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Isoptic characterization of spheres

Árpád Kurusa and Tibor Ódor

Abstract. If a convex body in K ∈ Rn subtends constant visual angles over two
concentric spheres exterior to K, then it is a ball concentric to those spheres.

1 Introduction

The masking number1 MK(P ) of the convex body K at P /∈ K as defined in [9, (7.1)]
is the integral

(1.1) MK(P ) =
1

2

∫
Sn−1

#(∂K ∩ `(P,uξ))dξ,

where # is the counting measure, ∂K denotes the boundary of K, ξ is the spherical
coordinate of the unit vector uξ ∈ Sn−1, and `(P,uξ) is the straight line through P
having direction uξ.

K

•P
KP

Figure 1.1: The masking number MK(P ) is twice the measure of the visual
angle KP of K at a point P /∈ K.

The set of points P ∈ Rn, where a convex body K ⊂ Rn has constant
α ∈ (0, |Sn−1|) masking number MK(P ) is called the α-isomasker2 of the con-

AMS Subject Classification (2012): 52A40.
Key words and phrases: ball, sphere, masking function, characterization of balls.
1This is called the point projection in [1] or shadow picture in [3].
2We reserve the word isoptic for the set of points where not only the measure, but also the shape
of KP is constant. A result toward this direction can be found in [12].

http://www.math.u-szeged.hu/tagok/kurusa
http://dx.doi.org/10.1007/s00022-014-0232-4


J. Geom, 106:1 (2015), 63–73. c© Á. Kurusa and T. Ódor http://www.math.u-szeged.hu/tagok/kurusa

2 Á. Kurusa and T. Ódor

vex body K. The α-isomasker of the convex body K in the plane is the set of the
points where K subtends angles of constant α/2 ∈ (0, π) measure, and it is called
the α-isoptic of K.

Following the conjecture of Klamkin [4] Nitsche proved in [13] that if two
isoptics of K are concentric circles, then K is a disc. Nitsche also asked to consider
the problem in higher dimensions.

We generalize Nitsche’s result to higher dimensions in Theorem 5.1 as follows:
if two isomaskers of a convex body are also isomaskers of a ball with the same
masking numbers, then the body is that ball. We use an integral geometric method.

2 Preliminaries

We work in the Euclidean n-space Rn (n ∈ N). Its unit ball is B = Bn (in the plane
the unit disc is D), its unit sphere is Sn−1 and the set of its hyperplanes is H. The
ball (resp. disc) of radius % > 0 centered at the origin 0 is denoted by %B = %Bn
(resp. %D). The unit sphere centered at a point P is Sn−1

P .
Using spherical coordinates ξ = (ξ1, . . . , ξn−1) every unit vector can be written

in the form uξ = (cos ξ1, sin ξ1 cos ξ2, sin ξ1 sin ξ2 cos ξ3, . . .), the i-th coordinate of
which is uiξ = (

∏i−1
j=1 sin ξj) cos ξi (ξn := 0). In the plane we use uξ = (cos ξ, sin ξ)

and u⊥ξ = uξ+π/2 = (− sin ξ, cos ξ). In analogy to this latter one, we introduce
ξ⊥ = (ξ1, . . . , ξn−2, ξn−1 + π/2) for higher dimensions.

We introduce the notation |Sk| := 2πk/2/Γ(k/2) for the standard surface
measure of the k-dimensional sphere, where Γ is Euler’s Gamma function.

The hyperplanes ~ ∈ H are parametrized so that ~(uξ, r) is orthogonal to the
unit vector uξ ∈ Sn−1 and contains the point ruξ,3 where r ∈ R. For convenience
we also use ~(P,uξ) to denote the hyperplane through the point P ∈ Rn with
normal vector uξ ∈ Sn−1. For instance, ~(P,uξ) = ~(uξ, 〈

−−→
OP,uξ〉), where O = 0

is the origin and 〈., .〉 is the usual inner product.
On H we use the kinematic density d~ = drdξ that is (up to a constant mul-

tiple) the only measure on H invariant with respect to the Euclidean motions [16].
By a convex body we mean a convex compact set K ⊆ Rn with non-

empty interior K◦ and with piecewise C1 boundary ∂K. For a convex body K
we let pK : Sn−1 → R denote the support function of K defined by pK(uξ) =

supx∈K〈uξ,x〉. We also use notation ~K(u) = ~(u, pK(u)).
If the origin is in K◦, then the support function of K is positive, otherwise the

zero or even negative values appear in its image according to whether the origin is

3Although ~(uξ, r) = ~(−uξ,−r) this parametrization is locally bijective.
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in ∂K or outside K. If the origin is in K◦, another useful function of a convex body
K is its radial function %K : Sn−1 → R+ defined by %K(u) = |{ru : r > 0} ∩ ∂K|.

Assume that the origin 0 is an interior point of a convex body K. Define
H0 := {~ ∈ H : 0 /∈ ~}, and let δ̂ : H0 → Rn and δ̌ : Rn → H0, the dualizing maps,
be defined by

(2.1) δ̂(~(u, r)) := −1

r
u and δ̌(ru) := ~

(
− u, 1

r

)
,

respectively, where u ∈ Sn−1 is unit vector and r > 0. These functions are obviously
inverses of each other, and it is an easy and well-known fact4 that

δ̂({~ ∈ H : v ∈ ~}) = ~
(−v
|v|

,
1

|v|

)
and δ̌(~(u, r)) =

{
~ ∈ H :

−1

r
u ∈ ~

}
.

The dual body K? of K is bounded by ∂K̂ := {δ̂(~(u, pK(u))) : u ∈ Sn−1}. The
dual body K?, which is in fact the point reflection —to the origin 0— of the polar
body K∗ [17, Section 1.6], is convex, and its radial function is %K?(u) = 1

pK(−u)

[17, Theorem 1.7.6]. Further, we have (K?)? = K [17, Section 1.6].
A strictly positive integrable function ω : Rn \ B → R+ is called weight and

the integral

Vω(f) :=

∫
Rn\B

f(x)ω(x)dx

of an integrable function f : Rn → R is called the volume of f with respect to the
weight ω or simply the ω-volume of f . For the volume of the indicator function χS
of a set S ⊆ Rn we use the notation Vω(S) := Vω(χS) as a shorthand. If several
weights are indexed by i ∈ N, then we use the even shorter notation Vi(S) :=

Vωi
(S) = Vi(χS) := Vωi

(χS).
Finally we introduce a utility function χ that takes relations as argument and

gives 1 if its argument is fulfilled. For example χ(1 > 0) = 1, but χ(1 ≤ 0) = 0

and χ(x > y) is 1 if x > y and it is zero if x ≤ y. However we still use χ also as
the indicator function of the set given in its subscript.

3 Dualizing the masking function

For any point P ∈ Rn define the sets K̄P and KP in the unit sphere Sn−1
P cen-

tered at P that contains exactly those points X ∈ Sn−1
P for which the hyperplane

4Embed the space Rn of K into Rn+1 in such a way that the (n+ 1)th coordinate of every point
is 1 and the (n+ 1)th coordinate axis intersects K in its inner point 0 ∈ Rn.
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~(P,
−−→
PX) and the straight line `(P,

−−→
PX), respectively, intersects K. Then, by (1.1)

and some easy observations we have

MK(P ) =
1

2

∫
Sn−1

#(∂K ∩ `(P,uξ))dξ =

∫
KP

1 dξ =
1

|Sn−2|

∫
K̄P

1 dξ

=
1

|Sn−2|

∫
Sn−1

χ(~(P,uξ) ∩ K 6= ∅)dξ.

From this we obtain

|Sn−2|MK(P ) =

∫
Sn−1

χ(〈uξ, P 〉 ≤ pK(uξ)) dξ

= |Sn−1| −
∫
Sn−1

χ(〈uξ, P 〉 ≥ pK(uξ)) dξ

=: |Sn−1| −M?
K(δ̌(P )).

(3.1)

Assuming 0 ∈ K◦ one can reformulate the last integral to obtain

M?
K(δ̌(P )) =

∫
Sn−1

χ
(
〈−uξ%K?(−uξ),−u〉 ≥

1

r

)
dξ

=

∫
Sn−1

χ
(
%K?(−uξ) ≥

1/r

〈−uξ,−u〉

)
dξ

=

∫
δ̌(P )

χ
(
x ∈ K?

)∣∣∣ dξ
dx

∣∣∣ dx,
where P = ru, r > 0, u ∈ Sn−1, and |dξ/dx| is the Jacobian of the map x 7→ ξ

given by x = −|x|uξ. Let x = −1
r u + %uψ, where u ⊥ uψ ∈ Sn−1 and ψ is a

spherical coordinate on Sn−2 such that ξ = (ξ,ψ). Then by rotational invariance
we obtain immediately that

∣∣ dξ
dx

∣∣ = |x|2−n
∣∣ dξ
d%

∣∣, where tan ξ = %
1/r and so

dξ

d%
=

r

1 + r2%2
.

Thus, we obtain

(3.2)
M?
K(δ̌(P )) =

∫
δ̌(P )

χ
(
x ∈ K?

)
|x|2−n |P |

1 + |P |2(|x|2 − |P |−2)
dx

=

∫
δ̌(P )

χ
(
x ∈ K?

)1/|P |
|x|n

dx,

where dx is the standard surface measure on the hyperplane δ̌(P ).

http://www.math.u-szeged.hu/tagok/kurusa
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4 Measures of convex bodies

In view of (3.2) it is natural to consider the following transforms.
LetM and K be convex bodies such that 0 ∈ M ⊆ K◦. Let ν : H→ C1(Rn)

be a function of weights, that is, ν~ is a weight for every ~ ∈ H. Then the weighted
section function of K with respect toM, the so called kernel, is defined by

S
ν
M;K(u) =

∫
〈x,u〉=pM(u)

χ(x ∈ K)ν~M(u)(x) dx~M(u),(4.1)

where dx~M(u) is the usual surface measure on ~M(u).

M
K

~M(u)

SνM;K(u)

Figure 4.1: Section of K with respect to the kernel M.

The function ν : H→ C1(Rn) of weights is called rotationally symmetric if for
every ~ ∈ H, x ∈ ~ and D ∈ SO(n) one has νD~(Dx) = ν~(x), where D ∈ SO(n)

acts naturally on H. Assume that x,y ∈ Rn and u,v ∈ Sn−1. If |x| = |y| and
〈x,u〉 = 〈y,v〉, then there is a D ∈ SO(n) such that Dx = y and Du = v. Thus
we have the following lemma immediately.

Lemma 4.1. The function ν of weights is rotationally symmetric if and only if
there is a function ν̄ : R3 → R such that ν~(u,r)(x) = ν̄(r, 〈x,u〉, |x|).

If the kernel body is a ball, i.e. %B, we use the notation Sν%;K := Sν%B;K as a
shorthand.

Lemma 4.2. Let the convex body K contain the ball %B. Then for any rotationally
symmetric function ν of weights we have

(4.2)
∫
Sn−1

S
ν
%;K(uξ)dξ = |Sn−2|

∫
K\%B

ν̄(%, %, |x|) (|x|2 − %2)
n−3

2

|x|n−2
dx, .

Proof. Define the function µε of weights by

µε~(u,r)(x) := ν~(u,r)(x+ (r − 〈x,u〉)u)χ(0 ≤ 〈x,u〉 − r ≤ ε),

http://www.math.u-szeged.hu/tagok/kurusa
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where ε > 0. Now we can write5∫
Sn−1

S
ν
%;K(uζ)dζ =

∫
Sn−1

∫
〈x,uζ〉=%

ν~(uζ,%)
(x)χ(x ∈ K) dx~ dζ

=

∫
Sn−1

lim
ε→0

(1

ε

∫
〈x,uζ〉≥%

µε~(uζ,%)
(x)χ(x ∈ K) dx

)
dζ

= lim
ε→0

(1

ε

∫
Sn−1

∫
〈x,uζ〉≥%

µε~(uζ,%)
(x)χ(x ∈ K) dx dζ

)
=

∫
K\%B

lim
ε→0

(1

ε

∫
〈x,uζ〉≥%

µε~(uζ,%)
(x) dζ

)
dx.

As ν is rotationally symmetric, ν~(u,〈x,u〉)(x) = ν̄(〈x,u〉, 〈x,u〉, |x|), and this
implies µε~(uζ,%)

(x) = ν̄(%, %, |x|)χ(0 ≤ 〈x,uζ〉 − % ≤ ε). Therefore, letting |x|uξ =

x, where uξ ∈ Sn−1, the calculation above continues as∫
Sn−1

S
ν
%;K(uζ)dζ

=

∫
K\%B

ν̄(%, %, |x|) lim
ε→0

(1

ε

∫
〈x,uζ〉≥%

χ(0 ≤ 〈x,uζ〉 − % ≤ ε) dζ
)
dx.

As

lim
ε→0

(1

ε

∫
〈x,uζ〉≥%

χ(0 ≤ 〈x,uζ〉 − % ≤ ε) dζ
)

= lim
ε→0

( |Sn−2|/|x|
ε/|x|

∫ (%+ε)/|x|

%/|x|

√
1− λ2

n−3
dλ
)

=
|Sn−2|
|x|

√
1−

( %

|x|

)2
n−3

,

the lemma is proved.

Although the following lemma was already proved as Lemma 5.3 in [11], we
present it here for the sake of completeness with its short proof.

Lemma 4.3. Let ωi (i = 1, 2) be weights, let K and L be convex bodies containing
the unit ball B, and let c ≥ 1.
(1) If cV1(K) ≤ V1(L) and there is a constant cK such that

ω2(X) ≥ cKω1(X), if X /∈ K,
ω2(X) = cKω1(X), if X ∈ ∂K,
ω2(X) ≤ cKω1(X), if X ∈ K,

where equality may occur only in a set of measure zero, then cV2(K) ≤ V2(L).
5Similar calculation is given in [11]. It is given here for the sake of completeness.
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(2) If V1(K) ≤ cV1(L) and there is a constant cL such that

ω2(X) ≤ cLω1(X), if X /∈ L,
ω2(X) = cLω1(X), if X ∈ ∂L,
ω2(X) ≥ cLω1(X), if X ∈ L,

where equality may occur only in a set of measure zero, then V2(K) ≤ cV2(L).
In both cases equality in the resulted inequality implies K = L and c = 1.

Proof. In both statements K4L = ∅ implies V1(K) = V1(L), hence c = 1 and
V1(K) = V1(L).

Assume from now on that K4L 6= ∅.
We prove here only (1) since the verification of (2) is similar.
Having (1) we proceed as

V2(L)− cV2(K)

=V2(L)− V2(K) + (1− c)V2(K) = V2(L \ K)− V2(K \ L) + (1− c)V2(K)

=

∫
L\K

ω2(x)

ω1(x)
ω1(x)dx−

∫
K\L

ω2(x)

ω1(x)
ω1(x)dx+ (1− c)V2(K)

>cK(V1(L \ K)− V1(K \ L)) + (1− c)V2(K) =cK(V1(L)− V1(K)) + (1− c)V2(K)

≥(c− 1)(cKV1(K)− V2(K)) =(c− 1)
(∫
K

(
cK −

ω2(x)

ω1(x)

)
ω1(x)dx

)
≥ 0.

This implies V2(L)− cV2(K) > 0.
The lemma is proved.

5 Spherical isomaskers

First we calculate the integral of the masking function MK of the convex body
K ⊂ r̄Bn over the sphere r̄Sn−1 (r̄ > 0). Starting with equation (3.1) we get∫

Sn−1

MK(r̄uξ) dξ =
1

|Sn−2|

∫
Sn−1

|Sn−1| −M?
K(δ̌(r̄uξ)) dξ

=
|Sn−1|2

|Sn−2|
− 1

|Sn−2|

∫
Sn−1

M?
K(δ̌(r̄uξ)) dξ.

Assuming 0 ∈ K◦ we can continue by using (3.2) and (4.1) and obtain∫
Sn−1

MK(ruξ) dξ =
|Sn−1|2

|Sn−2|
− 1

|Sn−2|

∫
Sn−1

∫
~(−uξ,1/r)

χ
(
x ∈ K?

) 1/r̄

|x|n
dx dξ.

http://www.math.u-szeged.hu/tagok/kurusa
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This means

(5.1)
∫
Sn−1

MK(rξ) dξ =
|Sn−1|2

|Sn−2|
− 1

|Sn−1|

∫
Sn−1

S
ν
1
r̄ ;K?(uξ) dξ,

where ν~(u,r)(x) = r|x|−n. Having this we are ready to prove the following gener-
alization of Nitsche’s result [13].

Theorem 5.1. Let %2 > %1 > r̄ > 0 and let K be a convex body contained in the
interior of %1Bn. If the sphere %1Sn−1 is the common α-isomasker and %2Sn−1 is
the common β-isomasker of the convex body K and r̄B, then K = r̄B.

Proof. By the conditions we have MK(%1u) = α = Mr̄Bn(%1u) and MK(%2u) =

β = Mr̄Bn(%2u) for every u ∈ Sn−1.

K

%1Sn−1

P Q0

Figure 5.1: MK(P ) is clearly smaller than MK(Q).

By some elementary observations and reasoning illustrated in Figure 5.1 it
follows that K◦ contains the common center 0 of the balls r̄B, %1Bn and %2Bn.

Now equation (5.1) implies∫
Sn−1

S
ν
1
%1

;K?(uξ) dξ =

∫
Sn−1

S
ν
1
%1

;(r̄Bn)?
(uξ) dξ =

∫
Sn−1

S
ν
1
%1

; 1
r̄Bn(uξ) dξ,∫

Sn−1
S
ν
1
%2

;K?(uξ) dξ =

∫
Sn−1

S
ν
1
%2

;(r̄Bn)?
(uξ) dξ =

∫
Sn−1

S
ν
1
%2

; 1
r̄Bn(uξ) dξ.

As the function ν of weights having ν̄(%2, %2, r) = %2r
−n is obviously rotational

http://www.math.u-szeged.hu/tagok/kurusa
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invariant, (4.2) implies∫
K?\ 1

%2
Bn

(|x|2 − %−2
2 )

n−3
2

|x|2n−2
dx =

∫
1
r̄Bn\ 1

%2
Bn

(|x|2 − %−2
2 )

n−3
2

|x|2n−2
dx,

and ∫
K?\ 1

%1
Bn

(|x|2 − %−2
1 )

n−3
2

|x|2n−2
dx =

∫
1
r̄Bn\ 1

%1
Bn

(|x|2 − %−2
1 )

n−3
2

|x|2n−2
dx.

Let ω̄1(r) := r2−2n(r2 − %−2
1 )

n−3
2 , ω̄2(r) := r2−2n(r2 − %−2

2 )
n−3

2 , and let
ω1(x) := ω̄1(|x|), ω2(x) := ω̄2(|x|). Then ω1

ω2
is clearly a constant, say cL, on

1
r̄B

n, and

ω̄1(r)

ω̄2(r)
=

(r2 − %−2
1 )

n−3
2

(r2 − %−2
2 )

n−3
2

=
(

1− %−2
1 − %

−2
2

r2 − %−2
1

)n−3
2

shows that ω̄1

ω̄2
is strictly monotone increasing.

The above observations show that the conditions in (2) of Lemma 4.3 are
satisfied for K?, L := 1

r̄B
n and c = 1, hence V2(K?) ≤ V2(L), and equality implies

K? = L and c = 1.
As K = (K?)? = (L)? = r̄Bn, the theorem is proved.

6 Discussion

To have a complete generalization of Nitsche’s result [13] from the point of view of
Theorem 5.1, one should prove that if a convex body K has two spherical isomaskers
of values α1 6= α2, then there is a ball r̄Bn with the same α1- and α2-isomaskers of
radius %1 6= %2. Although Nitsche proved this in the plane, the authors conjecture
that this is no longer valid in higher dimensions.

Conjecture 6.1. There are positive values α1 6= α2 and %1 6= %2 such that there is a
non-spherical convex body K ⊂ Rn the α1- and α2-isomaskers of which are spheres
of radius %1 6= %2, respectively.

However note that it is proved in [7] that if two convex bodies in the plane
have rotational symmetry of angle 2(π− ν) and have common ν-isoptic, then that
ν-isoptic is a circle.

In higher dimensions the only positive result the authors know about is the
surprisingly easy [5, Theorem 2]. It states that if a convex body K ⊂ Rn has an
isoptic I in the sense of a k-dimensional angles for any 1 < k < n − 1, then K is
reconstructible from I.

http://www.math.u-szeged.hu/tagok/kurusa
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