Isoptic characterization of spheres

Árpád Kurusa and Tibor Ódor

Abstract

If a convex body in $\mathcal{K} \in \mathbb{R}^{n}$ subtends constant visual angles over two concentric spheres exterior to \mathcal{K}, then it is a ball concentric to those spheres.

1 Introduction

The masking number ${ }^{1} M_{\mathcal{K}}(P)$ of the convex body \mathcal{K} at $P \notin \mathcal{K}$ as defined in [9, (7.1)] is the integral

$$
\begin{equation*}
M_{\mathcal{K}}(P)=\frac{1}{2} \int_{\mathbb{S}^{n-1}} \#\left(\partial \mathcal{K} \cap \ell\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right)\right) d \boldsymbol{\xi} \tag{1.1}
\end{equation*}
$$

where $\#$ is the counting measure, $\partial \mathcal{K}$ denotes the boundary of $\mathcal{K}, \boldsymbol{\xi}$ is the spherical coordinate of the unit vector $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$, and $\ell\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right)$ is the straight line through P having direction $\boldsymbol{u}_{\boldsymbol{\xi}}$.

Figure 1.1: The masking number $M_{\mathcal{K}}(P)$ is twice the measure of the visual angle \mathcal{K}_{P} of \mathcal{K} at a point $P \notin \mathcal{K}$.

The set of points $P \in \mathbb{R}^{n}$, where a convex body $\mathcal{K} \subset \mathbb{R}^{n}$ has constant $\alpha \in\left(0,\left|\mathbb{S}^{n-1}\right|\right)$ masking number $M_{\mathcal{K}}(P)$ is called the α-isomasker ${ }^{2}$ of the conAMS Subject Classification (2012): 52A40.
Key words and phrases: ball, sphere, masking function, characterization of balls.
${ }^{1}$ This is called the point projection in [1] or shadow picture in [3].
${ }^{2}$ We reserve the word isoptic for the set of points where not only the measure, but also the shape of \mathcal{K}_{P} is constant. A result toward this direction can be found in [12].
vex body \mathcal{K}. The α-isomasker of the convex body \mathcal{K} in the plane is the set of the points where \mathcal{K} subtends angles of constant $\alpha / 2 \in(0, \pi)$ measure, and it is called the α-isoptic of \mathcal{K}.

Following the conjecture of Klamkin [4] Nitsche proved in [13] that if two isoptics of \mathcal{K} are concentric circles, then \mathcal{K} is a disc. Nitsche also asked to consider the problem in higher dimensions.

We generalize Nitsche's result to higher dimensions in Theorem 5.1 as follows: if two isomaskers of a convex body are also isomaskers of a ball with the same masking numbers, then the body is that ball. We use an integral geometric method.

2 Preliminaries

We work in the Euclidean n-space $\mathbb{R}^{n}(n \in \mathbb{N})$. Its unit ball is $\mathcal{B}=\mathcal{B}^{n}$ (in the plane the unit disc is \mathcal{D}), its unit sphere is \mathbb{S}^{n-1} and the set of its hyperplanes is \mathbb{H}. The ball (resp. disc) of radius $\varrho>0$ centered at the origin $\mathbf{0}$ is denoted by $\varrho \mathcal{B}=\varrho \mathcal{B}^{n}$ (resp. $\varrho \mathcal{D}$). The unit sphere centered at a point P is \mathbb{S}_{P}^{n-1}.

Using spherical coordinates $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n-1}\right)$ every unit vector can be written in the form $\boldsymbol{u}_{\boldsymbol{\xi}}=\left(\cos \xi_{1}, \sin \xi_{1} \cos \xi_{2}, \sin \xi_{1} \sin \xi_{2} \cos \xi_{3}, \ldots\right)$, the i-th coordinate of which is $u_{\boldsymbol{\xi}}^{i}=\left(\prod_{j=1}^{i-1} \sin \xi_{j}\right) \cos \xi_{i}\left(\xi_{n}:=0\right)$. In the plane we use $\boldsymbol{u}_{\xi}=(\cos \xi, \sin \xi)$ and $\boldsymbol{u}_{\xi}^{\perp}=\boldsymbol{u}_{\xi+\pi / 2}=(-\sin \xi, \cos \xi)$. In analogy to this latter one, we introduce $\boldsymbol{\xi}^{\perp}=\left(\xi_{1}, \ldots, \xi_{n-2}, \xi_{n-1}+\pi / 2\right)$ for higher dimensions.

We introduce the notation $\left|\mathbb{S}^{k}\right|:=2 \pi^{k / 2} / \Gamma(k / 2)$ for the standard surface measure of the k-dimensional sphere, where Γ is Euler's Gamma function.

The hyperplanes $\hbar \in \mathbb{H}$ are parametrized so that $\hbar\left(\boldsymbol{u}_{\boldsymbol{\xi}}, r\right)$ is orthogonal to the unit vector $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$ and contains the point $r \boldsymbol{u}_{\boldsymbol{\xi}},{ }^{3}$ where $r \in \mathbb{R}$. For convenience we also use $\hbar\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right)$ to denote the hyperplane through the point $P \in \mathbb{R}^{n}$ with normal vector $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$. For instance, $\hbar\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right)=\hbar\left(\boldsymbol{u}_{\boldsymbol{\xi}},\left\langle\overrightarrow{O P}, \boldsymbol{u}_{\boldsymbol{\xi}}\right\rangle\right)$, where $O=\mathbf{0}$ is the origin and $\langle.,$.$\rangle is the usual inner product.$

On \mathbb{H} we use the kinematic density $d \hbar=d r d \boldsymbol{\xi}$ that is (up to a constant multiple) the only measure on \mathbb{H} invariant with respect to the Euclidean motions [16].

By a convex body we mean a convex compact set $\mathcal{K} \subseteq \mathbb{R}^{n}$ with nonempty interior \mathcal{K}° and with piecewise C^{1} boundary $\partial \mathcal{K}$. For a convex body \mathcal{K} we let $p_{\mathcal{K}}: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$ denote the support function of \mathcal{K} defined by $p_{\mathcal{K}}\left(\boldsymbol{u}_{\xi}\right)=$ $\sup _{\boldsymbol{x} \in \mathcal{K}}\left\langle\boldsymbol{u}_{\xi}, \boldsymbol{x}\right\rangle$. We also use notation $\hbar_{\mathcal{K}}(\boldsymbol{u})=\hbar\left(\boldsymbol{u}, p_{\mathcal{K}}(\boldsymbol{u})\right)$.

If the origin is in \mathcal{K}°, then the support function of \mathcal{K} is positive, otherwise the zero or even negative values appear in its image according to whether the origin is

[^0]in $\partial \mathcal{K}$ or outside \mathcal{K}. If the origin is in \mathcal{K}°, another useful function of a convex body \mathcal{K} is its radial function $\varrho_{\mathcal{K}}: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}$defined by $\varrho_{\mathcal{K}}(\boldsymbol{u})=|\{r \boldsymbol{u}: r>0\} \cap \partial K|$.

Assume that the origin $\mathbf{0}$ is an interior point of a convex body \mathcal{K}. Define $\mathbb{H}_{0}:=\{\hbar \in \mathbb{H}: \mathbf{0} \notin \hbar\}$, and let $\hat{\delta}: \mathbb{H}_{0} \rightarrow \mathbb{R}^{n}$ and $\check{\delta}: \mathbb{R}^{n} \rightarrow \mathbb{H}_{0}$, the dualizing maps, be defined by

$$
\begin{equation*}
\hat{\delta}(\hbar(\boldsymbol{u}, r)):=-\frac{1}{r} \boldsymbol{u} \quad \text { and } \quad \check{\delta}(r \boldsymbol{u}):=\hbar\left(-\boldsymbol{u}, \frac{1}{r}\right), \tag{2.1}
\end{equation*}
$$

respectively, where $\boldsymbol{u} \in \mathbb{S}^{n-1}$ is unit vector and $r>0$. These functions are obviously inverses of each other, and it is an easy and well-known fact ${ }^{4}$ that

$$
\hat{\delta}(\{\hbar \in \mathbb{H}: \boldsymbol{v} \in \hbar\})=\hbar\left(\frac{-\boldsymbol{v}}{|\boldsymbol{v}|}, \frac{1}{|\boldsymbol{v}|}\right) \quad \text { and } \quad \check{\delta}(\hbar(\boldsymbol{u}, r))=\left\{\hbar \in \mathbb{H}: \frac{-1}{r} \boldsymbol{u} \in \hbar\right\} .
$$

The dual body \mathcal{K}^{\star} of \mathcal{K} is bounded by $\partial \hat{\mathcal{K}}:=\left\{\hat{\delta}\left(\hbar\left(\boldsymbol{u}, p_{\mathcal{K}}(\boldsymbol{u})\right)\right): \boldsymbol{u} \in \mathbb{S}^{n-1}\right\}$. The dual body \mathcal{K}^{\star}, which is in fact the point reflection - to the origin $\mathbf{0}$ - of the polar body \mathcal{K}^{*} [17, Section 1.6], is convex, and its radial function is $\varrho_{\mathcal{K}^{\star}}(\boldsymbol{u})=\frac{1}{p_{\mathcal{K}}(-\boldsymbol{u})}$ [17, Theorem 1.7.6]. Further, we have $\left(\mathcal{K}^{\star}\right)^{\star}=\mathcal{K}[17$, Section 1.6].

A strictly positive integrable function $\omega: \mathbb{R}^{n} \backslash \mathcal{B} \rightarrow \mathbb{R}_{+}$is called weight and the integral

$$
V_{\omega}(f):=\int_{\mathbb{R}^{n} \backslash \mathcal{B}} f(x) \omega(x) d x
$$

of an integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called the volume of f with respect to the weight ω or simply the ω-volume of f. For the volume of the indicator function $\chi_{\mathcal{S}}$ of a set $\mathcal{S} \subseteq \mathbb{R}^{n}$ we use the notation $V_{\omega}(\mathcal{S}):=V_{\omega}\left(\chi_{\mathcal{S}}\right)$ as a shorthand. If several weights are indexed by $i \in \mathbb{N}$, then we use the even shorter notation $V_{i}(\mathcal{S}):=$ $V_{\omega_{i}}(\mathcal{S})=V_{i}\left(\chi_{\mathcal{S}}\right):=V_{\omega_{i}}\left(\chi_{\mathcal{S}}\right)$.

Finally we introduce a utility function χ that takes relations as argument and gives 1 if its argument is fulfilled. For example $\chi(1>0)=1$, but $\chi(1 \leq 0)=0$ and $\chi(x>y)$ is 1 if $x>y$ and it is zero if $x \leq y$. However we still use χ also as the indicator function of the set given in its subscript.

3 Dualizing the masking function

For any point $P \in \mathbb{R}^{n}$ define the sets $\overline{\mathcal{K}}_{P}$ and \mathcal{K}_{P} in the unit sphere \mathbb{S}_{P}^{n-1} centered at P that contains exactly those points $X \in \mathbb{S}_{P}^{n-1}$ for which the hyperplane

[^1]$\hbar(P, \overrightarrow{P X})$ and the straight line $\ell(P, \overrightarrow{P X})$, respectively, intersects \mathcal{K}. Then, by (1.1) and some easy observations we have
\[

$$
\begin{aligned}
M_{\mathcal{K}}(P) & =\frac{1}{2} \int_{\mathbb{S}^{n-1}} \#\left(\partial \mathcal{K} \cap \ell\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right)\right) d \boldsymbol{\xi}=\int_{\mathcal{K}_{P}} 1 d \boldsymbol{\xi}=\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\overline{\mathcal{K}}_{P}} 1 d \boldsymbol{\xi} \\
& =\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\mathbb{S}^{n-1}} \chi\left(\hbar\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right) \cap \mathcal{K} \neq \emptyset\right) d \boldsymbol{\xi}
\end{aligned}
$$
\]

From this we obtain

$$
\begin{align*}
\left|\mathbb{S}^{n-2}\right| M_{\mathcal{K}}(P) & =\int_{\mathbb{S}^{n-1}} \chi\left(\left\langle\boldsymbol{u}_{\boldsymbol{\xi}}, P\right\rangle \leq p_{K}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right)\right) d \boldsymbol{\xi} \\
& =\left|\mathbb{S}^{n-1}\right|-\int_{\mathbb{S}^{n-1}} \chi\left(\left\langle\boldsymbol{u}_{\boldsymbol{\xi}}, P\right\rangle \geq p_{K}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right)\right) d \boldsymbol{\xi} \tag{3.1}\\
& =:\left|\mathbb{S}^{n-1}\right|-M_{\mathcal{K}}^{\star}(\check{\delta}(P))
\end{align*}
$$

Assuming $\mathbf{0} \in \mathcal{K}^{\circ}$ one can reformulate the last integral to obtain

$$
\begin{aligned}
M_{\mathcal{K}}^{\star}(\check{\delta}(P)) & =\int_{\mathbb{S}^{n-1}} \chi\left(\left\langle-\boldsymbol{u}_{\boldsymbol{\xi}} \varrho_{K^{\star}}\left(-\boldsymbol{u}_{\boldsymbol{\xi}}\right),-\boldsymbol{u}\right\rangle \geq \frac{1}{r}\right) d \boldsymbol{\xi} \\
& =\int_{\mathbb{S}^{n-1}} \chi\left(\varrho_{K^{\star}}\left(-\boldsymbol{u}_{\boldsymbol{\xi}}\right) \geq \frac{1 / r}{\left\langle-\boldsymbol{u}_{\boldsymbol{\xi}},-\boldsymbol{u}\right\rangle}\right) d \boldsymbol{\xi} \\
& =\int_{\check{\delta}(P)} \chi\left(\boldsymbol{x} \in \mathcal{K}^{\star}\right)\left|\frac{d \boldsymbol{\xi}}{d \boldsymbol{x}}\right| d \boldsymbol{x}
\end{aligned}
$$

where $P=r \boldsymbol{u}, r>0, \boldsymbol{u} \in \mathbb{S}^{n-1}$, and $|d \boldsymbol{\xi} / d \boldsymbol{x}|$ is the Jacobian of the map $\boldsymbol{x} \mapsto \boldsymbol{\xi}$ given by $\boldsymbol{x}=-|\boldsymbol{x}| \boldsymbol{u}_{\boldsymbol{\xi}}$. Let $\boldsymbol{x}=\frac{-1}{r} \boldsymbol{u}+\varrho \boldsymbol{u}_{\boldsymbol{\psi}}$, where $\boldsymbol{u} \perp \boldsymbol{u}_{\boldsymbol{\psi}} \in \mathbb{S}^{n-1}$ and $\boldsymbol{\psi}$ is a spherical coordinate on \mathbb{S}^{n-2} such that $\boldsymbol{\xi}=(\xi, \boldsymbol{\psi})$. Then by rotational invariance we obtain immediately that $\left|\frac{d \boldsymbol{\xi}}{d \boldsymbol{x}}\right|=|\boldsymbol{x}|^{2-n}\left|\frac{d \xi}{d \varrho}\right|$, where $\tan \xi=\frac{\varrho}{1 / r}$ and so

$$
\frac{d \xi}{d \varrho}=\frac{r}{1+r^{2} \varrho^{2}}
$$

Thus, we obtain

$$
\begin{align*}
M_{\mathcal{K}}^{\star}(\check{\delta}(P)) & =\int_{\check{\delta}(P)} \chi\left(\boldsymbol{x} \in \mathcal{K}^{\star}\right)|\boldsymbol{x}|^{2-n} \frac{|P|}{1+|P|^{2}\left(|\boldsymbol{x}|^{2}-|P|^{-2}\right)} d \boldsymbol{x} \\
& =\int_{\check{\delta}(P)} \chi\left(\boldsymbol{x} \in \mathcal{K}^{\star}\right) \frac{1 /|P|}{|\boldsymbol{x}|^{n}} d \boldsymbol{x} \tag{3.2}
\end{align*}
$$

where $d \boldsymbol{x}$ is the standard surface measure on the hyperplane $\check{\delta}(P)$.

4 Measures of convex bodies

In view of (3.2) it is natural to consider the following transforms.
Let \mathcal{M} and \mathcal{K} be convex bodies such that $\mathbf{0} \in \mathcal{M} \subseteq \mathcal{K}^{\circ}$. Let $\nu: \mathbb{H} \rightarrow C^{1}\left(\mathbb{R}^{n}\right)$ be a function of weights, that is, ν_{\hbar} is a weight for every $\hbar \in \mathbb{H}$. Then the weighted section function of \mathcal{K} with respect to \mathcal{M}, the so called kernel, is defined by

$$
\begin{equation*}
\mathrm{S}_{\mathcal{M} ; \mathcal{K}}^{\nu}(\boldsymbol{u})=\int_{\langle\boldsymbol{x}, \boldsymbol{u}\rangle=p_{\mathcal{M}}(\boldsymbol{u})} \chi(\boldsymbol{x} \in \mathcal{K}) \nu_{\hbar_{\mathcal{M}}(\boldsymbol{u})}(\boldsymbol{x}) d \boldsymbol{x}_{\hbar_{\mathcal{M}}(\boldsymbol{u})} \tag{4.1}
\end{equation*}
$$

where $d \boldsymbol{x}_{\hbar_{\mathcal{M}}(\boldsymbol{u})}$ is the usual surface measure on $\hbar_{\mathcal{M}}(\boldsymbol{u})$.

Figure 4.1: Section of \mathcal{K} with respect to the kernel \mathcal{M}.

The function $\nu: \mathbb{H} \rightarrow C^{1}\left(\mathbb{R}^{n}\right)$ of weights is called rotationally symmetric if for every $\hbar \in \mathbb{H}, \boldsymbol{x} \in \hbar$ and $D \in S O(n)$ one has $\nu_{D \hbar}(D \boldsymbol{x})=\nu_{\hbar}(\boldsymbol{x})$, where $D \in S O(n)$ acts naturally on \mathbb{H}. Assume that $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{n-1}$. If $|\boldsymbol{x}|=|\boldsymbol{y}|$ and $\langle\boldsymbol{x}, \boldsymbol{u}\rangle=\langle\boldsymbol{y}, \boldsymbol{v}\rangle$, then there is a $D \in S O(n)$ such that $D \boldsymbol{x}=\boldsymbol{y}$ and $D \boldsymbol{u}=\boldsymbol{v}$. Thus we have the following lemma immediately.

Lemma 4.1. The function ν of weights is rotationally symmetric if and only if there is a function $\bar{\nu}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\nu_{\hbar(\boldsymbol{u}, r)}(\boldsymbol{x})=\bar{\nu}(r,\langle\boldsymbol{x}, \boldsymbol{u}\rangle,|\boldsymbol{x}|)$.

If the kernel body is a ball, i.e. $\varrho \mathcal{B}$, we use the notation $S_{\varrho ; \mathcal{K}}^{\nu}:=\mathrm{S}_{\varrho \mathcal{B} ; \mathcal{K}}^{\nu}$ as a shorthand.

Lemma 4.2. Let the convex body \mathcal{K} contain the ball $\varrho \mathcal{B}$. Then for any rotationally symmetric function ν of weights we have

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho ; \mathcal{K}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\left|\mathbb{S}^{n-2}\right| \int_{\mathcal{K} \backslash \varrho \mathcal{B}} \bar{\nu}(\varrho, \varrho,|\boldsymbol{x}|) \frac{\left(|\boldsymbol{x}|^{2}-\varrho^{2}\right)^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{n-2}} d \boldsymbol{x}, \tag{4.2}
\end{equation*}
$$

Proof. Define the function μ^{ε} of weights by

$$
\mu_{\hbar(\boldsymbol{u}, r)}^{\varepsilon}(\boldsymbol{x}):=\nu_{\hbar(\boldsymbol{u}, r)}(\boldsymbol{x}+(r-\langle\boldsymbol{x}, \boldsymbol{u}\rangle) \boldsymbol{u}) \chi(0 \leq\langle\boldsymbol{x}, \boldsymbol{u}\rangle-r \leq \varepsilon),
$$

where $\varepsilon>0$. Now we can write ${ }^{5}$

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho ; \mathcal{K}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\zeta}}\right) d \boldsymbol{\zeta} & =\int_{\mathbb{S}^{n-1}} \int_{\left\langle\boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{\zeta}}\right\rangle=\varrho} \nu_{\hbar\left(\boldsymbol{u}_{\boldsymbol{\zeta}}, \varrho\right)}(\boldsymbol{x}) \chi(\boldsymbol{x} \in \mathcal{K}) d \boldsymbol{x}_{\hbar} d \boldsymbol{\zeta} \\
& =\int_{\mathbb{S}^{n-1}} \lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\varepsilon} \int_{\left\langle\boldsymbol{x}, \boldsymbol{u}_{\zeta}\right\rangle \geq \varrho} \mu_{\hbar\left(\boldsymbol{u}_{\boldsymbol{\zeta}}, \varrho\right)}^{\varepsilon}(\boldsymbol{x}) \chi(\boldsymbol{x} \in \mathcal{K}) d \boldsymbol{x}\right) d \boldsymbol{\zeta} \\
& =\lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\varepsilon} \int_{\mathbb{S}^{n}-1} \int_{\left\langle\boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{\zeta}}\right\rangle \geq \varrho} \mu_{\hbar\left(\boldsymbol{u}_{\boldsymbol{\zeta}}, \varrho\right)}^{\varepsilon}(\boldsymbol{x}) \chi(\boldsymbol{x} \in \mathcal{K}) d \boldsymbol{x} d \boldsymbol{\zeta}\right) \\
& =\int_{\mathcal{K} \backslash \varrho \mathcal{B}} \lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\varepsilon} \int_{\left\langle\boldsymbol{x}, \boldsymbol{u}_{\zeta}\right\rangle \geq \varrho} \mu_{\hbar\left(\boldsymbol{u}_{\boldsymbol{\zeta}}, \varrho\right)}^{\varepsilon}(\boldsymbol{x}) d \boldsymbol{\zeta}\right) d \boldsymbol{x}
\end{aligned}
$$

As ν is rotationally symmetric, $\nu_{\hbar(\boldsymbol{u},\langle\boldsymbol{x}, \boldsymbol{u}\rangle)}(\boldsymbol{x})=\bar{\nu}(\langle\boldsymbol{x}, \boldsymbol{u}\rangle,\langle\boldsymbol{x}, \boldsymbol{u}\rangle,|\boldsymbol{x}|)$, and this implies $\mu_{\hbar\left(\boldsymbol{u}_{\boldsymbol{\zeta}}, \varrho\right)}^{\varepsilon}(\boldsymbol{x})=\bar{\nu}(\varrho, \varrho,|\boldsymbol{x}|) \chi\left(0 \leq\left\langle\boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{\zeta}}\right\rangle-\varrho \leq \varepsilon\right)$. Therefore, letting $|\boldsymbol{x}| \boldsymbol{u}_{\boldsymbol{\xi}}=$ \boldsymbol{x}, where $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$, the calculation above continues as

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} & \mathrm{~S}_{\varrho ; \mathcal{K}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\zeta}}\right) d \boldsymbol{\zeta} \\
& =\int_{\mathcal{K} \backslash \varrho \mathcal{B}} \bar{\nu}(\varrho, \varrho,|\boldsymbol{x}|) \lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\varepsilon} \int_{\left\langle\boldsymbol{x}, \boldsymbol{u}_{\zeta}\right\rangle \geq \varrho} \chi\left(0 \leq\left\langle\boldsymbol{x}, \boldsymbol{u}_{\zeta}\right\rangle-\varrho \leq \varepsilon\right) d \boldsymbol{\zeta}\right) d \boldsymbol{x}
\end{aligned}
$$

As

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\varepsilon} \int_{\left\langle\boldsymbol{x}, \boldsymbol{u}_{\zeta}\right\rangle \geq \varrho} \chi\left(0 \leq\left\langle\boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{\zeta}}\right\rangle-\varrho \leq \varepsilon\right) d \boldsymbol{\zeta}\right) \\
& \quad=\lim _{\varepsilon \rightarrow 0}\left(\frac{\left|\mathbb{S}^{n-2}\right| /|\boldsymbol{x}|}{\varepsilon /|\boldsymbol{x}|} \int_{\varrho /|\boldsymbol{x}|}^{(\varrho+\varepsilon) /|\boldsymbol{x}|}{\sqrt{1-\lambda^{2}}}^{n-3} d \boldsymbol{\lambda}\right)=\frac{\left|\mathbb{S}^{n-2}\right|}{|\boldsymbol{x}|}{\sqrt{1-\left(\frac{\varrho}{|\boldsymbol{x}|}\right)^{2}}}^{n-3}
\end{aligned}
$$

the lemma is proved.
Although the following lemma was already proved as Lemma 5.3 in [11], we present it here for the sake of completeness with its short proof.

Lemma 4.3. Let $\omega_{i}(i=1,2)$ be weights, let \mathcal{K} and \mathcal{L} be convex bodies containing the unit ball \mathcal{B}, and let $c \geq 1$.
(1) If $c V_{1}(\mathcal{K}) \leq V_{1}(\mathcal{L})$ and there is a constant $c_{\mathcal{K}}$ such that

$$
\begin{array}{ll}
\omega_{2}(X) \geq c_{\mathcal{K}} \omega_{1}(X), & \text { if } X \notin \mathcal{K} \\
\omega_{2}(X)=c_{\mathcal{K}} \omega_{1}(X), & \text { if } X \in \partial \mathcal{K} \\
\omega_{2}(X) \leq c_{\mathcal{K}} \omega_{1}(X), & \text { if } X \in \mathcal{K}
\end{array}
$$

where equality may occur only in a set of measure zero, then $c V_{2}(\mathcal{K}) \leq V_{2}(\mathcal{L})$.

[^2](2) If $V_{1}(\mathcal{K}) \leq c V_{1}(\mathcal{L})$ and there is a constant $c_{\mathcal{L}}$ such that
\[

$$
\begin{array}{ll}
\omega_{2}(X) \leq c_{\mathcal{L}} \omega_{1}(X), & \text { if } X \notin \mathcal{L}, \\
\omega_{2}(X)=c_{\mathcal{L}} \omega_{1}(X), & \text { if } X \in \partial \mathcal{L}, \\
\omega_{2}(X) \geq c_{\mathcal{L}} \omega_{1}(X), & \text { if } X \in \mathcal{L},
\end{array}
$$
\]

where equality may occur only in a set of measure zero, then $V_{2}(\mathcal{K}) \leq c V_{2}(\mathcal{L})$. In both cases equality in the resulted inequality implies $\mathcal{K}=\mathcal{L}$ and $c=1$.

Proof. In both statements $\mathcal{K} \triangle \mathcal{L}=\emptyset$ implies $V_{1}(\mathcal{K})=V_{1}(\mathcal{L})$, hence $c=1$ and $V_{1}(\mathcal{K})=V_{1}(\mathcal{L})$.

Assume from now on that $\mathcal{K} \triangle \mathcal{L} \neq \emptyset$.
We prove here only (1) since the verification of (2) is similar.
Having (1) we proceed as

$$
\begin{aligned}
& V_{2}(\mathcal{L})-c V_{2}(\mathcal{K}) \\
& =V_{2}(\mathcal{L})-V_{2}(\mathcal{K})+(1-c) V_{2}(\mathcal{K})=V_{2}(\mathcal{L} \backslash \mathcal{K})-V_{2}(\mathcal{K} \backslash \mathcal{L})+(1-c) V_{2}(\mathcal{K}) \\
& =\int_{\mathcal{L} \backslash \mathcal{K}} \frac{\omega_{2}(x)}{\omega_{1}(x)} \omega_{1}(x) d x-\int_{\mathcal{K} \backslash \mathcal{L}} \frac{\omega_{2}(x)}{\omega_{1}(x)} \omega_{1}(x) d x+(1-c) V_{2}(\mathcal{K}) \\
& >c_{\mathcal{K}}\left(V_{1}(\mathcal{L} \backslash \mathcal{K})-V_{1}(\mathcal{K} \backslash \mathcal{L})\right)+(1-c) V_{2}(\mathcal{K})=c_{\mathcal{K}}\left(V_{1}(\mathcal{L})-V_{1}(\mathcal{K})\right)+(1-c) V_{2}(\mathcal{K}) \\
& \geq(c-1)\left(c_{\mathcal{K}} V_{1}(\mathcal{K})-V_{2}(\mathcal{K})\right)=(c-1)\left(\int_{\mathcal{K}}\left(c_{\mathcal{K}}-\frac{\omega_{2}(x)}{\omega_{1}(x)}\right) \omega_{1}(x) d x\right) \geq 0
\end{aligned}
$$

This implies $V_{2}(\mathcal{L})-c V_{2}(\mathcal{K})>0$.
The lemma is proved.

5 Spherical isomaskers

First we calculate the integral of the masking function $M_{\mathcal{K}}$ of the convex body $\mathcal{K} \subset \bar{r} \mathcal{B}^{n}$ over the sphere $\bar{r} \mathbb{S}^{n-1}(\bar{r}>0)$. Starting with equation (3.1) we get

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}\left(\bar{r} \boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi} & =\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\mathbb{S}^{n-1}}\left|\mathbb{S}^{n-1}\right|-M_{\mathcal{K}}^{\star}\left(\check{\delta}\left(\bar{r} \boldsymbol{u}_{\boldsymbol{\xi}}\right)\right) d \boldsymbol{\xi} \\
& =\frac{\left|\mathbb{S}^{n-1}\right|^{2}}{\left|\mathbb{S}^{n-2}\right|}-\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}^{\star}\left(\check{\delta}\left(\bar{r} \boldsymbol{u}_{\boldsymbol{\xi}}\right)\right) d \boldsymbol{\xi}
\end{aligned}
$$

Assuming $\mathbf{0} \in \mathcal{K}^{\circ}$ we can continue by using (3.2) and (4.1) and obtain

$$
\int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}\left(r \boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\frac{\left|\mathbb{S}^{n-1}\right|^{2}}{\left|\mathbb{S}^{n-2}\right|}-\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\mathbb{S}^{n-1}} \int_{\hbar\left(-\boldsymbol{u}_{\boldsymbol{\xi}}, 1 / r\right)} \chi\left(\boldsymbol{x} \in \mathcal{K}^{\star}\right) \frac{1 / \bar{r}}{|\boldsymbol{x}|^{n}} d \boldsymbol{x} d \boldsymbol{\xi}
$$

This means

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}(r \boldsymbol{\xi}) d \boldsymbol{\xi}=\frac{\left|\mathbb{S}^{n-1}\right|^{2}}{\left|\mathbb{S}^{n-2}\right|}-\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} S_{\frac{1}{\bar{r}} ; \mathcal{K}^{\star}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi} \tag{5.1}
\end{equation*}
$$

where $\nu_{\hbar(\boldsymbol{u}, r)}(\boldsymbol{x})=r|\boldsymbol{x}|^{-n}$. Having this we are ready to prove the following generalization of Nitsche's result [13].

Theorem 5.1. Let $\varrho_{2}>\varrho_{1}>\bar{r}>0$ and let \mathcal{K} be a convex body contained in the interior of $\varrho_{1} \mathcal{B}^{n}$. If the sphere $\varrho_{1} \mathbb{S}^{n-1}$ is the common α-isomasker and $\varrho_{2} \mathbb{S}^{n-1}$ is the common β-isomasker of the convex body \mathcal{K} and $\bar{r} \mathcal{B}$, then $\mathcal{K}=\bar{r} \mathcal{B}$.

Proof. By the conditions we have $M_{\mathcal{K}}\left(\varrho_{1} \boldsymbol{u}\right)=\alpha=M_{\bar{r} \mathcal{B}^{n}}\left(\varrho_{1} \boldsymbol{u}\right)$ and $M_{\mathcal{K}}\left(\varrho_{2} \boldsymbol{u}\right)=$ $\beta=M_{\bar{r} \mathcal{B}^{n}}\left(\varrho_{2} \boldsymbol{u}\right)$ for every $\boldsymbol{u} \in \mathbb{S}^{n-1}$.

Figure 5.1: $M_{\mathcal{K}}(P)$ is clearly smaller than $M_{\mathcal{K}}(Q)$.

By some elementary observations and reasoning illustrated in Figure 5.1 it follows that \mathcal{K}° contains the common center $\mathbf{0}$ of the balls $\bar{r} \mathcal{B}, \varrho_{1} \mathcal{B}^{n}$ and $\varrho_{2} \mathcal{B}^{n}$.

Now equation (5.1) implies

$$
\begin{aligned}
& \int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\frac{1}{\varrho_{1}} ; \mathcal{K}^{\star}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\frac{1}{\varrho_{1}} ;\left(\bar{r} \mathcal{B}^{n}\right)^{\star}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\frac{1}{\varrho_{1} ; \frac{1}{r} \mathcal{B}^{n}}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi} \\
& \int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\frac{1}{\varrho_{2}} ; \mathcal{K}^{\star}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\frac{1}{\varrho_{2}} ;\left(\bar{r} \mathcal{B}^{n}\right)^{\star}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\frac{1}{\varrho_{2}} ; \frac{1}{\bar{r}} \mathcal{B}^{n}}^{\nu}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}
\end{aligned}
$$

As the function ν of weights having $\bar{\nu}\left(\varrho_{2}, \varrho_{2}, r\right)=\varrho_{2} r^{-n}$ is obviously rotational
invariant, (4.2) implies

$$
\int_{\mathcal{K}^{\star} \backslash \frac{1}{\varrho_{2}} \mathcal{B}^{n}} \frac{\left(|\boldsymbol{x}|^{2}-\varrho_{2}^{-2}\right)^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2 n-2}} d \boldsymbol{x}=\int_{\frac{1}{\bar{r}} \mathcal{B}^{n} \backslash \frac{1}{\varrho_{2}} \mathcal{B}^{n}} \frac{\left(|\boldsymbol{x}|^{2}-\varrho_{2}^{-2}\right)^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2 n-2}} d \boldsymbol{x}
$$

and

$$
\int_{\mathcal{K}^{\star} \backslash \frac{1}{\varrho_{1}} \mathcal{B}^{n}} \frac{\left(|\boldsymbol{x}|^{2}-\varrho_{1}^{-2}\right)^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2 n-2}} d \boldsymbol{x}=\int_{\frac{1}{\bar{r}} \mathcal{B}^{n} \backslash \frac{1}{\varrho_{1}} \mathcal{B}^{n}} \frac{\left(|\boldsymbol{x}|^{2}-\varrho_{1}^{-2}\right)^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2 n-2}} d \boldsymbol{x} .
$$

Let $\bar{\omega}_{1}(r):=r^{2-2 n}\left(r^{2}-\varrho_{1}^{-2}\right)^{\frac{n-3}{2}}, \bar{\omega}_{2}(r):=r^{2-2 n}\left(r^{2}-\varrho_{2}^{-2}\right)^{\frac{n-3}{2}}$, and let $\omega_{1}(\boldsymbol{x}):=\bar{\omega}_{1}(|\boldsymbol{x}|), \omega_{2}(\boldsymbol{x}):=\bar{\omega}_{2}(|\boldsymbol{x}|)$. Then $\frac{\omega_{1}}{\omega_{2}}$ is clearly a constant, say $c_{\mathcal{L}}$, on $\frac{1}{\bar{r}} \mathcal{B}^{n}$, and

$$
\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)}=\frac{\left(r^{2}-\varrho_{1}^{-2}\right)^{\frac{n-3}{2}}}{\left(r^{2}-\varrho_{2}^{-2}\right)^{\frac{n-3}{2}}}=\left(1-\frac{\varrho_{1}^{-2}-\varrho_{2}^{-2}}{r^{2}-\varrho_{1}^{-2}}\right)^{\frac{n-3}{2}}
$$

shows that $\frac{\bar{\omega}_{1}}{\bar{\omega}_{2}}$ is strictly monotone increasing.
The above observations show that the conditions in (2) of Lemma 4.3 are satisfied for $\mathcal{K}^{\star}, \mathcal{L}:=\frac{1}{\bar{r}} \mathcal{B}^{n}$ and $c=1$, hence $V_{2}\left(\mathcal{K}^{\star}\right) \leq V_{2}(\mathcal{L})$, and equality implies $\mathcal{K}^{\star}=\mathcal{L}$ and $c=1$.

As $\mathcal{K}=\left(\mathcal{K}^{\star}\right)^{\star}=(\mathcal{L})^{\star}=\bar{r} \mathcal{B}^{n}$, the theorem is proved.

6 Discussion

To have a complete generalization of Nitsche's result [13] from the point of view of Theorem 5.1, one should prove that if a convex body \mathcal{K} has two spherical isomaskers of values $\alpha_{1} \neq \alpha_{2}$, then there is a ball $\bar{r} \mathcal{B}^{n}$ with the same α_{1} - and α_{2}-isomaskers of radius $\varrho_{1} \neq \varrho_{2}$. Although Nitsche proved this in the plane, the authors conjecture that this is no longer valid in higher dimensions.

Conjecture 6.1. There are positive values $\alpha_{1} \neq \alpha_{2}$ and $\varrho_{1} \neq \varrho_{2}$ such that there is a non-spherical convex body $\mathcal{K} \subset \mathbb{R}^{n}$ the α_{1} - and α_{2}-isomaskers of which are spheres of radius $\varrho_{1} \neq \varrho_{2}$, respectively.

However note that it is proved in [7] that if two convex bodies in the plane have rotational symmetry of angle $2(\pi-\nu)$ and have common ν-isoptic, then that ν-isoptic is a circle.

In higher dimensions the only positive result the authors know about is the surprisingly easy [5, Theorem 2]. It states that if a convex body $\mathcal{K} \subset \mathbb{R}^{n}$ has an isoptic \mathcal{I} in the sense of a k-dimensional angles for any $1<k<n-1$, then \mathcal{K} is reconstructible from \mathcal{I}.

Acknowledgement. This research was supported by the European Union and cofunded by the European Social Fund under the project "Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences" of project number 'TÁMOP-4.2.2.A-11/1/KONV-2012-0073".

The authors thank János Kincses for discussions of the problems solved in this paper.

References

[1] R. J. Gardner, Geometric tomography (second edition), Encyclopedia of Math. and its Appl. 58, Cambridge University Press, Cambridge, 2006 (first edition in 1996).
[2] J. W. Green, Sets subtending a constant angle on a circle, Duke Math. J., 17 (1950), 263-267.
[3] J. Kincses and Á. Kurusa, Can you recognize the shape of a figure from its shadows?, Beiträge zur Alg. und Geom., 36 (1995), 25-34.
[4] M. S. Klamkin, Conjectured isoptic characterization of a circle, Amer. Math. Monthly, 95 (1988), 845.
[5] Á. Kurusa, You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59 (1996), 103-112.
[6] Á. Kurusa, The shadow picture problem for nonintersecting curves, Geom. Dedicata, 59 (1996), 113-125.
[7] Á. Kurusa, Is a convex plane body determined by an isoptic?, Beitr. Alg. Geom., 53:2 (2012), 281-294; doi: 10.1007/s13366-011-0074-2.
[8] Á. Kurusa, The shadow picture problem for parallel straight lines, J. Geom., 103:3 (2012), 515-518; doi: 10.1007/s00022-012-0137-z.
[9] Á. KUrusa, The masking function of multicurves, manuscript (2014), submitted.
[10] Á. Kurusa and T. Ódor, Characterizations of balls by sections and caps, Beitr. Alg. Geom. (2014), to appear; doi: 10.1007/s13366-014-0203-9.
[11] Á. Kurusa and T. Ódor, Spherical floating body, manuscript (2014), submitted.
[12] S. Matsuura, A problem in solid geometry, J. Math. Osaka City Univ., A 12 (1961), 89-95.
[13] J. C. C. Nitsche, Isoptic characterization of a circle, (Proof of a conjecture of M.S. Klamkin), Amer. Math. Monthly, 97 (1990), 45-47.
[14] T. ÓDOR, Rekonstrukciós, karakterizációs és extrémum problémák a geometriában, PhD dissertation, Budapest, 1994 (in hungarian; title in english: Problems of reconstruction, characterization and extremum in geometry).
[15] T. Ódor, Ball characterizations by visual angles and sections, manuscript, (2002), unpublished.
[16] L. A. Santaló, Integral Geometry and Geometric Probability, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2004.
[17] R. Schneider, Convex bodies: The Brunn-Minkowski Theory, Encyclopedia of Math. and its Appl., Cambridge Univ. Press, Cambridge, 1993; second edition, 2013.

Á. Kurusa, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary; e-mail: kurusa@math.u-szeged.hu
T. Ódor, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary; e-mail: odor@math.u-szeged.hu

[^0]: ${ }^{3}$ Although $\hbar\left(\boldsymbol{u}_{\boldsymbol{\xi}}, r\right)=\hbar\left(-\boldsymbol{u}_{\boldsymbol{\xi}},-r\right)$ this parametrization is locally bijective.

[^1]: ${ }^{4}$ Embed the space \mathbb{R}^{n} of \mathcal{K} into \mathbb{R}^{n+1} in such a way that the $(n+1)$ th coordinate of every point is 1 and the $(n+1)$ th coordinate axis intersects \mathcal{K} in its inner point $\mathbf{0} \in \mathbb{R}^{n}$.

[^2]: ${ }^{5}$ Similar calculation is given in [11]. It is given here for the sake of completeness.

