. of Natural Sciences and Engineering, Faculty of Mechanical Engineering and Automation, John von Neumann University, Izsáki út 10, H-6000 Kecskemét, Hungary.

E-mail address: vigvik@math.u-szeged.hu *URL*: http://www.math.u-szeged.hu/tagok/vigvik/