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HILBERT GEOMETRIES WITH RIEMANNIAN POINTS

ÁRPÁD KURUSA

Abstract. If a Hilbert geometry of twice differentiable boundary has two
quadratic infinitesimal spheres, then the Hilbert geometry is a Cayley–Klein
model of the hyperbolic geometry.

1. Introduction

Let CD denote the open segment of the points C,D ∈ Rn (n = 1, 2, . . . ), and if
it is on the straight line AB of points A,B ∈ Rn, then let (A,B;C,D) denote the
cross-ratio of these points. If M is an open, strictly convex, and bounded subset
of Rn (n = 2, 3, . . . ), then the function d : M×M→ R defined by

d(A,B) =

{
0, if A = B,
1
2

∣∣ ln(A,B;C,D)
∣∣, if A 6= B, where CD =M∩AB,

is a metric on M [4, page 297] which satisfies the strict triangle inequality, i.e.
d(A,B) + d(B,C) = d(A,C) if and only if B ∈ AC ∪ {A,C}. This function d is
called the Hilbert metric onM, andM is its domain. Such pairs (M, d) are called
Hilbert geometries.

Hilbert geometries are Finslerian manifolds [4, (29.6)]. We call a point P of a
Hilbert geometry (M, d) Riemannian if the Finsler norm on TPM is quadratic.
By Beltrami’s theorem [2] (see also [4, (29.3)]), a Hilbert geometry is Riemannian
if and only if it is a Cayley–Klein model of the hyperbolic geometry.

In this paper we prove in Theorem 4.4 that
a Hilbert geometry in the plane has two Riemannian points if and
only if it is a Cayley–Klein model of the hyperbolic geometry.

For the proof we need the assumption that the boundary is twice differentiable
at the points, where the line joining the two Riemannian points intersects the
boundary. Theorem 5.2 shows that this assumption is also necessary.

Theorem 4.4 is also formulated in the language of geometric tomography [7] by
Theorem 5.3:

the twice differentiable boundary of a strictly convex bounded do-
main in the plane is an ellipse if and only if its (−1)-chord func-
tions are quadratic at two inner points.
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2. Notations and preliminaries

Points of Rn are denoted by capital letters A,B, . . . , vectors are
−−→
AB or a, b, . . . ,

but we use these latter notations also for points if the origin is fixed. We denote
the interior of the convex hull of a point set P by P.

For C ∈ AB, the affine ratio (A,B;C) is defined by (A,B;C)
−−→
BC =

−→
AC, and it

satisfies (A,B;C,D) = (A,B;C)/(A,B;D) [4, page 243].
If a Euclidean metric de is given, then the length of a segment AB, or of a vector−−→

AB = x is denoted by |AB| = |x| = de(A,B).
We use the usual big-O and little-o notation. To indicate derivatives of a function

or a map we use prime, dot or D appropriately.
If the domainM of the Hilbert geometry (M, d) is in Rn, then we identify the

tangent spaces TPM with Rn by the map ıP : v 7→ P + v. This way, the Finsler
function FM : M× Rn → R associated with the Hilbert metric d can be given at
a point P ∈M by

FM(P,v) =
1

2

( 1

λ−v
+

1

λ+
v

)
, (2.1) 〈2, 3, 4〉

where v ∈ TPM, and λ±v ∈ (0,∞] is such that P±v := P ± λ±v v ∈ ∂M [4, (50.4)].1

Equation (2.1) implies that ıP maps the indicatrix of norm FM(P, ·) into the strictly
convex set BMP ⊂ Rn, the infinitesimal ball, with boundary

SMP := ∂BMP = {2(P+
v − P )(P, P+

v ;P−v ) : v ∈ TPM},
the infinitesimal sphere. Observe here that

if $ is a projective transformation on the projective completion Pn
of Rn, then its derivative $̇ is an affine transform from each tangent
space TPM ofM onto T$(P )$(M), and $̇(SMP ) ≡ S$(M)

$(P ) holds.
(2.2) 〈3, 7〉

From now on we work only in the plane unless explicitely said otherwise.

So, infinitesimal spheres are called infinitesimal circles, and denoted by CMP .
If a Euclidean metric is provided, then we frequently use the notation uϕ =

(cosϕ, sinϕ). Further, if a bounded open domain D ⊂ R2 is starlike with respect
to a point P ∈ D, then we usually polar parameterize the boundary ∂D with a
function r : [−π, π) → R2 defined by r(ϕ) = r(ϕ)uϕ ∈ ∂D, where r > 0 is the
radial function of D with respect to the base point P . For any ellipse E with center
P there exists unique ω ∈ (−π/2, π/2] and a ≥ b > 0 such that

1

r2(ϕ)
=

cos2(ϕ− ω)

a2
+

sin2(ϕ− ω)

b2
(2.3) 〈7〉

is the polar equation with respect to origin P .
We also use the notation `d := {λd : λ ∈ R} for the line through the origin with

non-vanishing directional vector d, and `ξ = `uξ as a short hand in the plane.

1If λ±v =∞, then P±
v is an ideal point.
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The following result is a rephrase of [5, Stable Manifold Theorem, p. 114]. See
also [6, Theorem 4.1]!

Theorem 2.1. Let N0 ⊂ R2 be a neighborhood of the origin 0, and let the mapping
Φ: N0 → R2 be of class Cl (l ∈ [1,∞]).

If there are linearly independent vectors u and v such that Φ(w) = w for every
w ∈ `u ∩ N0, and DΦ(0,0)v = kv for some k ∈ (0, 1), then in some neighborhood
N ⊆ N0 of 0 the set {w ∈ N : Φ(r)(w) → 0 as r → ∞} is the graph of a Cl

function from `v ∩N to `u ∩N .

Notice that Φ(r) refers to the r-th iterate, rather than, e.g., the r-th derivative.
Finally, we need the following easy consequence of [4, (28.11)]:

Let ` be an affine line through point P of the Hilbert plane (M, d). Let
I and J be the points where ` intersects ∂M. Let L be the common
(maybe ideal) point of the tangents ofM at I and J . Then the tangents
of CMP at its intersections with ` go through point L.

(2.4) 〈7〉

3. Utilities

Although it is known that the hyperbolic geometry is a Riemannian manifold, so
its infinitesimal spheres are quadratic, the following result gives some more details.

Lemma 3.1. Let Ee be the ellipse x2+ y2

e2 = 1, and let P = (p, 0), where p ∈ (−1, 1).
Then CEeP is the ellipse (x−p)2

a2 + y2

b2 = 1, where a = 1− p2 and b = e
√

1− p2.

Proof. According to (2.2), we can assume that e = 1 without loss of generality.
Let line P+`ξ intersect Ee in the points P±λ±uξ. Then 1 = λ2

±+p2∓2pλ± cos ξ,
hence λ± = ±p cos ξ +

√
1− p2 sin2 ξ. Thus (2.1) gives

1

r2(ξ)
=
( 1

λ+
+

1

λ−

)2

=
1− p2 sin2 ξ

(1− p2)2
=

cos2 ξ

(1− p2)2
+

sin2 ξ

1− p2
. �

Notice that CĒeP is a circle if and only if 1 − p2 = e
√

1− p2, i.e. p = ±
√

1− e2

which can only happen if e < 1. In this case P is a focus of Ee.
From now on we always use the following general configuration: P is a point

of a 2-dimensional Hilbert geometry (M, d); ` is a straight line through P ; I and
J are the points where ` intersects ∂M; a coordinate system is chosen2 such that
I = (−1, 0), J = (1, 0), and P = (p, 0), where −1 < p < 1; X and Y are the points
where P + `ξ intersects ∂M. Figure 3.1 shows qualitative depictions of what we
have in general.

2Point (0, 1) will always be chosen outside ` so as to help calculations.
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Figure 3.1. Qualitative depiction of infinitesimal circles in Hilbert planes

Observe that for X ∈ ∂M we have 2FM(P,X −P )− 1 = 1/λ−X−P > 0 by (2.1),
so, as a continuous function takes its minimal value, there is a suitably small ε > 0
such that the map

ΦP : Z 7→ ΦP (Z) = P + (P − Z)
1

2FM(P,Z − P )− 1
(3.1) 〈8〉

is well defined on the Minkowski sumMε := ∂M+ εB2, where B2 is the unit ball
at (0, 0).

Choose the Euclidean metric de such that {(1, 0), (0, 1)} is an orthonormal basis,
and polar parameterize CMP with respect to P by r : [−π, π) 3 ξ 7→ r(ξ)uξ ∈ R2.
Then (2.1) gives

1

|XP |
+

1

|PY |
=

2

r(ξ)
. (3.2) 〈5〉

Thus r is twice differentiable if ∂M is twice differentiable, and

r(0) =
2|IP ||PJ |
|IJ |

= 1− p2, hence 2|IP | − r(0) = (1 + p)2. (3.3) 〈5, 6, 9〉

Lemma 3.2. Let X ∈ I + εB2, and set Y = ΦP (X). Let (x, y) = X− I and
(u, v)=J−Y . Then

v
(

1 +
u

1− p
+O(u2)

)
= y
(1− p

1 + p
+ x

1− p
(1 + p)2

+O(x2)
)
, (3.4) 〈4, 8, 9〉

and

−u = x
(1− p)2

(1 + p)2
− y 2r′(0)

(1 + p)3
+ x2 2(1− p)2

(1 + p)4
− xy r

′(0)2(3− p)
(1 + p)5

+

+ y2 1

(1 + p)3

(
− (1− p) +

2(r′(0))2

(1 + p)3
+
r′′(0)

1 + p

)
+

+O(x3) +O(x2y) + o(y2).

(3.5) 〈5, 6, 8, 9〉

Proof. Let uξ = (X−P )/|X−P |. Then we clearly have y
1+p−x = − tan ξ = v

1−p−u ,
so the expansions of 1

1−p−u and 1
1+p−x give (3.4).

http://www.math.u-szeged.hu/tagok/kurusa
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To prove (3.5) we are estimating −u for the second order of x and y. We start
with (3.2), and use (3.3) as

−u = |PY | cos ξ − |PJ | = cos ξ
2
r(ξ) −

1
|XP |

− (1− p) =
r(ξ)|XP | cos ξ

2|XP | − r(ξ)
− (1− p)

=
r(ξ)(1 + p− x)− (1− p)(2|XP | − r(ξ))

2|XP | − r(ξ)
=
r(ξ)(2− x)− 2(1− p)|XP |

2|XP | − r(ξ)

=
(r(ξ)− r(0))(2− x) + r(0)(2− x)− 2(1− p)|IP |+ 2(1− p)(|IP | − |XP |)

2|XP | − r(ξ)

=
(r(ξ)− r(0))(2− x)− xr(0) + 2(1− p)(|IP | − |XP |)

2|XP | − r(ξ)
shows. Next we estimate |XP | by the binomial series so that

|XP |=((|IP |−x)2+y2)1/2 = |IP |−x+
y2/2

|IP |−x
+O(y4)

= |IP |−x+
y2

2

( 1

|IP |
+O(x)

)
+O(y4)= |IP |−x+

y2/2

1 + p
+O(xy2)+O(y4). (3.6) 〈5, 6〉

Substitution of this into the previous formula and some rearrangements result in

−u =
(1− p)

(
2x− y2

1+p

)
+ (2− x)(r(ξ)− r(0))− x(1− p2)

2|XP | − r(ξ)
+O(xy2) +O(y4)

=
x(1− p)(1− p2)− (1− p)y2 + (2− x)(1 + p)(r(ξ)− r(0))

(2|XP | − r(ξ))(1 + p)
+ (3.7) 〈6〉

+O(xy2) +O(y4).

To estimate this, we need to consider r(ξ)− r(0) and 1/(2|XP | − r(ξ)). We use
the binomial series and (3.6) to get

1

|XP |
=

1

|IP | − (|IP | − |XP |)
=
(

1 + p−
(
x− y2/2

1 + p
+O(y2x)+O(y4)

))−1

=
1

1 + p
+

x

(1 + p)2
− y2/2

(1 + p)3
+

x2

(1 + p)3
+O(xy2) +O(y4) +O(x3).

This, as sin ξ = −y/|XP |, leads to

ξ = sin ξ +O(ξ3) =
−y
|XP |

+O(y3) =
−y

1 + p
− yx

(1 + p)2
+O(y3) +O(yx2). (3.8) 〈6〉

Substitution of this into the Taylor expansion of r gives
(1 + p)(r(ξ)− r(0))

= (1 + p)
(
ξr′(0) +

ξ2

2
r′′(0) + o(ξ2)

)
=
(
− y − yx

1 + p

)
r′(0) +

y2

1 + p

r′′(0)

2
+ o(y2) +O(yx2) +O(y2x).

(3.9) 〈6〉

http://www.math.u-szeged.hu/tagok/kurusa


Ann. Mat. Pura Appl., 199 (2020), 809–820 c© Á. Kurusa http://www.math.u-szeged.hu/tagok/kurusa

6 Á. KURUSA

Again the binomial series, and then (3.3), (3.6), and (3.9) result in
1

2|XP | − r(ξ)
=

1

(2|IP | − r(0))− (2(|IP | − |XP |) + (r(ξ)− r(0)))

=
(
(1 + p)2 − (2(|IP | − |XP |) + (r(ξ)− r(0)))

)−1

=
1

(1 + p)2
+

2x− y r
′(0)

1+p

(1 + p)4
+O(x2) +O(xy) +O(y2). (3.10) 〈6〉

Putting estimates (3.9), (3.10), and (3.8) into (3.7), and confining ourselves to
summands of degree less than three, we obtain

− u+O(x3) +O(x2y) + o(y2)

=
( 1

(1 + p)3
+

2x− y r
′(0)

1+p

(1 + p)5

)(
(x(1− p2)− y2)(1− p) + (2− x)(1 + p)(r(ξ)− r(0))

)
=
( 1

(1 + p)3
+

2x− y r
′(0)

1+p

(1 + p)5

)
(x(1− p2)− y2)(1− p)+

+
( 1

(1 + p)3
+

2x− y r
′(0)

1+p

(1 + p)5

)
(2− x)

((
− y − yx

1 + p

)
r′(0) +

y2

1 + p

r′′(0)

2

)
=

(x(1− p2)− y2)(1− p)
(1 + p)3

+
(2x2(1 + p)− xyr′(0))(1− p)2

(1 + p)5
−

−
( 2y − xy

(1 + p)3
+

2xy

(1 + p)4
+

4xy − 2y2 r
′(0)

1+p

(1 + p)5

)
r′(0) +

y2

(1 + p)4
r′′(0),

where the summands that are estimated by O(x3) + O(x2y) + o(y2) was left out.
Collecting the terms by their powers gives

−u = x
(1− p)2

(1 + p)2
− y 2r′(0)

(1 + p)3
+ x2 2(1− p)2

(1 + p)4
−

− xy r′(0)

(1 + p)3

( (1− p)2

(1 + p)2
− 1 +

2

1 + p
+

4

(1 + p)2

)
+

+ y2 1

(1 + p)3

(
− (1− p) +

2(r′(0))2

(1 + p)3
+
r′′(0)

1 + p

)
+O(x3) +O(x2y) + o(y2).

This implies (3.5) after reordering the summands. �

4. Hilbert geometries with two Riemannian points

In what follows, we always assume that P and Q are Riemannian points of the
Hilbert plane (M, d), ` = PQ is the x-axis of the chosen coordinate system, I and
J are the intersection points of ` and ∂M, I = (−1, 0), J = (1, 0), P = (p, 0) and
Q = (q, 0), where −1 < q < p < 1. Further, tI and tJ are the respective tangents

http://www.math.u-szeged.hu/tagok/kurusa
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ofM at I and J , and the tangents of CMQ and CMP at their respective intersections
with ` are tQI , t

Q
J and tPI , t

P
J , respectively.

Notice that the infinitesimal circle CMP is now an ellipse, so it is of form (2.3) in
any Euclidean metric. Observe that differentiation of (2.3) yields

r′(ϕ) =
( 1

a2
− 1

b2

) sin(2ϕ− 2ω)

2
r3(ϕ),

r′′(ϕ) =
( 1

a2
− 1

b2

)
r2(ϕ)

(
cos(2ϕ− 2ω)r(ϕ) +

3 sin(2ϕ− 2ω)

2
r′(ϕ)

)
.

Further, using

1

r2(0)
− 1

r2(π/2)
=

cos2 ω

a2
+

sin2 ω

b2
− sin2 ω

a2
− cos2 ω

b2
=
( 1

a2
− 1

b2

)
cos(2ω),

we obtain

r′(0) = −r3(0)
( 1

r2(0)
− 1

r2(π/2)

) tan(2ω)

2
,

r′′(0) =
( 1

r2(0)
− 1

r2(π/2)

)
r3(0) + 3

(r′(0))2

r(0)
. (4.1) 〈8, 9〉

Lemma 4.1. If ∂M is twice differentiable at I and J , then there is a unique ellipse
E touchingM at I, J such that CEQ ≡ CMQ and CEP ≡ CMP .

Proof. If tQI intersects tPJ , then tI also intersects tJ in a point, say L, by (2.4).
Choose a straight line l through L that avoids M, and let $ be a perspectivity
that takes l into the ideal line of R2. Then, by (2.2), $̇(CMQ ) ≡ C$(M)

$(Q) , and

$̇(CMP ) ≡ C$(M)
$(P ) , hold, where the derivative $̇ of $ is an affine transform. As

affinities keep quadraticity, $(Q) and $(P ) are Riemannian points in the Hilbert
geometry ($(M), d$(M)), so we can assume without loss of generality that tQI ‖ tPJ .

Fix the Euclidean metric d in which CMQ is a circle and d(I, J) = 2. Since CMQ
is a circle, tQI and tPJ , and, by (2.4), also tI and tJ are perpendicular to line QP .
Figure 4.1 shows what we have.

M

I J

Q

q

CMQ

P

p

CMP

tQI tPJ

tI tJ

M

I J

Q

q

CMQ

P

p

CMP

tQI tPJ

tI tJ

Figure 4.1. Riemannian points Q,P in a Hilbert plane M
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Thus we have r′(0) = 0 and also r′′(0) = r3(0)
(

1
r2(0) −

1
r2(π/2)

)
by (4.1). So

equation (3.5) reduces to

−u =x
(1− p)2

(1 + p)2
+

x2

r(0)

2(1− p)3

(1 + p)3
− y2

r(0)

(1− p)2

(1 + p)2
+

+ y2r(0)
(1− p)2

(1 + p)2

( 1

r2(0)
− 1

r2(π/2)

)
+O(x3) +O(x2y) + o(y2).

(4.2) 〈8〉

Assume from now on that X ∈ ∂M, hence also Y = ΦP (X) ∈ ∂M.
Since tI and tJ are perpendicular to line QP , basic differential geometry gives

that the respective curvatures of ∂M at I and J are

κI := lim
x→0

2x

y2
and κJ := lim

u→0

2u

v2
. (4.3) 〈9〉

So, dividing (4.2) by the square of (3.4) leads to

κJ = lim
u→0

2u

v2
= lim
u→0

−2x

y2
+

2

r(0)
−2r(0)

( 1

r2(0)
− 1

r2(π/2)

)
= −κI+

2r(0)

r2(π/2)
. (4.4) 〈8〉

Repeating the same procedure for the circle CMQ gives κJ = −κI + 2
1−q2 . This and

(4.4) imply

r
(π

2

)
=
√

1− q2
√

1− p2, (4.5) 〈9〉

hence Lemma 3.1 proves the statement with the ellipse x2 + y2

1−q2 = 1. �

Lemma 4.2. If ∂M is twice differentiable at I and J , then E coincides ∂M in a
neighborhood of I, J , respectively.

Proof. According to the last formula in the proof of Lemma 4.1 the infinitesimal
circles CEP ≡ CMP and CEQ ≡ CMQ can be represented by polar-equations of form

1

r2(ϕ)
=

cos2 ϕ

a2
+

sin2 ϕ

b2
, and

1

r2
q(ϕ)

=
1

r2
q(0)

,

respectively. Then (3.1) gives

ΦP (P − zuϕ) = P + zuϕ
1

2FM(P, zuϕ)− 1
= P + zuϕ

1

2 z
r(ϕ) − 1

,

hence ΦP is a real analytic map on Mε. It follows in the same way that ΦQ is a
real analytic map onMε. We conclude that Φ := ΦQ ◦ ΦP is also a real analytic
map onMε.

Let ΦQ(s, t)=(u, v)=ΦP (x, y), where (x, y) ∈ εB2 ⊂Mε for an ε ∈ (0, ε). (4.6) 〈9〉

Observe that all three convergences (s, t)→(0, 0), (u, v)→(0, 0), and (x, y)→(0, 0)
are equivalent.

http://www.math.u-szeged.hu/tagok/kurusa
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Then (3.5) gives

u = s
(1− q)2

(1 + q)2
+ s2 2(1− q)2

(1 + q)4
− t2 1− q

(1 + q)3
+O(s3)+O(s2t)+o(t2)

= x
(1− p)2

(1 + p)2
− y

2r′p(0)

(1 + p)3
+ x2 2(1− p)2

(1 + p)4
− xy

r′p(0)2(3− p)
(1 + p)5

+

+ y2 1

(1 + p)3

(
−(1− p)+

2(r′p(0))2

(1 + p)3
+
r′′p (0)

1 + p

)
+O(x3)+O(x2y)+o(y2).

(4.7) 〈9〉

Further, (3.4) gives

v = t
1− q
1 + q

(
1 +

s

1 + q
+O(s2)

)(
1− u

1− q

)
= y

1− p
1 + p

(
1 +

x

1 + p
+O(x2)

)(
1− u

1− p

)
.

This immediately implies

t

ky
=

1 + x
1+p +O(x2)

1 + s
1+q +O(s2)

1− u
1−p

1− u
1−q

= 1 + x
2p

(1 + p)2
+ y

2r′p(0)

(1− p2)(1 + p)2
− s 2q

(1 + q)2
+

+O(x2) +O(s2) +O(u2) +O(xu) +O(su),

(4.8) 〈9, 10〉

where k = 1−p
1+p

1+q
1−q < 1.

Now we are calculating Φ. Lemma 4.1 gives r′p(0) = 0, and also r′q(0) = r′′q (0) = 0
holds. Equations (4.1), (3.3), and (4.5) give

r′′p (0) =
( 1

r2
p(0)

− 1

r2
p(π/2)

)
r3
p(0) = rp(0)

(
1−

r2
p(0)

r2
p(π/2)

)
= (1− p2)

(
1− 1− p2

1− q2

)
.

Thus (4.7) gives

s
(1− q)2

(1 + q)2
+ s2 2(1− q)2

(1 + q)4
− t2 1− q

(1 + q)3
+O(s3) +O(s2t) + o(t2)

= x
(1− p)2

(1 + p)2
+ x2 2(1− p)2

(1 + p)4
− y2 (1− p)2

(1 + p)2

1

1− q2
+O(x3)+O(x2y)+o(y2).

This mutates at (x, y) = (zy2, y) to

s

k2y2
= z

1 + 2zy2

(1+p)2 + 1
z

(
t2

y2
(1+p)2

(1−p)2
1−q

(1+q)3 −
1

1−q2
)
+O(z2y4)+O(zy3)+o(1)

1 + s2 2
(1+q)2 +O(s3) +O(s2t) + o(t2)

, (4.9) 〈10〉

where y 6= 0, and z is close to κI/2 by (4.3) and (4.6). Further, (4.8) gives

t2

y2

(1 + p)2

(1− p)2

1− q
(1 + q)3

− 1

1− q2
=

1

1− q2

( t2

k2y2
− 1
)

= O(x2) +O(xs) +O(s2).

http://www.math.u-szeged.hu/tagok/kurusa
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So, after the coordinate-transform Ψ: (z, y) 7→ (zy2, y), where y 6= 0 and z is close
to κI/2, Φ becomes ΦΨ(z, y) := Ψ−1◦Φ◦Ψ(z, y) = Ψ−1(Φ(zy2, y)), hence equations
(4.8) and (4.9) give

ΦΨ(z, y) = Ψ−1(zy2k2 + o(y2), yk + o(y2)) = (z + o(1), yk + o(y2)).

Therefore, defining ΦΨ(z, 0) := (z, 0) extends ΦΨ to a real analytic mapping in a
neighborhood of (κI/2, 0).

Summing up, the analytic map ΦΨ fixes the points (z, 0) near (κI/2, 0), and has
the derivative DΦΨ(κI/2, 0) = ( 1 0

0 k ).
Thus ΦΨ satisfies the conditions in Theorem 2.1 with vectors (1, 0) and (0, 1),

so there is a neighborhood N of (κI/2, 0) such that the set{
w∈ N :

(
ΦΨ
)(r)

(w)→ (κI/2, 0) as r →∞
}

is the graph of a C1 function from `(0,1)∩N to `(1,0)∩N . This proves the statement
of the lemma. �

Lemma 4.3. If two Hilbert geometries have two common Riemannian points Q
and P , and their borders coincide in some neighborhood of line PQ, then the two
Hilbert geometries coincide.

Proof. Let (L, dL) and (M, dM) be Hilbert geometries with common Riemannian
points Q and P . Assume that there is a neighborhood N of line PQ that intersects
the border of our Hilbert geometries in two common arcs I0 and J0.

Let line PQ intersect I0 and J0 in points I and J , respectively. We can assume
without loss of generality that the points are ordered as I ≺ Q ≺ P ≺ J . So, we
can use the notations already introduced in this paper.

Observe that CLQ ≡ CMQ and CLP ≡ CMP , because the common arcs of ∂L and ∂M
determine small common arcs of the quadratic infinitesimal circles near line QP .
Thus both ΦP and ΦQ map any common arc of ∂L and ∂M to a common arc of
∂L and ∂M.

We generate common arcs by defining Jk+1 := ΦQ(Ik) and Ik+1 := ΦP (Jk) for
every k = 0, 1, . . . . Let αk (k = 0, 1, . . . ) be the angle Ik subtends at Q, and let βk
(k = 0, 1, . . . ) be the angle Jk subtends at P .

To show that it is contradictory, assume that every αk and βk (k = 0, 1, . . . ) is
less than π. Then we clearly have β0 < α1 < β2 < α3 < · · · < β2k < α2k+1 <
β2k+2 < · · · < π. So I = limk→∞ I2k+1 subtends angle α = limk→∞ α2k+1 ≤ π,
and J = limk→∞ J2k subtends angle β = limk→∞ β2k ≤ π. From the sequence
of inequalities α = β follows, hence ΦQ(I) = J and ΦP (J ) = I. Then the
assumption implies that α = β < π, which contradicts Q 6= P . So one of αk or βk
(k = 0, 1, . . . ) is at least π, say αk ≥ π. Then Ik ∪ΦQ(Ik) covers ∂L and ∂M, and
the lemma is proved. �

http://www.math.u-szeged.hu/tagok/kurusa
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Theorem 4.4. If a Hilbert geometry has two Riemannian points, and its boundary
is twice differentiable where it is intersected by the line joining those Riemannian
points, then it is a Cayley–Klein model of the hyperbolic space.

Proof. By Lemma 4.1, there is an ellipse E touchingM in I, J , such that CEQ ≡ CMQ
and CEP ≡ CMP . Then Lemma 4.2 shows that ∂M and E coincide in a neighborhood
of line PQ. Finally Lemma 4.3 proves that ∂M and E coincide. �

5. Discussion

Theorem 4.4 can be reformulated in the language of geometric tomography [7].
It generalizes Falconer’s [5, Theorem 3].

Theorem 5.1. Let Q and P be two points of a strictly convex bounded open domain
M in the plane. Assume that the boundary ∂M is twice differentiable where it
intersects line QP . If the (−1)-chord functions at Q and P are quadratic, then
∂M is an ellipse.

Falconer’s [5, Theorem 4] gives that for any two fixed points P,Q several distinct
strictly convex bounded open domains M exist in the plane such that P,Q ∈
M, the (−1)-chord functions at P and Q are equal to 1, the boundary ∂M is
differentiable at I, J ∈ PQ ∩ ∂M and twice differentiable everywhere else, and
∂M is not an ellipse. Observe that in such anM there can not exist a third inner
point with quadratic (−1)-chord function, because then ∂M has to be an ellipse by
Theorem 5.1. Reformulating these to Hilbert geometries we obtain the following.

Theorem 5.2. Let de be a Euclidean metric on the plane, and let CQ and CP be
unit circles with centers Q and P , respectively. Then there are several distinct non-
hyperbolic Hilbert geometries (M, d) such that CQ and CP are the only quadratical
infinitesimal circles in (M, d). The boundary of such a Hilbert geometry is twice
differentiable except where it intersects line QP .

How the Hilbert geometries given in this theorem relate to the hyperbolic ge-
ometry remains an interesting question.

Theorem 4.4 also raises the problem to determine those pair of ellipses that are
infinitesimal circles of a Hilbert geometry. This can be done by following the proof
of Lemma 4.1, the details remain to the interested reader for now.

One can specialize [7, Theorem 6.2.14, p. 247] to the following:

Let L and M be bounded convex open domains in R2 with boundaries ∂L
and ∂M belonging to C2+δ for some δ > 0. Let P and Q be in L∩M, and
suppose that L and M have equal (−1)-chord functions at these points.
Then line PQ intersects ∂L ∩ ∂M in two points I and J . If ∂L and ∂M
have equal curvatures at I and J , then L =M.

This gives the following result which is more general, but weaker for the quadratical
case than the combo of the lemmas in the previous section.

http://www.math.u-szeged.hu/tagok/kurusa


Ann. Mat. Pura Appl., 199 (2020), 809–820 c© Á. Kurusa http://www.math.u-szeged.hu/tagok/kurusa

12 Á. KURUSA

Theorem 5.3. If two Hilbert geometries (L, dL) and (M, dM) in the plane R2

with boundaries of class C2+δ(S1), where δ > 0, have two common infinitesimal
circles CLP ≡ CMP and CLQ ≡ CMQ , and have equal curvatures at the points where line
PQ intersects the boundaries, thenM≡ K.

Notice that this theorem states only a coincidence, and therefore implies a weaker
version of Theorem 4.4 only together with Lemma 4.1.

It is proved in [8, Theorem 2] that perpendicularity in a Hilbert geometry is
reversible for two lines if the perpendicularity of these two lines is also reversible
with respect to the local Minkowski geometry at the intersection of the lines3.
Calling such points Radon-points, the question arises

How many Radon-points are needed to deduce
the hyperbolicity of a Hilbert geometry? (5.1) 〈12〉

Kelly and Paige proved in [9] that a Hilbert geometry is a Cayley–Klein model of the
hyperbolic geometry if the perpendicularity is symmetric. Since the Riemannian
points are Radon-points, Theorem 4.4 supports our conjecture that the existence of
two Radon-points implies the symmetry of the perpendicularity if twice differentia-
bility of the boundary is provided. If not, than Theorem 5.2 proves that even two
Riemannian points are not enough to guarantee the symmetry of perpendicularity
in Hilbert geometries.

Looking for possible higher dimensional analogs of Theorem 4.4 one can use [3,
(16.12), p. 91] which says that

a convex body in Rn (n ≥ 3) is an ellipsoid if and only if for a fixed
k ∈ {2, . . . , n− 1} every k-plane through an inner point intersects
it in a k-dimensional ellipsoid.

This immediately implies the following generalization of Theorem 4.4.

Theorem 5.4. If a Hilbert geometry has twice differentiable boundary, and has a
Riemannian point P such that for some fixed k ∈ {2, . . . , n − 1} on every k-plane
through P there is an other Riemannian point, then it is a Cayley–Klein model of
the hyperbolic space.

Acknowledgement. The author appreciates Tibor Ódor for a discussion where
problem (5.1) was arisen.
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