CURVATURE IN HILBERT GEOMETRIES

ÁRPÁD KURUSA

Abstract

We provide more transparent proofs for the facts that the curvature of a Hilbert geometry in the sense of Busemann can not be non-negative and a point of non-positive curvature is a projective center of the Hilbert geometry. Then we prove that the Hilbert geometry has non-positive curvature at its projective centers, and that a Hilbert geometry is a Cayley-Klein model of Bolyai's hyperbolic geometry if and only if it has non-positive curvature at every point of its intersection with a hyperplane. Moreover a 2-dimensional Hilbert geometry is a Cayley-Klein model of Bolyai's hyperbolic geometry if and only if it has two points of non-positive curvature and its boundary is twice differentiable where it is intersected by the line joining those points of non-positive curvature.

1. Introduction

A Hilbert geometry is a pair $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ of an open, strictly convex domain $\mathcal{I} \subset \mathbb{R}^{n}$, and the Hilbert metric $\left[2\right.$, page 297] $d_{\mathcal{I}}: \mathcal{I} \times \mathcal{I} \rightarrow \mathbb{R}$ given by

$$
d_{\mathcal{I}}(X, Y)= \begin{cases}0, & \text { if } X=Y, \tag{1.1}\\ \frac{1}{2}|\ln (A, B ; X, Y)|, & \text { if } X \neq Y, \text { where } \overline{A B}=\mathcal{I} \cap X Y\end{cases}
$$

Every geodesic $\tilde{\ell}$ of a Hilbert geometry $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ is the intersection $\mathcal{I} \cap \ell$ of \mathcal{I} with a straight line ℓ.

Busemann posed the problem [3, 34th on p. 406] if a Hilbert geometry that has non-positive curvature at every point is a Cayley-Klein model of Bolyai's hyperbolic geometry. This was affirmatively answered in [4, Theorem, p. 119], where Kelly and Strauss showed that if a point in a Hilbert geometry $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ has non-positive curvature then it is a projective center of \mathcal{I}. They finished [4] by a conjecture that a Hilbert geometry can contain no points of non-negative curvature. This was proved in [6], where Kelly and Strauss closed the paper by discussing the problem if
a projective center has non-positive curvature.
In this paper we provide a bit more transparent proofs for the above mentioned results of Kelly and Strauss, and then we prove (1.2) in Theorem 4.2. Finally we obtain sharper affirmative answers for Busemann's problem [3, 34th on p. 406] in Section 5 as easy consequences.

[^0]
2. Notations and preliminaries

Points of \mathbb{R}^{n} are denoted as A, B, \ldots The open segment with endpoints A and B is denoted by $\overline{A B}$, and $A B$ denotes the line through A and B.

We denote the affine ratio of the collinear points A, B and C by $(A, B ; C)$ that satisfies $(A, B ; C) \overrightarrow{B C}=\overrightarrow{A C}$. The affine cross ratio of the collinear points A, B and C, D is $(A, B ; C, D)=(A, B ; C) /(A, B ; D)$ [2, page 243].

In this article \mathcal{I} is an open, strictly convex domain in \mathbb{R}^{n}, where $n \geq 2$. We shall use without further notice the well-known fact [8, Theorem 25.3], that a convex function has both one-sided derivative at every point, and its derivative is strictly monotone, hence it is differentiable everywhere except at most a countable set. Moreover, a convex function has a second-order quadratic expansion at almost every point of its domain by Alexandrov's theorem [1] (see [9, Theorem 2.1]). These are called Alexandrov points, and in the expansions the usual big- O notation is used.

Given a point $P \in \mathcal{I}$, the polar P^{*} of P is defined as the locus of every point X that is the harmonic conjugate of P with respect to A and B, where $\overline{A B}=\mathcal{I} \cap P X$. It is easy to see $\left[7\right.$, p. 64] that the polar P^{*} of a point $P \in \mathcal{I} \subset \mathbb{R}^{n}$ is a hyperplane outside \mathcal{I} if and only if P is a projective center of \mathcal{I}, i.e. there is a projectivity ϖ such that $\varpi(P)$ is the affine center of $\varpi(\mathcal{I})$.

It is well known that a Hilbert geometry is the Cayley-Klein model of Bolyai's hyperbolic geometry if and only if it is given by an ellipsoid [2, 29.3].

A Hilbert geometry at a point O has positive, non-negative, non-positive and negative curvature in the sense of Busemann if there exists a neighborhood \mathcal{U} of O such that for every pair of points $P, Q \in \mathcal{U}$ we have

$$
\begin{array}{ll}
2 d_{\mathcal{I}}(\hat{P}, \hat{Q})>d_{\mathcal{I}}(P, Q), & 2 d_{\mathcal{I}}(\hat{P}, \hat{Q}) \geq d_{\mathcal{I}}(P, Q) \\
2 d_{\mathcal{I}}(\hat{P}, \hat{Q}) \leq d_{\mathcal{I}}(P, Q), & 2 d_{\mathcal{I}}(\hat{P}, \hat{Q})<d_{\mathcal{I}}(P, Q)
\end{array}
$$

respectively, where \hat{P}, \hat{Q} are the respective $d_{\mathcal{I}}$-midpoints of the geodesic segments $\overline{O P}$ and $\overline{O Q}[3,(36.1)$ on p. 237]. If neither of the cases is satisfied in any neighborhood of O, then we say that the curvature is indeterminate [4, Definition 1$]^{1}$. A projectivity ϖ is clearly a bijective isometry of $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ to $\left(\varpi(\mathcal{I}), d_{\varpi(\mathcal{I})}\right)$, hence

Busemann's curvature is a projective invariant.

3. Preparations

We consider a Hilbert geometry $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ and a point O in \mathcal{I}.
Lemma 3.1 ([4, Lemma 1 and Corollary]). There exist two (maybe ideal) points X and Y in O^{*} such that line $X Y$ does not intersect \mathcal{I}, and $\partial \mathcal{I}$ is differentiable at the points in $\partial \mathcal{I} \cap(O X \cup O Y)$.

[^1]Proof. There is at least one chord $\overline{A B}$ of \mathcal{I} which is bisected by O. Then the harmonic conjugate \bar{X} of O with respect to A and B is on the line at infinity.

If \bar{X} is the only point of O^{*} at infinity, then O^{*} cannot completely lie within the strip formed by the two supporting lines of \mathcal{I} which are parallel to $A B$, because otherwise, as O^{*} is a connected curve, it would intersect \mathcal{I}. Thus, a further point \bar{Y} of O^{*} outside this strip exists.

If \bar{X} is not the only point of O^{*} at infinity, then let that point be \bar{Y}.
Then line $\bar{X} \bar{Y}$ does not intersect \mathcal{I}, but intersects O^{*} in the points \bar{X} and \bar{Y}.
Since all but a denumerable set of points of $\partial \mathcal{I}$ are points of differentiability, we may choose points $X \in O^{*}$ and $Y \in O^{*}$ near \bar{X} and \bar{Y}, respectively, so that $\partial \mathcal{I}$ is differentiable at the points in $\partial \mathcal{I} \cap(O X \cup O Y)$, and $X Y$ does not intersect \mathcal{I}.

Let ℓ_{1} and ℓ_{2} be straight lines through O, and let $l_{ \pm}$be straight lines through O such that

$$
\begin{equation*}
-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right) \geq 1 \tag{3.1}
\end{equation*}
$$

Denote by $Y_{ \pm}$the points where l_{+}intersects $\partial \mathcal{I}$ so that

$$
\begin{equation*}
\left(Y_{-}, Y_{+} ; O\right)^{2} \leq 1 \tag{3.2}
\end{equation*}
$$

Let $t_{ \pm}$be the tangent lines of $\partial \mathcal{I}$ at $Y_{ \pm}$.
Fix a coordinate system so that $O=(0,0), l_{-}$is the x-axis, l_{+}is the y-axis, and Y_{+}is in the upper half-plane. For x in a small neighborhood of 0 , let $y_{ \pm}$be the continuous functions of x such that $\left(x, y_{ \pm}(x)\right)$ are the two points of $\partial \mathcal{I}$ with abscissa x, and $Y_{ \pm}=\left(0, y_{ \pm}(0)\right)$ so $\pm y_{ \pm}(x)>0$.

Fix an Euclidean metric d such that the two axes and the lines ℓ_{1} and ℓ_{2} are perpendicular to each other, respectively. Let $s>0$ be the slope of ℓ_{1}, hence the slope of ℓ_{2} is $-1 / s$. Let $m_{ \pm}$be the slope of $t_{ \pm}$, and if the intersection of $t_{ \pm}$and the x-axis exists, then denote it by $T_{ \pm}$. So Figure 3.1 shows what we have.

Figure 3.1. The configuration in euclidean plane.

Let $p_{ \pm}, q_{ \pm}>0$ be such that $\left(\pm p_{ \pm}, \pm p_{ \pm} s\right)$ are the points of $\ell_{1} \cap \partial \mathcal{I}$, and $\left(\pm q_{ \pm}, \mp q_{ \pm} / s\right)$ are the points of $\ell_{2} \cap \partial \mathcal{I}$.

Lemma 3.2. If O is the affine midpoint of the chords $\ell_{1} \cap \mathcal{I}$ and $\ell_{2} \cap \mathcal{I}$, and the points $Y_{ \pm}$are Alexandrov points of $\partial \mathcal{I}$, then in a small neighborhood of O we have

$$
\begin{equation*}
d_{\mathcal{I}}(P, Q)-2 d_{\mathcal{I}}(\hat{P}, \hat{Q}) \geq \frac{x^{2}}{2 s}\left(\frac{s^{2} m_{-}}{y_{-}^{2}(0)}-\frac{m_{+}}{y_{+}^{2}(0)}\right)+x^{3} O(1) \tag{3.3}
\end{equation*}
$$

where \hat{P}, \hat{Q} are the $d_{\mathcal{I}}$-midpoints of the geodesic segments $\overline{O P}$ and $\overline{O Q}$, respectively.
Proof. Since O is the midpoint of the chords $\tilde{\ell}_{1}=\ell_{1} \cap \mathcal{I}$ and $\tilde{\ell}_{2}=\ell_{2} \cap \mathcal{I}$, we have $p:=p_{+}=p_{-}$and $q:=q_{+}=q_{-}$.

We have to show that there is an $\varepsilon>0$ such that the points $P=(x, s x) \in \tilde{\ell}_{1}$, $Q=(x,-x / s) \in \tilde{\ell}_{2}(x \in(0, \varepsilon))$, and the respective $d_{\mathcal{I}}$-midpoints \hat{P}, \hat{Q} of the geodesic segments $\overline{O P}$ and $\overline{O Q}$ satisfy (3.3).

The strict triangle inequality $d_{\mathcal{I}}(\hat{P}, \hat{Q})<d_{\mathcal{I}}(\hat{P}, \bar{P})+d_{\mathcal{I}}(\bar{P}, \bar{Q})+d_{\mathcal{I}}(\bar{Q}, \hat{Q})$, where $\bar{P}=\left(\frac{x}{2}, \frac{s x}{2}\right)$ and $\bar{Q}=\left(\frac{x}{2}, \frac{-x}{2 s}\right)$, gives

$$
\begin{equation*}
d_{\mathcal{I}}(P, Q)-2 d_{\mathcal{I}}(\hat{P}, \hat{Q}) \geq\left(d_{\mathcal{I}}(P, Q)-2 d_{\mathcal{I}}(\bar{P}, \bar{Q})\right)-2\left(d_{\mathcal{I}}(\hat{P}, \bar{P})+d_{\mathcal{I}}(\bar{Q}, \hat{Q})\right) \tag{3.4}
\end{equation*}
$$

so it is enough to estimate the right-hand side of this inequality from below.
By (1.1) and the Taylor series expansion of the logarithm, we have

$$
d_{\mathcal{I}}(O, P)=\frac{1}{2} \ln \frac{p+x}{p-x}=\frac{1}{2}\left(\ln \left(1+\frac{x}{p}\right)-\ln \left(1-\frac{x}{p}\right)\right)=\frac{1}{2} \sum_{i=1}^{\infty} \frac{1-(-1)^{i}}{i}\left(\frac{x}{p}\right)^{i}
$$

hence

$$
d_{\mathcal{I}}(O, P)=\sum_{j=0}^{\infty} \frac{1}{2 j+1}\left(\frac{x}{p}\right)^{2 j+1}, \quad \text { and } \quad d_{\mathcal{I}}(O, \bar{P})=\sum_{j=0}^{\infty} \frac{2^{-1-2 j}}{2 j+1}\left(\frac{x}{p}\right)^{2 j+1}
$$

The same calculation for Q and \bar{Q} leads to

$$
d_{\mathcal{I}}(O, Q)=\sum_{j=0}^{\infty} \frac{1}{2 j+1}\left(\frac{x}{q}\right)^{2 j+1}, \quad \text { and } \quad d_{\mathcal{I}}(O, \bar{Q})=\sum_{j=0}^{\infty} \frac{2^{-1-2 j}}{2 j+1}\left(\frac{x}{q}\right)^{2 j+1}
$$

Further, as $d_{\mathcal{I}}(O, \hat{P})=d_{\mathcal{I}}(O, P) / 2$, and $d_{\mathcal{I}}(O, \hat{Q})=d_{\mathcal{I}}(O, Q) / 2$, the above formulas also imply

$$
\begin{align*}
& d_{\mathcal{I}}(\bar{P}, \hat{P})=\left|d_{\mathcal{I}}(O, \hat{P})-d_{\mathcal{I}}(O, \bar{P})\right|=\frac{1}{2} \sum_{j=1}^{\infty} \frac{1-2^{-2 j}}{2 j+1}\left(\frac{x}{p}\right)^{2 j+1} \tag{3.5}\\
& d_{\mathcal{I}}(\bar{Q}, \hat{Q})=\left|d_{\mathcal{I}}(O, \hat{Q})-d_{\mathcal{I}}(O, \bar{Q})\right|=\frac{1}{2} \sum_{j=1}^{\infty} \frac{1-2^{-2 j}}{2 j+1}\left(\frac{x}{q}\right)^{2 j+1} \tag{3.6}
\end{align*}
$$

Since $d_{\mathcal{I}}(P, Q)=\frac{1}{2}\left|\ln \left(\frac{s x-y_{-}(x)}{y_{+}(x)-s x}: \frac{-x / s-y_{-}(x)}{y_{+}(x)+x / s}\right)\right|$ by (1.1), the Taylor series expansion of the logarithm gives

$$
\begin{align*}
d_{\mathcal{I}} & (P, Q) \\
= & \frac{1}{2}\left(\ln \left(1+\frac{s x}{-y_{-}(x)}\right)-\ln \left(1-\frac{s x}{y_{+}(x)}\right)+\ln \left(1+\frac{x / s}{y_{+}(x)}\right)-\ln \left(1-\frac{x / s}{-y_{-}(x)}\right)\right) \\
& =\frac{1}{2}\left(\sum_{i=1}^{\infty} \frac{1-(-1)^{i}}{i}\left(\frac{s x}{-y_{-}(x)}\right)^{i}+\sum_{i=1}^{\infty} \frac{1-(-1)^{i}}{i}\left(\frac{x / s}{y_{+}(x)}\right)^{i}\right) \\
& =\sum_{j=0}^{\infty} \frac{-s^{2 j+1}}{2 j+1}\left(\frac{x}{y_{-}(x)}\right)^{2 j+1}+\sum_{j=0}^{\infty} \frac{s^{-2 j-1}}{2 j+1}\left(\frac{x}{y_{+}(x)}\right)^{2 j+1} . \tag{3.7}
\end{align*}
$$

In the same way $d_{\mathcal{I}}(\bar{P}, \bar{Q})=\frac{1}{2}\left|\ln \left(\frac{s x / 2-y_{-}(x / 2)}{y_{+}(x / 2)-s x / 2}: \frac{-x / 2 / s-y_{-}(x / 2)}{y_{+}(x / 2)+x / 2 / s}\right)\right|$ implies

$$
\begin{equation*}
d_{\mathcal{I}}(\bar{P}, \bar{Q})=\sum_{j=0}^{\infty} \frac{-s^{2 j+1}}{2 j+1}\left(\frac{x / 2}{y_{-}(x / 2)}\right)^{2 j+1}+\sum_{j=0}^{\infty} \frac{s^{-2 j-1}}{2 j+1}\left(\frac{x / 2}{y_{+}(x / 2)}\right)^{2 j+1} \tag{3.8}
\end{equation*}
$$

Since the points $Y_{ \pm}$are Alexandrov points of $\partial \mathcal{I}$, we have the Taylor series expansions $\bar{y}_{ \pm}(t)=\bar{y}_{ \pm}(0)+t \bar{y}_{ \pm}^{\prime}(0)+t^{2} O(1)$ of the functions $\bar{y}_{ \pm}:=1 / y_{ \pm}$. For easy handling of this we define $\bar{y}_{ \pm}^{\langle i\rangle}(0)(i=0,1,2)$ so that $\bar{y}_{ \pm}(t)=\sum_{i=0}^{2} t^{i} \bar{y}_{ \pm}^{\langle i\rangle}(0) / i!$.

Substituting (3.5), (3.6), (3.7), (3.8), and the above Taylor expansion of $\bar{y}_{ \pm}(x)$ into the right-hand side of (3.4), we obtain

$$
\begin{aligned}
& \left(d_{\mathcal{I}}(P, Q)-2 d_{\mathcal{I}}(\bar{P}, \bar{Q})\right)-2\left(d_{\mathcal{I}}(\hat{P}, \bar{P})+d_{\mathcal{I}}(\bar{Q}, \hat{Q})\right) \\
& \quad=\sum_{j=0}^{\infty} \frac{-s^{2 j+1}}{2 j+1}\left(\sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{-}^{\langle i\rangle}(0)}{i!}\right)^{2 j+1}+\sum_{j=0}^{\infty} \frac{s^{-2 j-1}}{2 j+1}\left(\sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{+}^{\langle i\rangle}(0)}{i!}\right)^{2 j+1}- \\
& \quad-2 \sum_{j=0}^{\infty} \frac{-s^{2 j+1}}{2 j+1}\left(\sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{-}^{\langle i\rangle}(0)}{i!2^{i+1}}\right)^{2 j+1}-2 \sum_{j=0}^{\infty} \frac{s^{-2 j-1}}{2 j+1}\left(\sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{+}^{\langle i\rangle}(0)}{i!2^{i+1}}\right)^{2 j+1}- \\
& \quad-\sum_{j=1}^{\infty} \frac{1-2^{-2 j}}{2 j+1}\left(\frac{x}{p}\right)^{2 j+1}-\sum_{j=1}^{\infty} \frac{1-2^{-2 j}}{2 j+1}\left(\frac{x}{q}\right)^{2 j+1} .
\end{aligned}
$$

Separating the summands with index $j=0$ from the sums with running variable j, and moving them to the beginning result in

$$
\begin{aligned}
\left(d_{\mathcal{I}}(P, Q)-\right. & \left.2 d_{\mathcal{I}}(\bar{P}, \bar{Q})\right)-2\left(d_{\mathcal{I}}(\hat{P}, \bar{P})+d_{\mathcal{I}}(\bar{Q}, \hat{Q})\right) \\
= & -s \sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{-}^{\langle i\rangle}(0)}{i!}+\frac{1}{s} \sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{+}^{\langle i\rangle}(0)}{i!}+s \sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{-}^{\langle i\rangle}(0)}{i!2^{i}}- \\
& -\frac{1}{s} \sum_{i=0}^{2} x^{i+1} \frac{\bar{y}_{+}^{\langle i\rangle}(0)}{i!2^{i}}+x^{3} O(1) .
\end{aligned}
$$

The summands with index $i=0$ just cancel each other, the summands with index $i=2$ has multiplier x^{3}, so we obtain

$$
\begin{aligned}
\left(d_{\mathcal{I}}(P, Q)-2 d_{\mathcal{I}}(\bar{P}, \bar{Q})\right)-2\left(d_{\mathcal{I}}(\hat{P}, \bar{P})\right. & \left.+d_{\mathcal{I}}(\bar{Q}, \hat{Q})\right) \\
& =x^{2}\left(\frac{1}{2 s} \bar{y}_{+}^{\prime}(0)-\frac{s}{2} \bar{y}_{-}^{\prime}(0)\right)+x^{3} O(1)
\end{aligned}
$$

Since $y_{ \pm}:=1 / \bar{y}_{ \pm}$, one gets

$$
e:=\frac{1}{2 s} \bar{y}_{+}^{\prime}(0)-\frac{s}{2} \bar{y}_{-}^{\prime}(0)=\frac{-1}{2 s} \frac{y_{+}^{\prime}(0)}{y_{+}^{2}(0)}+\frac{s}{2} \frac{y_{-}^{\prime}(0)}{y_{-}^{2}(0)}=\frac{1}{2 s}\left(\frac{s^{2} m_{-}}{y_{-}^{2}(0)}-\frac{m_{+}}{y_{+}^{2}(0)}\right)
$$

that proves the lemma.

4. Curvature in Hilbert geometry

Firstly we reprove the result of [6] using our preparatory Lemma 3.2.
Theorem 4.1. A Hilbert geometry can not have positive or non-negative curvature at any point.

Proof. It is enough to prove that
through every point O of a Hilbert geometry $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ there are two geodesics $\tilde{\ell}_{1}$ and $\tilde{\ell}_{2}$ such that in any suitable small open neighborhood \mathcal{U} of O inequality $2 d_{\mathcal{I}}(\hat{P}, \hat{Q})<d_{\mathcal{I}}(P, Q)$ is fulfilled for some points $P \in \tilde{\ell}_{1} \cap \mathcal{U}$ and
$Q \in \tilde{\ell}_{2} \cap \mathcal{U}$, where $\hat{P}, \hat{Q} \in \mathcal{U}$ are the $d_{\mathcal{I}}$-midpoints of the geodesic segments
$\overline{O P}$ and $\overline{O Q}$, respectively.
As two geodesics lie always in a common plane, it is enough to prove (4.1) in the plane. Let O be an arbitrary point in $\mathcal{I} \subset \mathbb{R}^{2}$.

By Lemma 3.1, there is a projectivity ϖ such that $\varpi(O)$ is the affine center of at least two geodesics $\varpi\left(\tilde{\ell}_{1}\right)$ and $\varpi\left(\tilde{\ell}_{2}\right)$. So taking (2.1) into account, we assume from now on that O is the affine center of the segments $\ell_{1} \cap \mathcal{I}$ and $\ell_{2} \cap \mathcal{I}$.

Choose the straight lines $l_{ \pm}$through O so that $Y_{ \pm}$are Alexander points of $\partial \mathcal{I}$, and $-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right)>1$. This is possible because if equality happened in (3.1), then rotating l_{-}a little bit helps. So by (3.2) we have

$$
\begin{equation*}
-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right)>\left(Y_{-}, Y_{+} ; O\right)^{2} \tag{4.2}
\end{equation*}
$$

If either one of the tangents $t_{ \pm}$is parallel to l_{-}, then slightly rotate l_{-}around O so that it keeps the properties required above and intersects the tangents $t_{ \pm}$in some points, say $T_{ \pm}=t_{ \pm} \cap l_{-}$. If $\left|\left(T_{+}, T_{-} ; O\right)\right|<\left|\left(Y_{+}, Y_{-} ; O\right)\right|$, then change the indexing from \pm to \mp, so we have $\left|\left(T_{+}, T_{-} ; O\right)\right| \geq\left|\left(Y_{+}, Y_{-} ; O\right)\right|$.

Now we choose a coordinate system so that the positive half of the x-axis contains T_{-}. Figure 4.1 shows what we have if $O \in \overline{T_{-} T_{+}}$.

Figure 4.1. The affine configuration if $O \in \mathcal{I} \cap \overline{T_{+} T_{-}}$.
By Lemma 3.2 statement (4.1) fulfills if the main term $\frac{m_{-}}{2 s y_{+}^{2}(0)}\left(s^{2} \frac{y_{+}^{2}(0)}{y_{-}^{2}(0)}-\frac{m_{+}}{m_{-}}\right)$ in (3.3) is positive, i.e. $s^{2} \frac{y_{+}^{2}(0)}{y_{-}^{2}(0)}>\frac{m_{+}}{m_{-}}$. Observe that (4.2) implies

$$
s^{2} \frac{y_{+}^{2}(0)}{y_{-}^{2}(0)}=-\frac{-s}{1 / s} \frac{\left|Y_{+} O\right|^{2}}{\left|O Y_{-}\right|^{2}}=\frac{-\left(\ell_{1}, \ell_{2} ; l_{-}\right)}{\left(Y_{-}, Y_{+} ; O\right)^{2}}=\frac{-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right)}{\left(Y_{-}, Y_{+} ; O\right)^{2}}>1
$$

So we need to prove that $\frac{m_{+}}{m_{-}} \leq 1$. If $0<\left(T_{+}, T_{-} ; O\right)$, then $m_{+}<0$ and therefore $\frac{m_{+}}{m_{-}}<0$. If $\left(T_{+}, T_{-} ; O\right)<0$, then

$$
\frac{m_{+}}{m_{-}}=\frac{\left|Y_{+} O\right| /\left|T_{+} O\right|}{\left|O Y_{-}\right| /\left|O T_{-}\right|}=\frac{\left|Y_{+} O\right|}{\left|O Y_{-}\right|} \frac{\left|O T_{-}\right|}{\left|T_{+} O\right|}=\frac{\left|\left(Y_{+}, Y_{-} ; O\right)\right|}{\left|\left(T_{+}, T_{-} ; O\right)\right|} \leq 1
$$

so the proof is complete.
We use again Lemma 3.2 to improve [4, the first statement of Theorem].
Theorem 4.2. A point O in the Hilbert geometry $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ has non-positive curvature if and only if it is a projective center of \mathcal{I}.

Proof. Firstly we prove the necessity part ${ }^{2}$.
We assume that $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ has non-positive curvature at O, and have to prove that O^{*} is a hyperplane. For this it is enough to prove that every plane section of O^{*} is a straight line. So, from now on we assume that $\mathcal{I} \subset \mathbb{R}^{2}$, and need to prove that
there is a projectivity ϖ such that $\varpi(O)$ is the affine center of $\varpi(\mathcal{I})$.
By Lemma 3.1, there is a projectivity ϖ such that $\varpi(O)$ is the affine center of at least two geodesics $\varpi\left(\tilde{\ell}_{1}\right)$ and $\varpi\left(\tilde{\ell}_{2}\right)$, so, according to (2.1), we may assume without loss of generality that O is the affine center of the segments $\ell_{1} \cap \mathcal{I}$ and $\ell_{2} \cap \mathcal{I}$.

[^2]This time we choose the straight lines $l_{ \pm}$through O so that

$$
\begin{equation*}
-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right)=1 \tag{4.3}
\end{equation*}
$$

$Y_{ \pm}$are Alexander points of $\partial \mathcal{I}$, and l_{-}intersects both $t_{ \pm}$. This can be achieved easily, because except the two directions, where l_{-}is parallel to one of the tangents $t_{ \pm}$, and where a point $Y_{ \pm}$is not an Alexander point of $\partial \mathcal{I}$, the direction of l_{-}can be chosen freely, and l_{+}is determined change accordingly by (4.3).

Choose the direction of the x-axes so that the abscissa of T_{-}be positive. Again Figure 4.1 shows what we have if $O \in \overline{T_{+} T_{-}}$.

Since the Busemann curvature is non-positive, i.e. $2 d_{\mathcal{I}}(\hat{P}, \hat{Q}) \geq d_{\mathcal{I}}(P, Q)$, the main term in (3.3) of Lemma 3.2 should vanish, i.e. $\frac{s^{2} m_{-}}{y_{-}^{2}(0)}=\frac{m_{+}}{y_{+}^{2}(0)}$. However $s^{2}=-\frac{-s}{1 / s}=-\left(\ell_{1}, \ell_{2} ; l_{-}\right)=-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right)=1$, so $-\frac{y_{-}^{\prime}(0 \pm)}{y_{-}^{2}(0)}=\frac{y_{+}^{\prime}(0 \pm)}{y_{+}^{2}(0)}$ follows, where the sign \pm at $0 \pm$ is determined by the direction of the x-axis. Rearrangement gives

$$
y_{+}(0) \frac{y_{+}(0)}{y_{+}^{\prime}(0 \pm)}=\left(-y_{-}\right)(0) \frac{\left(-y_{-}\right)(0)}{\left(-y_{-}\right)^{\prime}(0 \pm)}
$$

that, as $\pm y_{+}(0)=d\left(O, Y_{ \pm}\right)$and $\pm y_{ \pm}(0) /\left(\pm y_{ \pm}^{\prime}(0)\right)=d\left(O, T_{ \pm}\right)$, means that the triangles $\triangle O Y_{+} T_{+}$and $\triangle O Y_{-} T_{-}$have equal areas.

Change now to a Euclidean metric d_{e} such that ℓ_{1} and ℓ_{2} are orthogonal. Let the direction vector of l_{+}be $(\cos \varphi, \sin \varphi)$, hence the direction vector of l_{-}is $(\cos \varphi,-\sin \varphi)$, and let r be the radial function of $\partial \mathcal{I}$ from the point O, hence $Y_{+}=r(\varphi)(\cos \varphi, \sin \varphi)$ and $Y_{-}=r(\varphi+\pi)(\cos (\varphi+\pi), \sin (\varphi+\pi))$. See Figure 4.2.

Figure 4.2. We have area $\left(\triangle O Y_{+} T_{+}\right)=\operatorname{area}\left(\triangle O Y_{-} T_{-}\right)$for every φ.
Define $\alpha:=\angle\left(O, Y_{+}, T_{+}\right), \beta:=\pi-\alpha-2 \varphi$. Then $\cot \alpha=-\dot{r}(\varphi) / r(\varphi)$ and $a(\varphi):=2 \operatorname{area}\left(\triangle O Y_{+} T_{+}\right)=r^{2}(\varphi) \frac{\sin (2 \varphi)}{\sin \beta} \sin \alpha$, hence

$$
\begin{aligned}
\frac{\sin (2 \varphi)}{a(\varphi)} & =r^{-2}(\varphi) \frac{\sin (2 \varphi+\alpha)}{\sin \alpha}=r^{-2}(\varphi)(\sin (2 \varphi) \cot \alpha+\cos (2 \varphi)) \\
& =\sin (2 \varphi) \frac{-\dot{r}(\varphi)}{r^{3}(\varphi)}+\cos (2 \varphi) \frac{1}{r^{2}(\varphi)}=\frac{1}{2}\left(\frac{\sin (2 \varphi)}{r^{2}(\varphi)}\right)^{\prime}
\end{aligned}
$$

Thus, we have

$$
\left(\frac{\sin (2 \varphi)}{r^{2}(\varphi)}\right)^{\prime}=\frac{\sin (2 \varphi)}{a(\varphi)}=\frac{\sin (2(\varphi+\pi))}{a(\varphi+\pi)}=\left(\frac{\sin (2(\varphi+\pi))}{r^{2}(\varphi+\pi)}\right)^{\prime},
$$

and also $\lim _{\varphi \rightarrow 0} \frac{\sin (2 \varphi)}{r^{2}(\varphi)}=0=\lim _{\varphi \rightarrow 0} \frac{\sin (2(\varphi+\pi))}{r^{2}(2(\varphi+\pi))}$. Thus $r(\varphi) \equiv r(\varphi+\pi)$ follows, meaning that \mathcal{I} is affine symmetric with respect to O.

Thus the necessity part of the theorem is proved.
Next we prove the sufficiency part ${ }^{3}$.
We assume that O is a projective center of \mathcal{I}, and we have to prove that
there is a suitable small open neighborhood \mathcal{U} of O that for every geodesics $\tilde{\ell}_{1}$ and $\tilde{\ell}_{2}$ through O inequality $2 d_{\mathcal{I}}(\hat{P}, \hat{Q}) \leq d_{\mathcal{I}}(P, Q)$ is fulfilled for every points $P \in \tilde{\ell}_{1} \cap \mathcal{U}$ and $Q \in \tilde{\ell}_{2} \cap \mathcal{U}$, where $\hat{P}, \hat{Q} \in \mathcal{U}$ are the $d_{\mathcal{I}}$-midpoints of the geodesic segments $\overline{O P}$ and $\overline{O Q}$, respectively.
According to (2.1), we may assume without loss of generality that O is the affine center of \mathcal{I}. Since two geodesics lie in a common plane, it is enough to prove (4.4) in the plane, so we assume that O is the affine center of $\mathcal{I} \subset \mathbb{R}^{2}$.

Choose the straight lines $l_{ \pm}$so that $Y_{ \pm}$are Alexander points of $\partial \mathcal{I}$, and

$$
\begin{equation*}
-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right)>1 \tag{4.5}
\end{equation*}
$$

This is possible because if equality happened in (3.1), then rotating l_{-}a little bit helps. Moreover, if t_{+}is parallel to l_{-}, then one can slightly rotate l_{-}around O so that (4.5) remains valid and intersects t_{+}. Thus, we can assume that the point T_{+} exists. Since O is the affine center of \mathcal{I}, we have $t_{+} \| t_{-}$, so also point T_{-}exists, and O is clearly the affine center of $\overline{T_{-} T_{+}}$.

Now we fix the coordinate system and euclidean metric given in Section 3 so that the positive half of the x-axes contains T_{-}. Again Figure 4.1 shows what we have.

By Lemma 3.2 statement (4.4) fulfills if the main term $\frac{m_{-}}{2 s y_{+}^{2}(0)}\left(s^{2} \frac{y_{+}^{2}(0)}{y_{-}^{2}(0)}-\frac{m_{+}}{m_{-}}\right)$in (3.3) is positive. This fulfills because $\frac{m_{+}}{m_{-}}=1$ by $t_{+} \| t_{-}, m_{-}>0$, and $s^{2} \frac{y_{+}^{2}(0)}{y_{-}^{2}(0)}-1=$ $-\frac{-s}{1 / s}-1=-\left(\ell_{1}, \ell_{2} ; l_{-}, l_{+}\right)-1>0$ by (4.5).

5. Consequences

The following statements sharpen and extend the solution [4, second statement in Theorem] of Kelly and Strauss given to Busemann's [3, Problem 34, p. 406].

Theorem 5.1. A Hilbert geometry is a Cayley-Klein model of Bolyai's hyperbolic geometry if and only if there is a hyperplane intersecting the Hilbert geometry so that every point of the intersection is of non-positive curvature.

[^3]Proof. If the Hilbert geometry is a Cayley-Klein model of Bolyai's hyperbolic geometry, then it has non-positive curvature at every point.

If there is a hyperplane intersecting the Hilbert geometry so that the Hilbert geometry has non-positive curvature at every point in the intersection, then all these points are projective centers by Theorem 4.2, and therefore [7, Theorem 3.3(a)] implies that the domain is an ellipsoid, hence the Hilbert geometry is a Cayley-Klein model of Bolyai's hyperbolic geometry.

For dimension 2 we have an even sharper version.
Theorem 5.2. A 2-dimensional Hilbert geometry is a Cayley-Klein model of the hyperbolic space if and only if it has two points of non-positive curvature and its boundary is twice differentiable where it is intersected by the line joining those points of non-positive curvature.

Proof. If the 2-dimensional Hilbert geometry is a Cayley-Klein model of Bolyai's hyperbolic plane, then it has non-positive curvature at every point.

If the 2-dimensional Hilbert geometry has two points of non-positive curvature and its boundary is twice differentiable where it is intersected by the line joining those points of non-positive curvature, then [5, Theorem 3] implies that the domain is an ellipse.

Acknowledgment. The author thanks János Kincses for finding article [7].

References

[1] A. D. Alexandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad Sate University Annals [Uchenye Zapiski], Mathematical Series, $\boldsymbol{6}$ (1939), 3-35. $\langle 2\rangle$
[2] H. Busemann and P. J. Kelly, Projective Geometries and Projective Metrics, Academic Press, New York, 1953. $\langle 1,2\rangle$
[3] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955. $\langle 1,2,9\rangle$
[4] P. J. Kelly and E. Straus, Curvature in Hilbert Geometries, Pacific J. Math., 8 (1958), 119-125; https://projecteuclid.org/euclid.pjm/1103040248. $\langle 1,2,7,9\rangle$
[5] P. J. Kelly and E. Straus, On the projective centers of convex curves, Canadian J. Math., 12 (1960), 568-581; https://doi.org/10.4153/CJM-1960-050-7. 〈10〉
[6] P. J. Kelly and E. Straus, Curvature in Hilbert Geometries. II, Pacific J. Math., 25 (1968), 549-552; https://projecteuclid.org/euclid.pjm/1102986149. $\langle 1,6,9\rangle$
[7] L. Montejano and E. Morales, Characterization of ellipsoids and polarity in convex sets, Mathematika, 50 (2003), 63-72; DOI: 10.1112/S0025579300014790. $\langle 2,10\rangle$
[8] R. T. Rockafellar, Convex Analysis, Princeton Math. Series 33, Princeton Univ. Press, Princeton, N.J., 1970. $\langle 2\rangle$
[9] R. T. Rockafellar, Second-order convex analysis, J. Nonlinear Convex Anal., 1 (1999), $1-16$. $\langle 2\rangle$

Á. Kurusa, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6725 Szeged (Hungary); E -mail: kurusa@math.u-szeged.hu .

[^0]: 1991 Mathematics Subject Classification. 53A35, 53A20; 52A20.
 Key words and phrases. Hilbert metric, curvature in the sense of Busemann, Bolyai's hyperbolic geometry, projective metric.

 Research was supported by NFSR of Hungary (NKFIH) under grant numbers K 116451 and KH 18 129630, and by the Ministry of Human Capacities, Hungary grant 203913/2018/FEKUSTRAT..

[^1]: ${ }^{1}$ Notice that positivity or negativity of the curvature in [4, Definition 1] corresponds to nonnegativity, respectively non-positivity in our terms.

[^2]: ${ }^{2}$ This is [4, first statement of Theorem]

[^3]: ${ }^{3}$ The last paragraph of [6] argues that this "does not seem easy".

