
(October 9, 2019) c© Á. Kurusa, Z. Lángi, and V. Vígh all rights reserved

submitted

TILING A CIRCULAR DISC WITH CONGRUENT PIECES

ÁRPÁD KURUSA, LÁNGI ZSOLT, AND VIKTOR VÍGH

Abstract. In this note we prove that any monohedral tiling of the closed
circular unit disc with k ≤ 3 topological discs as tiles has a k-fold rotational
symmetry. This result yields the first nontrivial estimate about the minimum
number of tiles in a monohedral tiling of the circular disc in which not all tiles
contain the center, and the first step towards answering a question of Stein
appearing in the problem book of Croft, Falconer and Guy in 1994.

1. Introduction

A tiling of a convex body K in Euclidean d-space Rd is a finite family of compact
sets in Rd with mutually disjoint interiors, called tiles, whose union is K. A tiling
is monohedral, if all tiles are congruent.

In this paper we deal with the monohedral tilings of the closed circular unit disc
B2 with center O, in which the tiles are Jordan regions; i.e. are homeomorphic
to a closed circular disc. The easiest way to generate such tilings, which we call
rotationally generated tilings, is to rotate around O a simple, continuous curve
connecting O to a point on the boundary S1 of B2. The following question, based
on the observation that any tile of such a monohedral tiling of B2 contains O, seems
to arise regularly in recreational mathematical circles [13]:

Question 1. Are there monohedral tilings of B2 in which not all of the tiles contain
O?

The answer to Question 1 is affirmative; the usual examples to show this are the
first two configurations in Figure 1. The following harder variant is attributed to
Stein by Croft, Falconer and Guy in [2, last paragraph on p. 87].

Question 2 (Stein). Are there monohedral tilings of B2 in which O is in the
interior of a tile?

A systematic investigation of monohedral tilings of B2 was started in [6] by Had-
dley and Worsley. In their paper they called a monohedral tiling radially generated,
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if every tile is radially generated, meaning that its boundary is a continuous simple
curve consisting of three parts: a circular arc of length α and two other curves one
of which is the rotation of the other one about their common point by angle α.
The following ambitious conjecture appears in [6, Conjecture 6.1].

Conjecture 1 (Haddley and Worsley). Every monohedral tiling is a subtiling of a
radially generated tiling.

A similar problem was investigated in [5] by Goncharov, who, for anyO-symmetric
convex body in Rd, determined the smallest number of congruent copies of a sub-
set of the body that cover the body. In the spirit of this approach we raise the
following variant of Question 1:

Question 3. What is the minimum cardinality n(B2) of a monohedral tiling of B2
in which not all of the tiles contain O?

As the configurations in Figure 1 show, we have n(B2) ≤ 12. On the other hand,
the lower bound n(B2) ≥ 3 is also relatively easy to prove: it was posed as a problem
in 2000 on the Russian Mathematical Olympiads [14]. Presently, to the authors’
knowledge, the best bounds on n(B2) are still the trivial ones: 3 ≤ n(B2) ≤ 12.

Figure 1. A non-radially1, a radially, and a rotationally generated
monohedral tiling of B2. In contrast to these three, the rightmost,
radially generated monohedral tiling is not rotationally invariant.

Our main result is the following.

Theorem 1.1. Any monohedral tiling of B2 with at most three topological discs is
rotationally generated.

This result implies Conjecture 1 for tilings with at most 3 tiles, yields the first
nontrivial lower bound for n(B2), and in particular proves that the answer for
Question 2 is refuting for tilings with at most three tiles.

1 It may be worth noting that this configuration also appears regularly in various places: this
was chosen, for example, as the logo of the MASS program at Penn State University, it appears on
the front page of five issues of the Hungarian problem-solving mathematical journal Középiskolai
Matematikai Lapok [10], and it can be found also in the book [2, Figure C8].
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Corollary 1.2. We have n(B2) ≥ 4.

Corollary 1.3. There is no monohedral tiling of B2 with at most three topological
discs as tiles such that the center of B2 is contained in exactly one of them.

In Section 2 we introduce the notions used in the paper, investigate the basic
properties of monohedral tilings of B2, and prove a series of lemmas that we use in
the proof of Theorem 1.1. In Section 3 we prove Theorem 1.1.

Finally, in Section 4 we collect our additional remarks and propose some open
problems.

2. Notations and preliminaries

Throughout the proof, we denote by B2 the closed unit circular disc with the
origin O = (0, 0) as its center, and its boundary by S1 = ∂ B2. We say that
two points P,Q ∈ S1 are antipodal if d(P,Q) = 2, where d(·, ·) denotes Euclidean
distance. For points P,Q ∈ R2, the closed segment with endpoints P,Q is denoted
by PQ.

For any P,Q ∈ R2 with d(P,Q) ≤ 2r, the r-spindle 	rP,Q of two points P,Q is by
definition (cf. [1] or [3]) the intersection of all Euclidean discs of radius r > 0 that
contain P and Q. In other words, 	rP,Q is the region bounded by the two circular
arcs of radius r > 0 that connect P and Q and are not longer than a half-circle.

A set homeomorphic to B2 is called a topological disc. The boundary of a
topological disc is a simple, closed, continuous curve, called Jordan curve. On the
other hand, the Jordan–Schoenflies theorem [17] yields that every Jordan curve
is the boundary of a topological disc. We remark that since all topological discs
are compact, they are Lebesgue measurable; we denote their measure by area(·).
Nevertheless, there are topological discs (see, e.g. the Koch snowflake, or for more
examples [16]) whose boundary is not rectifiable. Our next lemma, which we use
in the proof, holds for these topological discs as well.

Lemma 2.1. Let Γ be a Jordan curve and C be a simple, continuous curve. Then
Γ contains finitely many congruent copies of C which are mutually disjoint, apart
from possibly their endpoints.

Proof. Assume for contradiction that Γ contains infinitely many congruent copies
Cn (n = 1, 2, . . .) of C which are mutually disjoint, apart from possibly their end-
points. Let Pn and Qn denote the endpoints of Cn. Since Γ is compact, we may
assume that limn→∞ Pn = P and limn→∞Qn = Q for some P,Q ∈ Γ. By the
properties of congruence, P 6= Q. On the other hand, since Γ is homeomorphic to
S1, the congruent copies of C correspond to mutually nonoverlapping circular arcs
on S1. Clearly, this implies that P = Q, a contradiction. �

Lemma 2.2. Let D = D1 ∪ D2, where D,D1 and D2 are topological discs, and
intD1 ∩ intD2 = ∅. Then S1 = D1 ∩ ∂D, S2 = D2 ∩ ∂D and S = ∂D1 ∩ ∂D2 are
simple continuous curves.
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Proof. As D is a topological disc, we have a homeomorphism χ such that χ(D) =
B2. Since the statement of the lemma is topologically invariant, it is sufficient to
prove it in the case D = B2. Thus, we may assume that Si = S1 ∩ Di for i = 1, 2,
where we observe that since Di and S1 are closed, so is Si.

First, we show that S1 and S2 are connected. Assume, for example, that some
X1, Y1 ∈ S1 cannot be connected by an arc in S1. Then there are some points
X2, Y2 /∈ S1 that separate X1 and Y1 in S1. Clearly, we have X2, Y2 ∈ S2. For any
i = 1, 2, since Di is a topological disc, there is a simple, continuous curve γi with
endpoints Xi, Yi such that apart from these points γi is contained in intSi. By
continuity, γ1 ∩ γ2 6= ∅, implying that intD1 ∩ intD2 6= ∅, a contradiction. Thus,
S1 and S2 are connected, which yields that they are closed circular arcs in S1. Let
the (common) endpoints of these arcs be P and Q.

The points P,Q ∈ S1 ∩ S2 are also in ∂D1 ∩ ∂D2, hence they are connected by
a simple continuous curve in ∂D1 \ S1 and also in ∂D2 \ S2. These curves coincide
because D = D1 ∪ D2, hence it is S, and the proof of Lemma 2.2 is complete. �

Lemma 2.3. Let {D1,D2,D3} be a tiling of the topological disc D where for i =
1, 2, 3, Di is a topological disc such that Si = Di ∩ ∂D is a nondegenerate simple
continuous curve. Then D1 ∩ D2 ∩ D3 is a singleton {M}, and for any i 6= j,
Di ∩ Dj is a simple continuous curve connecting M and a point in ∂D.

Proof. Suppose for contradiction that there are two distinct points M1,M2 ∈ Di
for i = 1, 2, 3. For any i, let Γi be a simple, continuous curve connecting M1

and M2 which is contained in intDi, apart from M1 and M2. Note that for any
i 6= j, Γi ∪ Γj is a simple, closed, continuous curve. Thus, the union of a pair of
the curves, say Γ1 ∪ Γ2 encloses the third one. This implies that Γ1 ∪ Γ2 encloses
D3. Since M1,M2 /∈ S1 by our conditions, it follows that D3 is disjoint from S1;
a contradiction. Thus, D1 ∩ D2 ∩ D3 contains at most one point. On the other
hand, since the closure X1 of (∂D1) \ S1 is a simple, connected curve and it can
be decomposed into the closed sets X1 ∩D2 and X1 ∩D3, it follows that these sets
intersect, that is D1 ∩D2 ∩D3 is not empty. Thus, D1 ∩D2 ∩D3 = {M} for some
M ∈ intD.

To prove the second part of Lemma 2.3, we may apply an argument like in the
proof of Lemma 2.2. �

By the circumcircle of a topological disc D we mean the unique smallest closed
Euclidean circle encompassing D. The convex hull of the circumcircle is the cir-
cumdisc of D, the radius of the circumcircle is the circumradius of D. Observe
that the center of the circumcircle C of D is in conv(C ∩D), as otherwise a smaller
circle would encompass D.
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Lemma 2.4. Assume that S1 is the common circumcircle of the non-overlapping
congruent topological discs D1 and D2. Then there is a diameter PQ of B2 sep-
arating S1 = D1 ∩ S1 and S2 = D2 ∩ S1. Furthermore, any congruence g with
g(D1) = D2 is either the reflection about the line of PQ, or the reflection about O.

Proof. Using the idea of the proof of Lemma 2.2, it follows that there are no
pairs of points X1, Y1 ∈ S1 and X2, Y2 ∈ S2 that strictly separate each other on
S1. In other words, there is a line ` separating S1 and S2. On the other hand,
as O ∈ convS1 ∩ convS2, ` contains O and ` ∩ S1 ⊆ S1 ∩ S2, proving the first
statement with {P,Q} = ` ∩ S1. We note that from this argument it also follows
that S1 ∩ S2 = {P,Q}.

Consider some isometry g with g(D1) = D2. The uniqueness of the circumcircle
clearly implies that g(S1) = S1, and thus, g({P,Q}) = {P,Q}. This implies that g
is either the reflection about the line of PQ, the reflection about the line bisecting
PQ, or the reflection about O. We show that the conditions of the lemma exclude
the second case: Consider a simple, continuous curve Γ from P to Q such that
Γ \ {P,Q} ⊂ intD1. Then at least one point R of Γ lies on the line `⊥ bisecting
PQ. If g is the reflection about `⊥, then g(R) = R, and hence, R ∈ intD1 ∩ intD2;
a contradiction. �

In the remaining part of Section 2, we deal only with a monohedral tiling of B2,
where the tiles Di, i = 1, 2, . . . , n, are congruent copies of a topological disc D. For
any j 6= 1, we fix an isometry g1j mapping D1 into Dj , and for any values of i, j,
we set gij = g−11i ◦ g1j . Then, by definition, we have gji = g−1ij for all values of i, j.
Finally, we set Si = Di ∩ S1 for all values of i.

Lemma 2.5. If D contains two points at the distance 2, then n = 1 or n = 2, and
the tiling is rotationally generated.

Proof. If D contains two points at the distance 2, then each tile contains two
antipodal points of B2. Thus, B2 is the circumdisc of each tile, which implies that
gij(B2) = B2 for all values of i, j. Since O ∈ Di for some value of i, it also yields
that O ∈ Di for all values of i. Then, by Lemma 2.4, there is a diameter PQ of
B2 whose endpoints belong to every tile, and the congruence between any two of
them is either a reflection about the line through PQ, or the reflection about the
midpoint of PQ. This implies that there are at most two tiles.

To prove that the tiling is rotationally generated, assume that n = 2, and D2 is
a reflected copy of D1 about the line through PQ. Since in this case D1 and D2 are
the two closed half discs of B2 containing PQ in their boundaries, the statement
follows. �

Lemma 2.6. For all values of i, Si (i = 1, . . . , n) is a closed, connected arc in S1.

Proof. As S1 is compact, there are points P,Q ∈ S1 farthest from each other in
S1. If P,Q are antipodal points of S1, then every Di = g1i(D1) (i = 1, . . .) contains
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antipodal points, hence B2 is the circumdisc of every tile. Then Lemma 2.5 yields
that n = 1 or n = 2. The case n = 1 is trivial, and if n = 2, then by Lemma 2.4,
there is a diameter PQ separating S1 and S2, which implies that S1 and S2 are
closed half-circles. Thus, we may assume that P,Q are not antipodal.

Let Γ ⊂ S1 be the shorter arc connecting P and Q. We show that Γ ⊂ D1.
For contradiction, suppose that a point X ∈ Γ does not belong to D1. Then,

without loss of generality, we may assume that X ∈ D2, and that X 6= P , X 6= Q.
Let r > 0 be the radius of the circumdisc B of D1. Since D1 is compact, and

it does not contain antipodal points of S1, we have r < 1, implying that 	rP,Q
contains Γ \ {P,Q} in its interior. Thus Γ ⊂ B, and Γ \ {P,Q} ⊂ intB. Let Γ′

be a continuous curve connecting P and Q such that Γ′ \ {P,Q} ⊂ intD1. This
yields that Γ ∪ Γ′ is a simple, continuous, closed curve in B enclosing D2. which,
by the congruence of D1 and D2, implies that the B is the circumdisc of D2 as well.
Hence, by Lemma 2.4 it follows that conv(∂ B ∩D1 ∩D2) is a diameter δ of B. As
P,Q are the only points of Γ ∪ Γ′ that may fall on ∂ B, we have δ = PQ.

From Lemma 2.4 it also follows that g12 is the reflection about the line of PQ,
or the reflection about the midpoint of PQ, and in particular g21 = g12. On the
other hand, observe that g12(	1

P,Q) = 	1
P,Q = B2 ∩ g12(B2). Since D1 ⊂ B2 and

D1 = g12(D2) ⊂ g12(B2), this implies that D1,D2 ⊂ 	1
P,Q. Now, if there is a

point R ∈ D2 ∩ ∂	1
P,Q \ Γ then R and X can be connected with a continuous

curve in intD2, while P,Q ∈ intD1, a contradiction. Hence D2 ∩ ∂	1
P,Q ⊂ Γ, and

accordingly D1 ∩ S1 = {P,Q}, and, in particular, D1 ∩ Γ = {P,Q}.
Assume that there is an interior point Y of Γ that belongs to, say, D3. Since

P,Q ∈ D2, we may repeat the argument in the previous paragraph, replacing D1

and D2 by D2 and D3, respectively, and obtain that D2 ∩Γ = {P,Q} contradicting
our assumption that there is an interior point X ∈ D2 of Γ. Thus, Γ ⊂ D2, which
yields by Lemma 2.4 that D2 ∩ S1 = Γ and 	1

P,Q = D1 ∪ D2. From this, in
particular, it follows that area(D1) = area(D2) = area(	1

P,Q)/2.
Since for all values of i, g2i({P,Q}) ⊂ B2, the definition of 1-spindle implies that

Di ⊂ 	1
g2i(P ),g2i(Q) ⊂ B

2, and g2i(D2) \ Γ ⊂ int	1
g2i(P ),g2i(Q) is disjoint from S1.

In other words, the sets g2i(Γ) cover S1. Note that these arcs may intersect each
other only at their endpoints, and if |S1 ∩ g2i(Γ)| ≥ 3, then g2i(Γ) ⊂ S1. Thus,
S1 can be decomposed into finitely many, say k < n circular arcs, each of which is
congruent to Γ.

Let s = 2π/k denote the arclength of Γ. Then ks = 2π on one hand, and

π

n
=

area(B2)

n
= area(D2) =

area(	1
P,Q)

2
=
s− sin s

4
=

2π
k − sin 2π

k

4

on the other hand. Thus, we have sin 2π
k = π( 2

k −
4
n ). The left-hand side is an

algebraic number (see, e.g. [18, Theorem 2.1]), from which 2
k = 4

n follows, hence
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sin 2π
k = 0, implying that k is a divisor of 2, contradicting our assumption that Γ

is shorter than a half-circle. �

Remark 2.7. Since Si ⊂ ∂ convDi, it follows that for all values of i, j, we have
gij(Si) ⊂ ∂ convDj .

Remark 2.8. For any values of i, j, k, the arcs gik(Si) and gjk(Sj) share at most
some of their endpoints, or they coincide.

Proof. Observe that since for any i, Si is contained in the convex hull of Di, if the
arcs gik(Si) and gjk(Sj) are not disjoint apart from (possibly) their endpoints, then
gik(Si) ∩ gjk(Sj) is a nondegenerate unit circular arc, and thus, gik(Si) ∪ gjk(Sj)
lies on a unit circle S.

Since Si = gki(gik(Si)) ⊂ S1, we have gki(S) = S1. Thus, Si ∪ gki(gjk(Sj)) ⊂
S1 ∩ Di = Si. This implies that gjk(Sj) ⊆ gik(Si). The containment relation
gik(Si) ⊆ gjk(Sj) can be obtained using a similar argument, which yields the
desired equality. �

Lemma 2.9. Let D1,D2, . . . ,Dn be a monohedral tiling of B2, where n > 1. Then
at least two of the arcs S1, g21(S2), . . . , gn1(Sn) coincide.

Proof. Suppose for contradiction that the arcs S1, g21(S2), . . . , gn1(Sn) are disjoint
apart from possibly their endpoints. By our earlier observation these arcs are in
∂ convD1. As the total turning angle of these n arcs is 2π, and the total turning
angle along the boundary of a convex body is also 2π, ∂ convD1 may only consist
in excess of these arcs some segments that connect the endpoints of these arcs
in a smooth way. In other words, convD1 = P + B2 for some convex n-gon P.
This implies that the circumradius of D1 is at least 1, with equality if and only if
D1 = B2, a contradiction. �

Definition 2.10. A multicurve (cf. also [11]) is a finite family of continuous simple
curves, called the members of the multicurve, which are parameterized on non-
degenerate closed finite intervals, and any point of the plane belongs to at most one
member, or it is the endpoint of exactly two members. If F and G are multicurves,⋃
F =

⋃
G, and every member of F is the union of some members of G, we say

that G is a partition of F .

Definition 2.11. Let F and G be multicurves. If there are partitions F ′ and G′
of F and G, respectively, and a bijection f : F ′ → G′ such that f(C) is congruent
to C for all C ∈ F ′, we say that F and G are equidecomposable.

The following lemma can be proved very similarly to the analogous statement
for equidecomposability of polygons [4], thus we omit the proof.

Lemma 2.12. Equidecomposability is an equivalence relation on the family of mul-
ticurves in R2.
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Corollary 2.13. If F and G are multicurves with
⋃
F =

⋃
G, then F and G are

equidecomposable.

Proof. Clearly, it is sufficient to prove the statement for the connected components
of

⋃
F , and by Lemma 2.12 we may assume that one of the multicurves, say G,

is a simple continuous curve. But then F is a partition of G, in which case the
statement is obvious. �

Corollary 2.14. If F and G are equidecomposable, and their subfamilies F ′ ⊆ F
and G′ ⊆ G are equidecomposable, then F \ F ′ and G \ G′ are equidecomposable.

Proof. By Lemma 2.12, we may assume that
⋃
F =

⋃
G. Without loss of gener-

ality, we may also assume that
⋃
F is connected, which yields that we may regard

both F and G as different partitions of the same simple, continuous curve. More
specifically, after reparametrizing if necessary, we may assume that there is some
curve C : [a, b] → R2, and partitions PF and PG of [a, b] such that the elements of
F and G are the restrictions of C to the subintervals of PF and PG, respectively.
By Corollary 2.13, a multicurve is equidecomposable with any of its partitions, and
hence, we may assume that PF = PG, and there is a bijection between the elements
of F ′ and G′ such that the corresponding elements are congruent. Since congruence
is an equivalence relation, it is clear that any such bijection can be extended to all
subintervals of PF , which proves the assertion. �

3. Proof of Theorem 1.1

First, consider a monohedral tiling of B2 with the topological discs D1 and D2.
The containment O ∈ D1 ∩D2 can be proved in a number of elementary ways (see,
e.g. [7]); here we also show that the tiling is rotationally generated.

By Lemma 2.6, for i = 1, 2, Si = Di ∩S1 is a connected arc and hence, S1 or S2
is an arc of length at least π. Thus, D1 or D2 contains a pair of antipodal points
of B2, which, by Lemma 2.5, implies that the tiling is rotationally generated.

From now on, we consider the case that B2 is decomposed into three congruent
topological discs D1,D2,D3, and for i = 1, 2, 3, we set Si = Di∩S1. By Lemmas 2.6
and 2.5, we may assume that each tile intersects S1 in a nondegenerate cicle arc,
which is smaller than a half-circle.

By Lemma 2.3, we have that D1 ∩D2 ∩D3 consists of a single point M ∈ intB2,
and that for any i 6= j, Di ∩ Dj is a simple, continuous curve connecting M and a
point of S1.

To prove the assertion, we distinguish some cases. Before we do it, we observe
that by Remark 2.8, any pair of the curves S1, g21(S2) and g31(S3) intersect in at
most a common endpoint, or they coincide.
Case 1: No pair of the arcs S1, g21(S2) and g31(S3) coincide.
In this case we immediately have a contradiction by Lemma 2.9.
Case 2: Two of the arcs S1, g21(S2) and g31(S3) coincide, the third one is different.
Using a suitable relabeling of the tiles, we may assume that S1 = g21(S2). Let the
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arclength of this arc be 0 < α < π, and the arclength of S3 be β. The equality
S1 = g21(S2) implies, in particular, that g21 is an isometry of S1; or more generally
that it is either the reflection about the symmetry axis ` of S1 ∪ S2 or a rotation
around O with angle α. We may assume without loss of generality that ` is the
y-axis, the common point of S1 and S2 is (0, 1), and S1 ⊂ {(x, y) : x ≤ 0}.
Furthermore, in the proof we set C1 = D1 ∩ D3, and C2 = D2 ∩ D3.
Subcase 2.a: g21 is the reflection about `.
If there is a point P ∈ intD1 ∩ {(x, y) : x > 0}, then a continuous curve Γ in
intD1 connects P and the midpoint of S1, so g12(Γ) connects the midpoint of S2
to g12(P ) in intD2. This implies that Γ∩g12(Γ) is in intD1∩ intD2 = ∅, which is a
contradiction. Thus we have D1 ⊂ {(x, y) : x ≤ 0} and also D2 ⊂ {(x, y) : x ≥ 0}.

Observe that g13(S1) = g23(g12(S1)) = g23(S2), and D3 = cl(B2 \ (D1 ∪ D2))
is symmetric in `. We denote this arc of length α by S = g13(S1). Note that by
the conditions of Case 2 S 6= S3, and S ⊂ ∂ convD3 by Remark 2.7. Furthermore,
∂ convD3 does not contain any arc of length α apart from S and possibly S3, as
otherwise the idea of the proof of Lemma 2.9 yields a contradiction. Thus, S is
symmetric in the y-axis.

Since D3 is connected, and every point of ` belongs either to D3, or to both
D1 and D2, the segment connecting the midpoint X of S and the midpoint Y
of S3 belongs to D3. Let the length of XY be δ > 0, and note that the fact
X,Y ∈ ∂ convD3 yields that the line through XY intersects D3 exactly in XY
and XY \ {X,Y } ⊂ intD3. For i = 1, 2, g3i(XY ) is the segment of length δ in B2,
starting at the midpoint of Si, and perpendicular to it. Thus, if δ < 1, then O /∈ Di
for any value of i, if δ > 1, then O ∈ intDi for all values of i, and if δ = 1, then O
is the midpoint of a unit circle arc in the boundary of each of the Dis, which is a
contradiction.
Subcase 2.b: g21 is the rotation around O by angle α in counterclockwise direction.
As O is a fixed point of g21, it follows that either O ∈ D1 ∩ D2, or O /∈ D1 ∪ D2.
By the definition of tiling and our assumptions, in the first case O ∈ ∂D1 ∩ ∂D2,
and in the second case O ∈ intD3.

First, consider the case that O ∈ ∂D1 ∩ ∂D2.
Recall that by Lemma 2.3, D1 ∩ D2 ∩ D3 is a single point M , and for any

i 6= j, Di ∩ Dj is a simple continuous curve connecting M to a point of S1. Thus,
if O = M , then g21(D1 ∩ D2) = D1 ∩ D3, and g12(D1 ∩ D2) = D2 ∩ D3. Since
∂D1 and ∂D3 are equidecomposable, this implies that S1 and S3 are congruent,
and hence α = 2π/3. In other words, if O = M , then the tiling is rotationally
generated. Thus, we assume that O /∈ D3, which by the compactness of D3 yields
the existence of a small closed circular disc B centered at O such that B ∩D3 = ∅.
Let t 7→ C(t) be a continuous parameterization of the curve D1 ∩ D2 satisfying
O = C(0), and let t+ = sup{t : C([0, t])) ⊂ B} and t− = inf{t : C([t, 0]) ⊂ B}. Then
g12(C(t±)) = C(t∓), which implies that g12 is the reflection about O. Thus α = π
and β = 0, which contradicts our assumptions.
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In the remaining part of Subcase 2.b, we assume that O ∈ intD3.
Let M1 = g21(M) and M2 = g12(M). Since α > 0, we have M2 6= M . On the

other hand, we clearly have M2 ∈ ∂D2 and M2 /∈ S1.
Let B be the circular disc in D3 that is centered at O and is of maximum radius

r > 0. Then B is tangent to at least one of the curves C1 and C2, say C2 touches B
in X2 ∈ ∂ B ∩ C2. Let X1 = g21(X2). Then X1 ∈ B ∩ D1 = B ∩ C1 clearly, hence
X2 ∈ g12(C1) ∩ C2 6= ∅. Since g12(C1) is a continuous curve in ∂D2, connecting the
intersection point of S1 and S2 to M2 in intB2, it follows that M ∈ g12(C1), that
is, M1 ∈ C1, implying also M2 ∈ C2.

Thus, M1 divides the curve C1 into two parts: one from M to M1, which we
denote by CM1 , and the other one from M1 to a point of S1, which we denote by
CS1 . We define the parts CM2 and CS2 of C2 similarly, using M2 in place of M1.
Furthermore, we set CS3 = D1 ∩ D2.

CS3

CS2CS1

CM2
CM1

M

M2
M1

X1
X2

O B

D2D1

D3

S2S1

S3
Figure 2. B2 is dissected into three topological discs.

We clearly have g21(CM2 ) = CM1 , g21(CS2 ) = CS3 and g21(CS3 ) = CS1 . Observe
that since D1,D2 and D3 are congruent, their boundaries are equidecomposable.
Furthermore, as CS1 , CS2 , and CS3 , and also CM1 and CM2 are congruent, we obtain
by Corollary 2.14 that S1 and CM1 ∪ S3 are equidecomposable. Thus we deduce
that CM1 (and also CM2 ) is a multicurve such that its every member curve is a unit
circular arc, and their total length is α− β ≥ 0.

If a unit circular arc C is contained in the boundary of a tile Di, it may happen
that the convex side of C belongs to intDi, and the concave side of C does not
belong to Di. In this case we say that C is a convex circular arc of Di, and in the
opposite case that it is a concave circular arc of Di. Clearly, if C is a unit circular
arc in Di ∩ Dj for some i 6= j, then it is a convex circular arc of exactly one of Di
and Dj . Let x and y denote the total length of the convex and concave unit circular
arcs of D1 in CM1 . Since CM1 and CM2 are congruent, the total length of the convex
and concave unit circular arcs of D2 in CM2 is also x and y, respectively. Thus, the
total length of the convex and concave unit circular arcs of D3 in CM1 ∪ CM2 is 2y
and 2x, respectively.
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The congruence of the tiles Di and the curves CSi for i = 1, 2, 3 yields that the
total lengths of the convex and concave unit circular arcs of D1 in S1 ∪ CM1 is
equal to the total lengths of the convex and the concave unit circular arcs of D3

in S3 ∪ CM1 ∪ CM2 , respectively. This equality for convex circular arcs implies that
α + x = β + 2y, and the equality for concave arcs implies y = 2x. From these
equations it follows that x = (α− β)/3 and y = 2(α− β)/3. Thus, in particular, it
follows that if β = α, then x = y = 0 and M = M1 = M2, which yields that α = 0,
a contradiction. This means that β < α.

We show thatM is not an interior point of a unit circular arc in ∂D3 longer than
α− β. Suppose for contradiction that M is an interior point of such a circular arc
C. If one ofM1 orM2, say, M1 ∈ C, then CM1 ⊂ C, which yields that CM2 = g21(CM1 )
is also a unit circular arc, implying that CM1 ∪ CM2 belongs to the same unit circle
Ŝ. Since this circle is invariant under a rotation around O, we have Ŝ = S1, which
contradicts our assumption that M,M1,M2 ∈ intB2. Assume that M1,M2 /∈ C,
and let C1 and C2 denote C ∩ CM1 and C ∩ CM2 , respectively. Then g21(C2) is a
unit circular arc in CM1 whose length is equal to that of C2. Thus, g21(C2) and
C1 intersect in a unit circular arc, which yields that g21(C2) ∪ C1 = CM1 is a unit
circular arc, which leads to a contradiction in a similar way.

Let us say that a unit circular arc in ∂Di is maximal, if it is not a proper subset
of another unit circular arc in ∂Di. By Lemma 2.1, ∂D1 contains finitely many,
say m ≥ 1 maximal unit circular arcs of length α, one of which is S1. Thus, ∂D3

also contains m maximal unit circular arcs of length α. By the previous paragraph,
any of these arcs is contained in CS1 ∪CM1 or in CS2 ∪CM2 . Assume that all these arcs
are contained in CS1 or in CS2 . Since CS1 , CS2 and CS3 are congruent, we have that the
total number of unit circular arcs of length α in CSi is equal to m/2. Thus, ∂D1

contains m+ 1 arcs, which is a contradiction.
Finally, consider the case that some maximal unit circular arc Sα of length α

in ∂D3 is not contained in CS1 ∪ CS2 . Since α > α − β, M is not an interior point
of Sα, but M1 or M2 is. Without loss of generality, we may assume that M1 is in
the interior of Sα. This implies that M is in the interior of g12(Sα) ⊆ CS3 ∪ CM2
(similarly as Figure 2 shows). Hence, M is not an interior point of a unit circular
arc in ∂D1, which implies that M2 is not an interior point of any unit circular
arc in ∂D2. On the other hand, again by Lemma 2.1, ∂D3 contains k maximal
unit circular arcs of length β for some k ≥ 1, one of which is S3. By our previous
argument, any of these arcs is contained in one of CMi or CSi for some i ∈ {1, 2}. Let
kM ≥ 0 and kS ≥ 0 denote the number of these arcs in CM1 and CS1 , respectively.
Then CM1 and CS1 contain exactly kM and kS of these arcs, respectively. From this
it readily follows that k = 2kM + 2kS + 1. Furthermore, since ∂D1 also contains
k maximal unit circular arcs of length β, we have k = kM + 2kS . This yields that
kM = −1, which is a contradiction.
Case 3: all of the arcs S1, g21(S2) and g31(S3) coincide.
In this case g21 and g31 are either reflections about a line through O, or rotations
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around O. In particular, O is a fixed point of both of them and thus it is the
unique common point M of all tiles. For any i 6= j, let Cij = Di ∩ Dj . If both g12
and g13 are rotations around O, then the tiling is clearly rotationally generated.
Hence, assume that one of g12 and g13, say g12 is a reflection about a line ` through
O. Then g12(C13 ∪ C12) = C12 ∪ C23 yields that C12 is a straight line segment in
`, which, by the congruence of the tiles implies also that Cij is a segment for all
i 6= j. Thus, also in this case the tiling is rotationally generated, and the assertion
follows.

4. Remarks and open problems

First, we observe that the quantity n(K) can be similarly defined for any O-
symmetric convex body K in Rd playing the role of B2. On the other hand, Theo-
rem 1.1 cannot be generalized for any O-symmetric convex body even in the case
d = 2. Indeed, taking a parallelogram and dissecting it into three congruent paral-
lelograms with two lines parallel to a pair of sides of the parallelogram shows that
there are O-symmetric plane convex bodies K with n(K) = 3. However, it is easy
to see that the following generalization of Theorem 1.1 holds.
Theorem 4.1. If there is a monohedral tiling of an O-symmetric, strictly convex,
smooth body K in R2 with k ≤ 3 topological discs, then both K and its tiling has a
k-fold symmetry. In particular, for any O-symmetric, strictly convex plane body K
of smooth boundary we have n(K) ≥ 4.

This raises the question what happens if smoothness or the strictness of the
convexity is dropped from the conditions.

Following [5], we generalize Question 1 for balls in arbitrary dimensions.
Question 4. Are there monohedral tilings of the closed unit ball Bd such that the
center of the ball is not contained in all of the tiles? More specifically, what are the
values of d for which it is possible?

We also raise the following, related problem:
Question 5. If B2 has a tiling with similar copies of some topological disc D,
does it follow that the tiles are congruent? Does it follow that B2 has a tiling with
congruent copies of D? Do these properties hold under some additional assumption
on the tiles, e.g. if they have piecewise analytic boundaries?

We should finally mention the divisibility problem, in which the topological condi-
tions on the tiles are dropped: A subset of Rd ism-divisible if it can be decomposed
into m ∈ N mutually disjoint congruent subsets. It is proved that typical convex
bodies are not divisible [15], but balls are not typical in this sense, and they are
m-divisible for large values of m if d is divisible by three [8] or d is even [9].

References

[1] K. Bezdek, Z. Lángi, M. Naszódi, and P. Papez, Ball-polyhedra, Discrete Comput. Geom. 38
(2007), no. 2, 201–230. 〈3〉



(October 9, 2019) c© Á. Kurusa, Z. Lángi, and V. Vígh all rights reserved

TILING A CIRCULAR DISC WITH CONGRUENT PIECES 13

[2] H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved problems in geometry, Problem Books
in Mathematics, Springer-Verlag, New York, 1994. 〈1, 2〉

[3] F. Fodor, Á. Kurusa, and V. Vígh, Inequalities for hyperconvex sets, Adv. Geom. 16 (2016),
no. 3, 337–348, https://doi.org/10.1515/advgeom-2016-0013. 〈3〉

[4] G. Frederickson, Dissections: Plane & Fancy, Cambridge University Press, 1997. 〈7〉
[5] S. V. Goncharov, On covering a ball by congruent subsets in normed spaces, arXiv (2017),

https://arxiv.org/abs/1708.01598. 〈2, 12〉
[6] J. A. Haddley and S. Worsley, Infinite families of monohedral disk tilings, arXiv (2015),

https://arxiv.org/abs/1512.03794. 〈1, 2〉
[7] A. Ya. Kanel-Belov, Solution of Problem 1.5., Matem. Prosvesch. 3rd ser. 6 (2002), 139–140

(Russian). 〈8〉
[8] G. Kiss and M. Laczkovich, Decomposition of balls into congruent pieces, Mathematika 57

(2011), no. 1, 89–107, https://doi.org/10.1112/S0025579310001658. 〈12〉
[9] G. Kiss and G. Somlai, Decomposition of ball in Rd, Mathematika 62 (2016), no. 2, 378–405,

https://doi.org/10.1112/S0025579315000248. 〈12〉
[10] M. Salát, Cover image, Középiskolai Matematikai és Fizikai Lapok 51 (2001), http://db.

komal.hu/scan/2001/01/B01011B.PS.png (Hungarian). 〈2〉
[11] Á. Kurusa, Can you see the bubbles in a foam?, Acta Sci. Math. (Szeged) 82 (2016), no. 3-4,

663–694, https://doi.org/10.14232/actasm-015-299-1. 〈7〉
[12] MASS Program at Penn State, About our Logo, https://math.psu.edu/mass/content/

about-our-logo.
[13] Math Overflow, Is it possible to dissect a disk into congruent pieces, so that a neighborhood

of the origin is contained within a single piece?, https://mathoverflow.net/questions/
17313. 〈1〉

[14] R. Fedorov, A. Belov, and A. Kovaldzhi (eds.),Moscow Mathematical Olympiads, 2000–2005,
MSRI Mathematical Circles Library, vol. 7, Mathematical Sciences Research Institute, Berke-
ley, CA; American Mathematical Society, Providence, RI, 2011, https://books.google.hu/
books?id=HTR-AwAAQBAJ&pg=PA139&lpg=PA139#v=onepage&q&f=false. Partial translation of
the 2006 Russian original; Translated by Vladimir Dubrovsky. 〈2〉

[15] C. Richter, Most convex bodies are isometrically indivisible, J. Geom. 89 (2008), no. 1-2,
130–137, https://doi.org/10.1007/s00022-008-2033-0. 〈12〉

[16] H. Sagan, Space-filling curves, Universitext, Springer-Verlag, New York, 1994, https://doi.
org/10.1007/978-1-4612-0871-6. 〈3〉

[17] A. Schoenflies, Beiträge zur Theorie der Punktmengen III, Mathematische Annalen 62
(1906), no. 2, 286–328, https://doi.org/10.1007/BF01449982. 〈3〉

[18] Pinthira Tangsupphathawat, Algebraic trigonometric values at rational multipliers of π, Acta
Comm. Univ. Tartuensis Math. 18 (2004), 9–18, https://doi.org/10.12697/ACUTM.2014.
18.02. 〈6〉

https://doi.org/10.1515/advgeom-2016-0013
https://arxiv.org/abs/1708.01598
https://arxiv.org/abs/1512.03794
https://doi.org/10.1112/S0025579310001658
https://doi.org/10.1112/S0025579315000248
http://db.komal.hu/scan/2001/01/B01011B.PS.png
http://db.komal.hu/scan/2001/01/B01011B.PS.png
https://doi.org/10.14232/actasm-015-299-1
https://math.psu.edu/mass/content/about-our-logo
https://math.psu.edu/mass/content/about-our-logo
https://mathoverflow.net/questions/17313
https://mathoverflow.net/questions/17313
https://books.google.hu/books?id=HTR-AwAAQBAJ&pg=PA139&lpg=PA139#v=onepage&q&f=false
https://books.google.hu/books?id=HTR-AwAAQBAJ&pg=PA139&lpg=PA139#v=onepage&q&f=false
https://doi.org/10.1007/s00022-008-2033-0
https://doi.org/10.1007/978-1-4612-0871-6
https://doi.org/10.1007/978-1-4612-0871-6
https://doi.org/10.1007/BF01449982
https://doi.org/10.12697/ACUTM.2014.18.02
https://doi.org/10.12697/ACUTM.2014.18.02


(October 9, 2019) c© Á. Kurusa, Z. Lángi, and V. Vígh all rights reserved

14 Á. KURUSA, Z. LÁNGI, AND V. VÍGH

Á. Kurusa, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reál-
tanoda u. 13-15, H-1053 Budapest, Hungary; and Bolyai Institute, University of Szeged, Aradi
vértanúk tere 1, 6725 Szeged, Hungary.

E-mail address: kurusa@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/tagok/kurusa

Z. Lángi, MTA-BME Morphodynamics Research Group and Dept. of Geometry, Budapest
University of Technology, Egry József u. 1., 1111 Budapest, Hungary.

E-mail address: zlangi@math.bme.hu
URL: http://math.bme.hu/~zlangi/

V. Vígh, Dept. of Geometry, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1,
H-6720 Szeged, Hungary and Dept. of Natural Sciences and Engineering, Faculty of Mechanical
Engineering and Automation, John von Neumann University, Izsáki út 10, H-6000 Kecskemét,
Hungary.

E-mail address: vigvik@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/tagok/vigvik/


	1. Introduction
	2. Notations and preliminaries
	3. Proof of Theorem 1.1
	4. Remarks and open problems
	References

