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CURVATURE IN HILBERT GEOMETRIES

ÁRPÁD KURUSA

Abstract. We provide more transparent proofs for the facts that the curva-
ture of a Hilbert geometry in the sense of Busemann can not be non-negative
and a point of non-positive curvature is a projective center of the Hilbert ge-
ometry. Then we prove that the Hilbert geometry has non-positive curvature
at its projective centers, and that a Hilbert geometry is a Cayley–Klein model
of Bolyai’s hyperbolic geometry if and only if it has non-positive curvature at
every point of its intersection with a hyperplane. Moreover a 2-dimensional
Hilbert geometry is a Cayley–Klein model of Bolyai’s hyperbolic geometry if
and only if it has two points of non-positive curvature and its boundary is
twice differentiable where it is intersected by the line joining those points of
non-positive curvature.

1. Introduction

A Hilbert geometry is a pair (I, dI) of an open, strictly convex domain I ⊂ Rn,
and the Hilbert metric [2, page 297] dI : I × I → R given by

dI(X,Y ) =

{
0, if X = Y ,
1
2

∣∣ln(A,B;X,Y )
∣∣, if X 6= Y , where AB = I ∩XY .

(1.1) 〈4, 5〉

Every geodesic ˜̀ of a Hilbert geometry (I, dI) is the intersection I ∩ ` of I with a
straight line `.

Busemann posed the problem [3, 34th on p. 406] if a Hilbert geometry that has
non-positive curvature at every point is a Cayley–Klein model of Bolyai’s hyperbolic
geometry. This was affirmatively answered in [4, Theorem, p. 119], where Kelly
and Strauss showed that if a point in a Hilbert geometry (I, dI) has non-positive
curvature then it is a projective center of I. They finished [4] by a conjecture that a
Hilbert geometry can contain no points of non-negative curvature. This was proved
in [6], where Kelly and Strauss closed the paper by discussing the problem if

a projective center has non-positive curvature. (1.2) 〈1〉

In this paper we provide a bit more transparent proofs for the above mentioned
results of Kelly and Strauss, and then we prove (1.2) in Theorem 4.2. Finally we
obtain sharper affirmative answers for Busemann’s problem [3, 34th on p. 406] in
Section 5 as easy consequences.
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2. Notations and preliminaries

Points of Rn are denoted as A,B, . . . . The open segment with endpoints A and
B is denoted by AB, and AB denotes the line through A and B.

We denote the affine ratio of the collinear points A,B and C by (A,B;C) that
satisfies (A,B;C)

−−→
BC =

−→
AC. The affine cross ratio of the collinear points A,B

and C,D is (A,B;C,D) = (A,B;C)/(A,B;D) [2, page 243].
In this article I is an open, strictly convex domain in Rn, where n ≥ 2. We

shall use without further notice the well-known fact [8, Theorem 25.3], that a
convex function has both one-sided derivative at every point, and its derivative is
strictly monotone, hence it is differentiable everywhere except at most a countable
set. Moreover, a convex function has a second-order quadratic expansion at almost
every point of its domain by Alexandrov’s theorem [1] (see [9, Theorem 2.1]). These
are called Alexandrov points, and in the expansions the usual big-O notation is used.

Given a point P ∈ I, the polar P ∗ of P is defined as the locus of every point X
that is the harmonic conjugate of P with respect to A and B, where AB = I∩PX.
It is easy to see [7, p. 64] that the polar P ∗ of a point P ∈ I ⊂ Rn is a hyperplane
outside I if and only if P is a projective center of I, i.e. there is a projectivity $
such that $(P ) is the affine center of $(I).

It is well known that a Hilbert geometry is the Cayley–Klein model of Bolyai’s
hyperbolic geometry if and only if it is given by an ellipsoid [2, 29.3].

A Hilbert geometry at a point O has positive, non-negative, non-positive and
negative curvature in the sense of Busemann if there exists a neighborhood U of
O such that for every pair of points P,Q ∈ U we have

2dI(P̂ , Q̂) > dI(P,Q), 2dI(P̂ , Q̂) ≥ dI(P,Q),

2dI(P̂ , Q̂) ≤ dI(P,Q), 2dI(P̂ , Q̂) < dI(P,Q),

respectively, where P̂ , Q̂ are the respective dI-midpoints of the geodesic segments
OP and OQ [3, (36.1) on p. 237]. If neither of the cases is satisfied in any neigh-
borhood of O, then we say that the curvature is indeterminate [4, Definition 1]1.
A projectivity $ is clearly a bijective isometry of (I, dI) to ($(I), d$(I)), hence

Busemann’s curvature is a projective invariant. (2.1) 〈6, 7, 9〉

3. Preparations

We consider a Hilbert geometry (I, dI) and a point O in I.

Lemma 3.1 ([4, Lemma 1 and Corollary]). There exist two (maybe ideal) points
X and Y in O∗ such that line XY does not intersect I, and ∂I is differentiable at
the points in ∂I ∩ (OX ∪OY ).

1Notice that positivity or negativity of the curvature in [4, Definition 1] corresponds to non-
negativity, respectively non-positivity in our terms.
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Proof. There is at least one chord AB of I which is bisected by O. Then the
harmonic conjugate X̄ of O with respect to A and B is on the line at infinity.

If X̄ is the only point of O∗ at infinity, then O∗ cannot completely lie within the
strip formed by the two supporting lines of I which are parallel to AB, because
otherwise, as O∗ is a connected curve, it would intersect I. Thus, a further point
Ȳ of O∗ outside this strip exists.

If X̄ is not the only point of O∗ at infinity, then let that point be Ȳ .
Then line X̄Ȳ does not intersect I, but intersects O∗ in the points X̄ and Ȳ .
Since all but a denumerable set of points of ∂I are points of differentiability, we

may choose points X ∈ O∗ and Y ∈ O∗ near X̄ and Ȳ , respectively, so that ∂I is
differentiable at the points in ∂I ∩ (OX ∪OY ), and XY does not intersect I. �

Let `1 and `2 be straight lines through O, and let l± be straight lines through
O such that

− (`1, `2; l−, l+) ≥ 1. (3.1) 〈6, 9〉

Denote by Y± the points where l+ intersects ∂I so that

(Y−, Y+;O)2 ≤ 1. (3.2) 〈6〉

Let t± be the tangent lines of ∂I at Y±.
Fix a coordinate system so that O = (0, 0), l− is the x-axis, l+ is the y-axis,

and Y+ is in the upper half-plane. For x in a small neighborhood of 0, let y± be
the continuous functions of x such that (x, y±(x)) are the two points of ∂I with
abscissa x, and Y± = (0, y±(0)) so ±y±(x) > 0.

Fix an Euclidean metric d such that the two axes and the lines `1 and `2 are
perpendicular to each other, respectively. Let s > 0 be the slope of `1, hence the
slope of `2 is −1/s. Let m± be the slope of t±, and if the intersection of t± and
the x-axis exists, then denote it by T±. So Figure 3.1 shows what we have.

I

O

Y+

Y−

(p+, p+s)

(−p−,−p−s)

(−q−, q−/s)

(q+,−q+/s)
`1

s

`2−1/s

t+

m+

t−
m−

x

P (x, sx)

Q
(x,−x/s)

(x, y+(x))

(x, y−(x))

Figure 3.1. The configuration in euclidean plane.
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Let p±, q± > 0 be such that (±p±,±p±s) are the points of `1∩∂I, and (±q±,∓q±/s)
are the points of `2 ∩ ∂I.

Lemma 3.2. If O is the affine midpoint of the chords `1 ∩ I and `2 ∩ I, and the
points Y± are Alexandrov points of ∂I, then in a small neighborhood of O we have

dI(P,Q)− 2dI(P̂ , Q̂) ≥ x2

2s

(s2m−
y2−(0)

− m+

y2+(0)

)
+ x3O(1), (3.3) 〈4, 7, 8, 9〉

where P̂ , Q̂ are the dI-midpoints of the geodesic segments OP and OQ, respectively.

Proof. Since O is the midpoint of the chords ˜̀
1 = `1 ∩I and ˜̀

2 = `2 ∩I, we have
p := p+ = p− and q := q+ = q−.

We have to show that there is an ε > 0 such that the points P = (x, sx) ∈ ˜̀
1,

Q = (x,−x/s) ∈ ˜̀
2 (x ∈ (0, ε)), and the respective dI-midpoints P̂ , Q̂ of the

geodesic segments OP and OQ satisfy (3.3).
The strict triangle inequality dI(P̂ , Q̂) < dI(P̂ , P̄ )+dI(P̄ , Q̄)+dI(Q̄, Q̂), where

P̄ = (x2 ,
sx
2 ) and Q̄ = (x2 ,

−x
2s ), gives

dI(P,Q)− 2dI(P̂ , Q̂) ≥ (dI(P,Q)− 2dI(P̄ , Q̄))− 2(dI(P̂ , P̄ ) + dI(Q̄, Q̂)), (3.4) 〈5〉

so it is enough to estimate the right-hand side of this inequality from below.
By (1.1) and the Taylor series expansion of the logarithm, we have

dI(O,P ) =
1

2
ln
p+ x

p− x
=

1

2

(
ln
(

1 +
x

p

)
− ln

(
1− x

p

))
=

1

2

∞∑
i=1

1− (−1)i

i

(x
p

)i
,

hence

dI(O,P ) =

∞∑
j=0

1

2j + 1

(x
p

)2j+1

, and dI(O, P̄ ) =

∞∑
j=0

2−1−2j

2j + 1

(x
p

)2j+1

.

The same calculation for Q and Q̄ leads to

dI(O,Q) =

∞∑
j=0

1

2j + 1

(x
q

)2j+1

, and dI(O, Q̄) =

∞∑
j=0

2−1−2j

2j + 1

(x
q

)2j+1

.

Further, as dI(O, P̂ ) = dI(O,P )/2, and dI(O, Q̂) = dI(O,Q)/2, the above formu-
las also imply

dI(P̄ , P̂ ) = |dI(O, P̂ )−dI(O, P̄ )| = 1

2

∞∑
j=1

1− 2−2j

2j + 1

(x
p

)2j+1

, (3.5) 〈5〉

dI(Q̄, Q̂) = |dI(O, Q̂)− dI(O, Q̄)| = 1

2

∞∑
j=1

1− 2−2j

2j + 1

(x
q

)2j+1

. (3.6) 〈5〉
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Since dI(P,Q) = 1
2

∣∣∣ ln( sx−y−(x)y+(x)−sx :
−x/s−y−(x)
y+(x)+x/s

)∣∣∣ by (1.1), the Taylor series expan-
sion of the logarithm gives

dI(P,Q)

=
1

2

(
ln
(

1 +
sx

−y−(x)

)
− ln

(
1− sx

y+(x)

)
+ ln

(
1 +

x/s

y+(x)

)
− ln

(
1− x/s

−y−(x)

))
=

1

2

( ∞∑
i=1

1− (−1)i

i

( sx

−y−(x)

)i
+

∞∑
i=1

1− (−1)i

i

( x/s

y+(x)

)i)
=

∞∑
j=0

−s2j+1

2j + 1

( x

y−(x)

)2j+1

+

∞∑
j=0

s−2j−1

2j + 1

( x

y+(x)

)2j+1

. (3.7) 〈5〉

In the same way dI(P̄ , Q̄) = 1
2

∣∣∣ ln( sx/2−y−(x/2)y+(x/2)−sx/2 :
−x/2/s−y−(x/2)
y+(x/2)+x/2/s

)∣∣∣ implies

dI(P̄ , Q̄) =

∞∑
j=0

−s2j+1

2j + 1

( x/2

y−(x/2)

)2j+1

+

∞∑
j=0

s−2j−1

2j + 1

( x/2

y+(x/2)

)2j+1

. (3.8) 〈5〉

Since the points Y± are Alexandrov points of ∂I, we have the Taylor series
expansions ȳ±(t) = ȳ±(0) + tȳ′±(0) + t2O(1) of the functions ȳ± := 1/y±. For easy
handling of this we define ȳ〈i〉± (0) (i = 0, 1, 2) so that ȳ±(t) =

∑2
i=0 t

iȳ
〈i〉
± (0)/i!.

Substituting (3.5), (3.6), (3.7), (3.8), and the above Taylor expansion of ȳ±(x)
into the right-hand side of (3.4), we obtain

(dI(P,Q)− 2dI(P̄ , Q̄))− 2(dI(P̂ , P̄ ) + dI(Q̄, Q̂))

=

∞∑
j=0

−s2j+1

2j + 1

( 2∑
i=0

xi+1 ȳ
〈i〉
− (0)

i!

)2j+1

+

∞∑
j=0

s−2j−1

2j + 1

( 2∑
i=0

xi+1 ȳ
〈i〉
+ (0)

i!

)2j+1

−

− 2

∞∑
j=0

−s2j+1

2j + 1

( 2∑
i=0

xi+1 ȳ
〈i〉
− (0)

i!2i+1

)2j+1

− 2

∞∑
j=0

s−2j−1

2j + 1

( 2∑
i=0

xi+1 ȳ
〈i〉
+ (0)

i!2i+1

)2j+1

−

−
∞∑
j=1

1− 2−2j

2j + 1

(x
p

)2j+1

−
∞∑
j=1

1− 2−2j

2j + 1

(x
q

)2j+1

.

Separating the summands with index j = 0 from the sums with running variable j,
and moving them to the beginning result in

(dI(P,Q)− 2dI(P̄ , Q̄))− 2(dI(P̂ , P̄ ) + dI(Q̄, Q̂))

= −s
2∑
i=0

xi+1 ȳ
〈i〉
− (0)

i!
+

1

s

2∑
i=0

xi+1 ȳ
〈i〉
+ (0)

i!
+ s

2∑
i=0

xi+1 ȳ
〈i〉
− (0)

i!2i
−

− 1

s

2∑
i=0

xi+1 ȳ
〈i〉
+ (0)

i!2i
+ x3O(1).
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The summands with index i = 0 just cancel each other, the summands with index
i = 2 has multiplier x3, so we obtain

(dI(P,Q)− 2dI(P̄ , Q̄))− 2(dI(P̂ , P̄ ) + dI(Q̄, Q̂))

= x2
( 1

2s
ȳ′+(0)− s

2
ȳ′−(0)

)
+ x3O(1).

Since y± := 1/ȳ±, one gets

e :=
1

2s
ȳ′+(0)− s

2
ȳ′−(0) =

−1

2s

y′+(0)

y2+(0)
+
s

2

y′−(0)

y2−(0)
=

1

2s

(s2m−
y2−(0)

− m+

y2+(0)

)
that proves the lemma. �

4. Curvature in Hilbert geometry

Firstly we reprove the result of [6] using our preparatory Lemma 3.2.

Theorem 4.1. A Hilbert geometry can not have positive or non-negative curvature
at any point.

Proof. It is enough to prove that

through every point O of a Hilbert geometry (I, dI) there are two geodesics
˜̀
1 and ˜̀

2 such that in any suitable small open neighborhood U of O in-
equality 2dI(P̂ , Q̂) < dI(P,Q) is fulfilled for some points P ∈ ˜̀

1 ∩ U and
Q ∈ ˜̀

2 ∩ U , where P̂ , Q̂ ∈ U are the dI-midpoints of the geodesic segments
OP and OQ, respectively.

(4.1) 〈6, 7〉

As two geodesics lie always in a common plane, it is enough to prove (4.1) in the
plane. Let O be an arbitrary point in I ⊂ R2.

By Lemma 3.1, there is a projectivity $ such that $(O) is the affine center of
at least two geodesics $(˜̀

1) and $(˜̀
2). So taking (2.1) into account, we assume

from now on that O is the affine center of the segments `1 ∩ I and `2 ∩ I.
Choose the straight lines l± through O so that Y± are Alexander points of ∂I,

and −(`1, `2; l−, l+) > 1. This is possible because if equality happened in (3.1),
then rotating l− a little bit helps. So by (3.2) we have

− (`1, `2; l−, l+) > (Y−, Y+;O)2. (4.2) 〈7〉

If either one of the tangents t± is parallel to l−, then slightly rotate l− around O so
that it keeps the properties required above and intersects the tangents t± in some
points, say T± = t±∩ l−. If |(T+, T−;O)| < |(Y+, Y−;O)|, then change the indexing
from ± to ∓, so we have |(T+, T−;O)| ≥ |(Y+, Y−;O)|.

Now we choose a coordinate system so that the positive half of the x-axis contains
T−. Figure 4.1 shows what we have if O ∈ T−T+.

http://www.math.u-szeged.hu/tagok/kurusa
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O

Y+

Y−

I

l+

`1`2

T+ T−

t+

t−

l−

Figure 4.1. The affine configuration if O ∈ I ∩ T+T−.

By Lemma 3.2 statement (4.1) fulfills if the main term m−
2sy2+(0)

(
s2
y2+(0)

y2−(0)
− m+

m−

)
in (3.3) is positive, i.e. s2 y

2
+(0)

y2−(0)
> m+

m−
. Observe that (4.2) implies

s2
y2+(0)

y2−(0)
=−−s

1/s

|Y+O|2

|OY−|2
=
−(`1, `2; l−)

(Y−, Y+;O)2
=
−(`1, `2; l−, l+)

(Y−, Y+;O)2
> 1.

So we need to prove that m+

m−
≤ 1. If 0 < (T+, T−;O), then m+ < 0 and therefore

m+

m−
< 0. If (T+, T−;O) < 0, then

m+

m−
=
|Y+O|/|T+O|
|OY−|/|OT−|

=
|Y+O|
|OY−|

|OT−|
|T+O|

=
|(Y+, Y−;O)|
|(T+, T−;O)|

≤ 1,

so the proof is complete. �

We use again Lemma 3.2 to improve [4, the first statement of Theorem].

Theorem 4.2. A point O in the Hilbert geometry (I, dI) has non-positive curva-
ture if and only if it is a projective center of I.

Proof. Firstly we prove the necessity part2.
We assume that (I, dI) has non-positive curvature at O, and have to prove that

O∗ is a hyperplane. For this it is enough to prove that every plane section of O∗ is
a straight line. So, from now on we assume that I ⊂ R2, and need to prove that

there is a projectivity $ such that $(O) is the affine center of $(I).

By Lemma 3.1, there is a projectivity $ such that $(O) is the affine center
of at least two geodesics $(˜̀

1) and $(˜̀
2), so, according to (2.1), we may assume

without loss of generality that O is the affine center of the segments `1 ∩ I and
`2 ∩ I.

2This is [4, first statement of Theorem]

http://www.math.u-szeged.hu/tagok/kurusa
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This time we choose the straight lines l± through O so that

− (`1, `2; l−, l+) = 1, (4.3) 〈8〉

Y± are Alexander points of ∂I, and l− intersects both t±. This can be achieved
easily, because except the two directions, where l− is parallel to one of the tangents
t±, and where a point Y± is not an Alexander point of ∂I, the direction of l− can
be chosen freely, and l+ is determined change accordingly by (4.3).

Choose the direction of the x-axes so that the abscissa of T− be positive. Again
Figure 4.1 shows what we have if O ∈ T+T−.

Since the Busemann curvature is non-positive, i.e. 2dI(P̂ , Q̂) ≥ dI(P,Q), the
main term in (3.3) of Lemma 3.2 should vanish, i.e. s2m−

y2−(0)
= m+

y2+(0)
. However

s2 =− −s1/s =−(`1, `2; l−)=−(`1, `2; l−, l+) = 1, so −y
′
−(0±)
y2−(0)

=
y′+(0±)
y2+(0)

follows, where
the sign ± at 0± is determined by the direction of the x-axis. Rearrangement gives

y+(0)
y+(0)

y′+(0±)
= (−y−)(0)

(−y−)(0)

(−y−)′(0±)
,

that, as ±y+(0) = d(O, Y±) and ±y±(0)/(±y′±(0)) = d(O, T±), means that the
triangles 4OY+T+ and 4OY−T− have equal areas.

Change now to a Euclidean metric de such that `1 and `2 are orthogonal. Let
the direction vector of l+ be (cosϕ, sinϕ), hence the direction vector of l− is
(cosϕ,− sinϕ), and let r be the radial function of ∂I from the point O, hence
Y+ = r(ϕ)(cosϕ, sinϕ) and Y− = r(ϕ+ π)(cos(ϕ+ π), sin(ϕ+ π)). See Figure 4.2.

O

Y+

Y− I
`2

`1

ϕ
ϕ

l−

T−

T+
l+

r(ϕ)

t+

t− α

β

Figure 4.2. We have area(4OY+T+) = area(4OY−T−) for every ϕ.

Define α := ∠(O, Y+, T+), β := π − α − 2ϕ. Then cotα = −ṙ(ϕ)/r(ϕ) and
a(ϕ) := 2 area(4OY+T+) = r2(ϕ) sin(2ϕ)

sin β sinα, hence

sin(2ϕ)

a(ϕ)
= r−2(ϕ)

sin(2ϕ+ α)

sinα
= r−2(ϕ)

(
sin(2ϕ) cotα+ cos(2ϕ)

)
= sin(2ϕ)

−ṙ(ϕ)

r3(ϕ)
+ cos(2ϕ)

1

r2(ϕ)
=

1

2

( sin(2ϕ)

r2(ϕ)

)′
.

http://www.math.u-szeged.hu/tagok/kurusa
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Thus, we have( sin(2ϕ)

r2(ϕ)

)′
=

sin(2ϕ)

a(ϕ)
=

sin(2(ϕ+ π))

a(ϕ+ π)
=
( sin(2(ϕ+ π))

r2(ϕ+ π)

)′
,

and also limϕ→0
sin(2ϕ)
r2(ϕ) = 0 = limϕ→0

sin(2(ϕ+π))
r2(2(ϕ+π)) . Thus r(ϕ) ≡ r(ϕ + π) follows,

meaning that I is affine symmetric with respect to O.
Thus the necessity part of the theorem is proved.
Next we prove the sufficiency part3.
We assume that O is a projective center of I, and we have to prove that

there is a suitable small open neighborhood U of O that for every
geodesics ˜̀

1 and ˜̀
2 through O inequality 2dI(P̂ , Q̂) ≤ dI(P,Q) is ful-

filled for every points P ∈ ˜̀
1 ∩ U and Q ∈ ˜̀

2 ∩ U , where P̂ , Q̂ ∈ U are
the dI-midpoints of the geodesic segments OP and OQ, respectively.

(4.4) 〈9〉

According to (2.1), we may assume without loss of generality that O is the affine
center of I. Since two geodesics lie in a common plane, it is enough to prove (4.4)
in the plane, so we assume that O is the affine center of I ⊂ R2.

Choose the straight lines l± so that Y± are Alexander points of ∂I, and

− (`1, `2; l−, l+) > 1. (4.5) 〈9〉

This is possible because if equality happened in (3.1), then rotating l− a little bit
helps. Moreover, if t+ is parallel to l−, then one can slightly rotate l− around O so
that (4.5) remains valid and intersects t+. Thus, we can assume that the point T+
exists. Since O is the affine center of I, we have t+ ‖ t−, so also point T− exists,
and O is clearly the affine center of T−T+.

Now we fix the coordinate system and euclidean metric given in Section 3 so
that the positive half of the x-axes contains T−. Again Figure 4.1 shows what we
have.

By Lemma 3.2 statement (4.4) fulfills if the main term m−
2sy2+(0)

(
s2
y2+(0)

y2−(0)
− m+

m−

)
in

(3.3) is positive. This fulfills because m+

m−
=1 by t+ ‖ t−, m− > 0, and s2 y

2
+(0)

y2−(0)
−1=

− −s1/s − 1=−(`1, `2; l−, l+)− 1 > 0 by (4.5). �

5. Consequences

The following statements sharpen and extend the solution [4, second statement
in Theorem] of Kelly and Strauss given to Busemann’s [3, Problem 34, p. 406].

Theorem 5.1. A Hilbert geometry is a Cayley–Klein model of Bolyai’s hyperbolic
geometry if and only if there is a hyperplane intersecting the Hilbert geometry so
that every point of the intersection is of non-positive curvature.

3The last paragraph of [6] argues that this “does not seem easy”.
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Proof. If the Hilbert geometry is a Cayley–Klein model of Bolyai’s hyperbolic
geometry, then it has non-positive curvature at every point.

If there is a hyperplane intersecting the Hilbert geometry so that the Hilbert ge-
ometry has non-positive curvature at every point in the intersection, then all these
points are projective centers by Theorem 4.2, and therefore [7, Theorem 3.3(a)] im-
plies that the domain is an ellipsoid, hence the Hilbert geometry is a Cayley–Klein
model of Bolyai’s hyperbolic geometry. �

For dimension 2 we have an even sharper version.

Theorem 5.2. A 2-dimensional Hilbert geometry is a Cayley–Klein model of the
hyperbolic space if and only if it has two points of non-positive curvature and its
boundary is twice differentiable where it is intersected by the line joining those
points of non-positive curvature.

Proof. If the 2-dimensional Hilbert geometry is a Cayley–Klein model of Bolyai’s
hyperbolic plane, then it has non-positive curvature at every point.

If the 2-dimensional Hilbert geometry has two points of non-positive curvature
and its boundary is twice differentiable where it is intersected by the line joining
those points of non-positive curvature, then [5, Theorem 3] implies that the domain
is an ellipse. �

Acknowledgment. The author thanks János Kincses for finding article [7].
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