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cap(Γ)n, where cap(Γ) denotes logarithmic capacity. The construction is
based on a discretization of the equilibrium measure, and the polynomials
have the additional property that outside the given set Γ they increase
as fast as possible, namely as cap(Γ)n exp(ng

C\Γ
(z)), with the Green’s

function with pole at infinity in the exponent. This latter fact allows
us to use these polynomials as building blocks in constructing Dirac-delta
type polynomials around corners: if a compact set K has a corner at some
point z0, then Dirac-delta type polynomials (fast decreasing polynomials)
peaking at z0 are polynomials Pn(z) with Pn(z0) = 1 that decrease as
|Pn(z)| ≺ exp(−nβ |z − z0|

γ) on the set K as z moves away from z0.
The possible (β, γ) pairs are completely described in turn of the angle
απ at z0 (β < 1 and γ ≥ β/(2 − α) or β = 1 and γ > β/(2 − α)).
As application of these fast decreasing polynomials sharp Nikolskii and
Markov type inequalities are proven for Jordan domains with corners. The
paper uses distortion properties of conformal maps, potential theoretic
techniques as well as the theory of weighted logarithmic potentials.

1 Introduction

In this paper we extensively use potential theoretic concepts such as logarithmic
capacity, Green’s function, equilibrium measure etc., see [4], [8], [20] or [21] for
these concepts and their properties.

Let Γ be a compact subset of the complex plane consisting of infinitely many
points. The Chebyshev polynomials Tn(z) = zn + · · · associated with Γ are the
extremal polynomials that minimize the supremum norm

‖Tn‖Γ = sup
z∈Γ

|Tn(z)|.

Because of their extremality they appear in many problems from number theory
to numerical analysis, see for various connections the survey article [23].

It is classical (see e.g. [20, Theorem 5.5.4]) that for any n and any monic
polynomial Pn(z) = zn + · · · we have

‖Pn‖Γ ≥ cap(Γ)n (1.1)

and for the minimum of the left hand side we have the Fekete-Szegő-Zygmund
theorem

‖Tn‖
1/n → cap(Γ),

where cap(Γ) denotes the logarithmic capacity of Γ.
It is a highly non-trivial problem of primary importance how close one can

get with the norm ‖Pn‖ in (1.1) to the theoretical lower limit cap(Γ)n. In the
influential paper [31] H. Widom proved asymptotics and upper bounds for the
Chebyshev polynomials, in particular, his results imply that if Γ consists of
finitely many (disjoint) smooth Jordan curves and arcs, then there are polyno-
mials Pn(z) = zn + · · · with

‖Pn‖Γ ≤ Ccap(Γ)n (1.2)

2



for some C, i.e. in this case the Chebyshev numbers ‖Tn‖Γ are at most a
constant times the theoretical lower bound cap(Γ)n. A similar estimate if Γ is
the union of finitely many (disjoint) quasiconformal Jordan curves and arcs has
been proven in the recent work [3]. If there are at least two components or Γ is
a smooth single arc, then the better estimate

‖Pn‖Γ = (1 + o(1))cap(Γ)n

is impossible for all n (see [28, Theorem 2], [31]). It is a delicate problem (con-
nected with simultaneous Diophantine approximation of the harmonic measures
of the components of Γ) how close (along a subsequence of the natural numbers
n) ‖Tn‖K can get to cap(Γ)n, see [27] and [28].

This paper has several goals. On the first hand, in the next sections we prove
a very general extension of Widom’s theorem, namely we show that (1.2) is true
for a large family of sets. Then, in Sections 5–8 we apply the results from the
first part of the paper to settle the problem on the existence of fast decreasing
polynomials at a corner of a set. In turn, those fast decreasing polynomials will
be used in Sections 9 and 10 to find the correct order in Nikolskii and Markov
type inequalities with respect to area measures.

2 Polynomials with small norms

For a compact set Γ let Ω denote the unbounded component of the complement
C \ Γ. Then ∂Ω is called the outer boundary of Γ (in what follows ∂H denotes
the boundary of the set H). By the maximum principle the supremum norms
of polynomials on Γ and on the outer boundary ∂Ω are the same.

A Jordan arc γ on the complex plane (i.e. a homeomorphic image of [0, 1])
is called Dini-smooth if it has a parametrization γ(t), t ∈ [0, 1], such that γ(t)
is differentiable, γ′(t) 6= 0, and the modulus of continuity

ω(γ′, δ) = sup{|γ′(t)− γ′(u)| : |t− u| ≤ δ, t, u ∈ [0, 1]}

of γ′ satisfies ∫ 1

0

ω(γ′, t)

t
dt < ∞.

The definition of a Dini-smooth Jordan curve (i.e the homeomorphic image of
the unit circle) is similar, see [19, Section 3.3]. If we require that ω(γ′, t) ≤ Ctε

for some ε > 0, then we say that γ is C1+ smooth.

Theorem 2.1 Let Γ be a compact set such that its outer boundary is a finite
union of Dini-smooth Jordan arcs that are disjoint except perhaps for their end-
points, and assume that Γ does not have external cusps (i.e. Ω does not have
an outward cusp). Then there is a constant C and for every n = 1, 2, . . . there
are monic polynomials Pn(z) = zn + · · · of degree n such that

‖Pn‖Γ ≤ Ccap(Γ)n. (2.1)
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Figure 1: A typical Γ, where the dots indicate the endpoints of the arcs that
build up (the outer boundary of) Γ.

Figure 1 shows a typical set for which the theorem can be applied.
Let g

C\Γ denote the Green’s function of Ω with pole at infinity. The Bernstein-

Walsh lemma ([30, p. 77] or [20, Theorem 5.5.7, p. 156]) says that for polyno-
mials Pn of degree at most n the following inequality holds:

|Pn(z)| ≤ ‖Pn‖Γe
ng

C\Γ(z), z ∈ Ω.

In particular, for the polynomials from (2.1) we have

|Pn(z)| ≤ Ccap(Γ)nengC\Γ(z), z ∈ Ω.

It is remarkable, and that will be the foundation for the results in Sections 5–8,
that the Pn’s in Theorem 2.1 can be constructed in such a way that on certain
curves emanating from Γ a matching lower bound can be given, i.e. on those
curves the polynomials Pn, besides being asymptotically minimal on Γ, grow at
as fast a rate as possible along those curves. To have a precise statement, let ∂Ω
be the union of the Dini-smooth arcs γj , 1 ≤ j ≤ k0, which are disjoint except
for their endpoints.

Theorem 2.2 With the assumptions of Theorem 2.1 the polynomials in The-
orem 2.1 can be selected in such a way that besides (2.1) they also satisfy the
following property. Let E be an endpoint of one of the γj’s, and let σ be a
smooth Jordan arc in Ω emanating from E such that σ is not tangent to any of
the arcs γj. Then there is a constant c = cσ > 0 such that

|Pn(z)| ≥ c · cap(Γ)nengC\Γ(z), z ∈ σ. (2.2)

3 The main technical tool

Let s = sγ denote the arc measure on an arc (or unions of arcs) γ.
For a measure ν let

Uν(z) =

∫
log

1

|z − t|
dν(t)
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be its logarithmic potential. Theorem 2.1 will easily follow from the following.
In what follows, F ∼ G means that 1

CF ≤ G ≤ CF with some constant C.

Proposition 3.1 Let γ be a single Dini-smooth Jordan arc with endpoints A,B,
and decompose γ into two subarcs JA resp. JB (without common interior) that
contain A resp. B. Assume that dµ(t) = ω(t)dsγ(t) is a measure on γ of total
mass θ > 0 such that ω is continuous inside γ and for some α, β > 0 we have

ω(t) ∼ |t−A|
1
α−1, t ∈ JA, (3.1)

ω(t) ∼ |t−B|
1
β−1, t ∈ JB . (3.2)

Then there is a constant C and for every n there are monic polynomials P[nθ]

of degree [nθ] such that

|Pn(z)| exp(nU
µ(z)) ≤ C, z ∈ γ. (3.3)

Furthermore, the same statement is true for some monic polynomials P̃n of
degree [nθ] + 1.

The last statement is clear if we set P̃n(z) = zPn(z).

Proof of Proposition 3.1. Divide γ into [nθ] arcs Ij , each having equal
weight θ/[nθ] with respect to µ, i.e. µ(Ij) = θ/[nθ]. Then

∣∣∣∣
θ

[nθ]
−

1

n

∣∣∣∣ = |µ(Ij)− 1/n| ≤ C/n2. (3.4)

Let

ξj =
1

µ(Ij)

∫

Ij

u dµ(u) (3.5)

be the center of mass with respect to µ, and consider the polynomial

Pn(z) =
∏

j

(z − ξj) (3.6)

of degree [nθ].
Before we embark on the proof of Proposition 3.1 we need

Proposition 3.2 If E (= A or B) is one of the endpoints of γ, say E = A,
E ∈ I1 and I1, I2, . . . follow one another in this order on γ, then |ξj − E| ∼
(j/n)α and s(Ij) ∼ jα−1/nα in JA. Furthermore, if the endpoints of the arc Ij
are aj , bj then

|ξj − aj | ∼ |ξj − bj | ∼ s(Ij) ∼ jα−1/nα, (3.7)

and

|ξj − ξi| ∼
|jα − iα|

nα
. (3.8)

Of course, on the arc JB similar estimates are true with α replaced by β.
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Proof. Let Ij be the arc âjbj with aj lying closer to E. Then, by the assump-
tion,

j
θ

[nθ]
=

∫

Êbj

ω(t)ds(t) ∼

∫

Êbj

|t− E|
1
α−1ds(t),

and since |t− E| ∼ s(Êt), we can continue this as

∫

Êbj

s(Êt)
1
α−1ds(t) ∼ s(Êbj)

1/α ∼ |E − bj |
1/α.

Therefore, |E − bj | ∼ (j/n)α and s(I1) ∼ 1/nα follows because θ/[nθ] ∼ 1/n.
Since aj = bj−1, we also get for j ≥ 2 the relation |E−aj | ∼ (j/n)α. Therefore,
for j ≥ 2

θ

[nθ]
=

∫

âjbj

ω(t)ds(t) ∼

∫

âjbj

((j/n)α)
1
α−1ds(t) ∼ s(Ij)(j/n)

1−α

which, in view again of θ/[nθ] ∼ 1/n, gives s(Ij) ∼ jα−1/nα.
Since ξj lies close to Ij , |ξj − E| ∼ (j/n)α is immediate for j ≥ 2. To

prove it for j = 1 we may assume that E = 0 and R+ is the half-tangent to
the arc γ at E. Let the vertical projection of the arc I1 onto the real line be
[0, d]. Then d ∼ 1/nα is immediate from our previous estimates, and ℜξ1 is

the center of mass of a measure ρ(t)dt on [0, d] for which ρ(t) ∼ t
1
α−1 (ρ is

the vertical projection of µ onto R+). Elementary estimate shows then that
ℜξ1/d is bounded away from 0 and infinity (no matter how small d is), which,
combined with diam(I1) ∼ 1/nα, yields the desired estimate |ξ1| ∼ (1/n)α.

The same argument verifies (3.7), while (3.8) follows from the other state-
ments in the proposition: for example if i < j ≤ 2i, i 6= j then

|ξj − ξi| ∼ s(âibj) =

j∑

τ=i

s(Iτ ) ∼

j∑

τ=i

(τα−1/nα) ∼ (jα − iα)/nα,

on the other hand if j > 2i then (use also the preceding estimate with j = 2i)

|ξj − ξi| ∼ |E − ξj | ∼ jα/nα ∼ (jα − iα)/nα.

After this let us return to the proof of Proposition 3.1.
It easily follows from the assumptions on ω that

∫
| log |z − t||dµ(t) ≤ C, z ∈ γ. (3.9)
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We can write

−nUµ(z) =
∑

j

(
n−

1

µ(Ij)

)∫

Ij

log |z − t|dµ(t)

+
∑

j

1

µ(Ij)

∫

Ij

log |z − t|dµ(t) = Σ1 +Σ2. (3.10)

Here, by (3.4) and (3.9),

|Σ1| ≤
∑

j

O(1)

∣∣∣∣∣

∫

Ij

log |z − t|dµ(t)

∣∣∣∣∣ = O(1). (3.11)

Therefore, to prove the claim we have to show that on γ

log |Pn(z)| − Σ2 =
∑

j

1

µ(Ij)

∫

Ij

log

∣∣∣∣
z − ξj
z − t

∣∣∣∣ω(t)ds(t) ≤ C. (3.12)

The proof uses the idea of [21, Theorem VI.4.2]. Thus, let z lie in an arc Ij0
that lies, say, in JA, and enumerate the arcs Ij in such a ways that they follow
each other in the order I1, . . . , Ij0 , ... with I1 containing E := A. z and j0 will
always have this meaning below. We consider the sum

∑

j 6=j0

1

µ(Ij)

∫

Ij

log

∣∣∣∣
z − ξj
z − t

∣∣∣∣ω(t)ds(t) =:
∑

j 6=j0

Lj(z), (3.13)

and prove that it is uniformly bounded (both from below and above). Note that
this sum differs from the one on the right of (3.12) in one term (the term with
integral over Ij0 is missing), and we shall actually show that not just the sum,
but also the sum consisting of the absolute values |Lj | is uniformly bounded,
i.e. ∑

j 6=j0

|Lj(z)| = O(1). (3.14)

First we verify that the individual terms Lj(z) in (3.13) are uniformly
bounded on γ. The uniform boundedness of Lj(z) is clear for j 6= j0 ± 1 (the
j = j0 term is not in the sum), for then in the integrand

|z − ξj | ∼ dist{Ij0 , Ij} ∼ |z − t| for all t ∈ Ij .

So let j = j0 ± 1, and consider first j = j0 +1. Then we know from Proposition
3.2 that |z− ξj0+1| ∼ s(Ij0+1) ∼ (j0 +1)α−1/nα, and from the assumption that
ω(t) ≤ C(n/(j0 + 1))α−1 on Ij0+1 (note that for t ∈ Ij0+1 we have |t − A| ∼

((j0 + 1)/n)α). Let Ij0+1 be the arc âb, see Figure 2. Clearly

Lj0+1(z) =
1

µ(Ij0+1)

∫

Ij0+1

log

∣∣∣∣
z − ξj0+1

z − t

∣∣∣∣ω(t)ds(t) (3.15)

≤ Cn

(
n

j0 + 1

)α−1 ∫

Ij0+1

(
log |z − ξj0+1|+ log

1

|a− t|

)
ds(t).
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Figure 2: The position of z, a, b

Here
∫

Ij0+1

log
1

|a− t|
ds(t) ≤

∫

Ij0+1

log
C0

s(ât)
ds(t) = s(Ij0+1)(logC0+1−log s(Ij0+1)).

Therefore, the integral on the right of (3.15) equals

s(Ij0+1) log
|z − ξj0+1|

s(Ij0+1)
+O (s(Ij0+1)) ≤ Cs(Ij0+1) ≤ C

(j0 + 1)α−1

nα
.

If we substitute this into (3.15) then we obtain the boundedness of Lj0+1(z)
from above. Its boundedness from below is clear since for z ∈ Ij0 , t ∈ Ij0+1 we
have ∣∣∣∣

z − ξj0+1

z − t

∣∣∣∣ ≥ c > 0 (3.16)

by (3.7). This proves the uniform boundedness of the individual terms Lj ,
j 6= j0.

The case j = j0 − 1 is completely similar when j0 − 1 6= 1. When j =
j0 − 1 = 1 then ω(t) ≤ C(n/(j0 − 1))α−1 is no longer true. In this case (i.e.

when Ij0−1 = I1 =: âb) we have µ(I1) ∼ 1/n ∼ s(I1)
1/α, |z − t| ∼ s(ẑt), so

Lj0−1 = L1 ≤
C

s(âb)1/α

∫

âb

log
Cs(âb)

s(ẑt)
s(ât)

1
α−1ds(t),

and the right-hand side will be shown to be bounded from above in the proof
of (3.21) (the boundedness of L1 from below is again a consequence of (3.16)).

It follows from Proposition 3.2 that there is an M such that if |j − j0| ≥ M
then for z ∈ Ij0 and t ∈ Ij we have

∣∣∣∣
ξj − t

z − ξj

∣∣∣∣ ≤
1

2
.
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Thus, in this case for the integrands in Lj(z) we get (use that with any local
branch of the logarithm we have log |1− u| = ℜ log(1− u))

log

∣∣∣∣
z − ξj
z − t

∣∣∣∣ = − log

∣∣∣∣1 +
ξj − t

z − ξj

∣∣∣∣ = −ℜ log

(
1 +

ξj − t

z − ξj

)

= −ℜ
ξj − t

z − ξj
+O

(∣∣∣∣
ξj − t

z − ξj

∣∣∣∣
2
)
.

Therefore, for such j we have

|Lj(z)| =
1

µ(Ij)

∫

Ij

O

(∣∣∣∣
ξj − t

z − ξj

∣∣∣∣
2
)
dµ(t) = O

(
s(Ij)

2

|ξj − ξj0 |
2

)
(3.17)

because the integral

∫

Ij

ℜ
ξj − t

z − ξj
dµ(t) = ℜ

1

z − ξj

∫

Ij

(ξj − t)dµ(t)

vanishes by the choice of ξj .
The expression on the right of (3.17) is bounded by a constant times s(Ij)

2

when Ij is far from Ij0 (say farther than a fixed constant δ > 0), and for Ij close
to Ij0 (closer than δ) it is at most (see Proposition 3.2) a constant times

s(Ij)
2

|jα/nα − jα0 /n
α|2

∼
(jα−1/nα)2

|jα/nα − jα0 /n
α|2

=
j2α−2

|jα − jα0 |
2
.

All in all, if we take into account the uniform boundedness of the terms we
obtain that the sum in (3.14) is at most

∑

|j−j0|≤M, j 6=j0

|Lj | +
∑

|j−j0|>M

|Lj |

≤ (2M)C + C
∑

|j−j0|>M

j2α−2

|jα − jα0 |
2
+ C

∑

j

s(Ij)
2 ≤ C.

Indeed, the last but one sum can be broken into three parts:

• for the sum of those j’s with j < j0/2, in which case j2α−2/|jα − jα0 |
2 ∼

j2α−2/j2α0 ,

• for the sum of those j’s with j0/2 < j < 2j0 in which case j2α−2/|jα −
jα0 |

2 ∼ 1/(j − j0)
2,

• and for the sum with j ≥ 2j0, in which case j2α−2/|jα − jα0 |
2 ∼ 1/j2,

and each of these sums are bounded by a constant.

9



To complete the proof of the proposition we have to show that the additional
term

1

µ(Ij0)

∫

Ij0

log

∣∣∣∣
z − ξj0
z − t

∣∣∣∣ω(t)ds(t) (3.18)

in (3.12) is also bounded from above (from below we cannot claim boundedness
for z can be very close to ξj0). As before, we get from Proposition 3.2 that for
j0 > 1 this term is at most

Cn

∫

Ij0

(
log

Cs(Ij0)

s(ẑt)

)(
jα0
nα

) 1
α−1

ds(t),

which, with Ij0 =: âb, equals

C
nα

jα−1
0

(
s(âb) log(Cs(âb))− s(ẑb) log s(ẑb)− s(âz) log s(âz) + s(âb)

)
. (3.19)

Now we use that for 0 ≤ x ≤ y ≤ 1 the inequality

−(x+ y) log 2 ≤ x log x+ y log y − (x+ y) log(x+ y) ≤ 0 (3.20)

is true, and apply this with s(ẑb), s(âz) in place of x, y (in which case x+ y =

s(âb)) to continue (3.19) as

≤ C
nα

jα−1
0

(
s(âb) log(Cs(âb))− s(âb) log s(âb) +O(s(âb))

)
≤ C

nα

jα−1
0

s(âb) ≤ C,

where, in the last step we used that, by Proposition 3.2, s(âb) = s(Ij0) ∼
jα−1
0 /nα. This gives the required estimate for (3.18) for j0 > 1.

When j0 = 1 then E is an endpoint of the arc Ij0 , e.g. E = a. In that case ω
is not bounded on Ij0 , so we have to proceed differently than before. Similarly

as above, now we have with s(âb) = s(Ij0) ∼ 1/nα and µ(I1) ∼ 1/n ∼ s(âb)1/α

the bound
C

s(âb)1/α

∫

âb

log
Cs(âb)

s(ẑt)
s(ât)

1
α−1ds(t) =: I (3.21)

for the expression in (3.18). Recall that z lies on the arc âb = Êb, and let w

be the midpoint on the arc Êz in the sense that s(Êw) = s(ŵz), see Figure 3.

Now we split the integral in (3.21) over âb into three parts: the integrals over

ẑb, ŵz and Êw. For the first we have for the case when α ≥ 1 the estimate (use
that the antiderivative of t1/α−1 log t is αt1/α log t− α2t1/α)

∫

ẑb

log
Cs(âb)

s(ẑt)
s(ât)

1
α−1ds(t) ≤

∫

ẑb

log
Cs(âb)

s(ẑt)
s(ẑt)

1
α−1ds(t) (3.22)

= α log(Cs(âb))s(ẑb)1/α − αs(ẑb)1/α log s(ẑb) + α2s(ẑb)1/α ≤ Cs(âb)1/α
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E=a

b

z

w

I1

x1

Figure 3: The choice of w

because for C0 > eα, which we may assume, we have (by the monotonicity of
x1/α logC/x on (0, 1))

αs(ẑb)1/α log
Cs(âb)

s(ẑb)
≤ αs(âb)1/α log

Cs(âb)

s(âb)
= αs(âb)1/α logC.

This gives the estimate for the integral over ẑb for α ≥ 1. When 0 < α < 1
then in (3.22) we cannot replace s(ât)

1
α−1 by s(ẑt)

1
α−1, but we can replace it

by s(âb)
1
α−1 to get for the integral in question the bound

Cs(âb)
1
α−1

∫

ẑb

log
Cs(âb)

s(ẑt)
ds(t) ≤ Cs(âb)

1
α−1

(
s(ẑb) log

Cs(âb)

s(ẑb)
+ s(ẑb)

)

≤ Cs(âb)1/α

by the monotonicity of t log(C/t) on (0, 1).
The integral over ŵz can be similarly handled. Finally, for the integral over

Êw we have the bound

∫

Êw

log
Cs(âb)

s(âw)
s(ât)

1
α−1ds(t) ≤ log

Cs(âb)

s(âw)
αs(âw)1/α ≤ log

Cs(âb)

s(âb)
αs(âb)1/α

= α(logC)s(âb)1/α.

Substituting all these into (3.21) we get

I ≤ C, (3.23)
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and with this the upper boundedness of (3.18) for j0 = 1, as well.

Before closing this section we give a lower bound for the polynomials Pn

constructed above. Fix a small ε > 0, and with the notations used in the proof
let ∆j(ε) be the disk of radius εjα−1/nα about ξj when Ij lies in JA, while in
the opposite case let ∆j(ε) be the disk of radius εjβ−1/nβ about ξj .

Proposition 3.3 The Pn constructed in the proof of Proposition 3.1 also satisfy

|Pn(z)| exp(nU
µ(z)) ≥ cε, z ∈ ∂


γ ∪

⋃

j

∆j(ε)


 (3.24)

with some constant cε > 0.

Proof. Let first z ∈ ∂∆j0(ε), and assume that Ij0 ⊂ JA.
In view of (3.11)–(3.14) we have for z ∈ ∆j0(ε) ∩ γ

log |Pn(z)|+ nUµ(z) = O(1) +
1

µ(Ij0)

∫

Ij0

log

∣∣∣∣
z − ξj0
z − t

∣∣∣∣ω(t)ds(t) (3.25)

where the O(1) is uniform in n and j0. A closer inspection of the proof reveals
that the same estimate holds on the whole ∆j0(ε), as well (note that the disk
∆j0(ε) about ξj0 has diameter 2εjα−1

0 /nα, and for small ε this is much smaller
than the distance from any point of ∆j0 to the endpoints of the arcs Ij0 , see
Proposition 3.2). Thus, to prove (3.24) for z ∈ ∂∆j0(ε) all we need to do is to
prove the lower boundedness of the integral term in (3.25). But that is clear,
since for z ∈ ∂∆j0(ε) and t ∈ Ij0 we have, in view of Proposition 3.2,

∣∣∣∣
z − ξj0
z − t

∣∣∣∣ ≥
cεjα−1

0 /nα

s(Ij0) + εjα−1
0 /nα

≥ c1 > 0 (3.26)

with some constant c1 independent of j0 and n (which may however depend on
ε).

The argument is similar if z ∈ γ \
⋃

j ∆j(ε). Indeed, if, say, z ∈ Ij0 , then
(3.25) is true (see (3.11)–(3.14)), and the lower boundedness of the integral term
in (3.25) follows again from (3.26).

4 Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Since the capacity of Γ coincides with the capacity
of its outer boundary, we may assume that Γ coincides with its outer boundary
(if (2.1) is true on the outer boundary, then it is true on Γ). As before, let Γ be

12
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Figure 4: γl and the angles α±π. In this case α = maxα± = α−

the union of the Dini-smooth arcs γj , 1 ≤ j ≤ k0, which are disjoint except for
their endpoints. Note that Γ can have many (but only finitely many) multiple
points (where the γj ’s meet), and at a multiple point it can have several external
angles, but none of them can be 0.

Let θj = µΓ(γj), and for an n consider integers nj = [θjn] or [θjn] + 1,

j = 1, . . . , k0 so that
∑k0

j=1 nj = n.
Next, we need to estimate the density of the equilibrium measure. To this

end let E be one of the endpoints of one of the arcs γl. This E may belong
to several other arcs γj , which cut a small closed neighborhood ∆0 of E into
several sectors, see Figure 4. Some of these sectors lie in Ω, some lie in one of
the connected components of C \ Γ; we only consider the former ones and call
them external sectors. There is one or two external sectors that contain ∆0 ∩ γl
on its boundary. If there is only one sector with angle (seen from Ω) equal to
απ then we set αl = α, and if there are two such external sectors with angles
α−π and α+π, then we set αl = max(α−, α+). Note that since external cusps
are not allowed, this αl is positive.

Lemma 4.1 Under the assumptions of Theorem 2.1 dµΓ = ωΓ(t)dsΓ(t), where
the density ωΓ is continuous away from the endpoints of the arcs γj, j =
1, . . . , k0. If E is an endpoint of one of the γj’s, say of γl, then in a neigh-
borhood of E the ratio ωΓ(t)/|t− E|1/αl−1 is continuous and positive on γl.

A more precise formulation of the last statement is that ωΓ(t)/|t−E|1/αl−1,
t 6= E is continuous on γl in a neighborhood of E, and it has positive and finite
limit (along γl) at t = E.

Let µj be the restriction of the equilibrium measure µΓ to γj . The lemma
shows that we can apply Proposition 3.1 to each γj , µj , θj and n (replacing γ,

13



µ, θ, n in the proposition), and we get monic polynomials Pn,j of exact degree
nj such that

|Pn,j(z)| exp(nU
µj (z)) = |Pn,j(z)| exp(U

nµj (z)) ≤ Cj , z ∈ γj . (4.1)

Here nµj has total mass nθj , while (nj/θj)µj has total mass nj , which is either
[nθj ] or [nθj ] + 1. Therefore nµj − (nj/θj)µj = ρj,nµj with −1 ≤ ρj,n ≤ 1.
Since UµΓ is uniformly bounded on compact subsets of the complex plane, the
same is true of each Uµj , which implies the same for

exp
(
U (nj/θj)µj−nµj

)
.

This, together with (4.1) show that

|Pn,j(z)| exp(U
(nj/θj)µj (z)) ≤ Cj , z ∈ γj . (4.2)

But
log(|Pn,j(z)| exp(U

(nj/θj)µj (z)))

is subharmonic on C \ γj including the point infinity where it is harmonic, so
the maximum principle gives that (4.2) is actually true throughout the complex
plane. Now we can multiply the inequalities (4.2) together for all j = 1, 2, . . . , k0
to conclude with Pn =

∏
j Pn,j of degree precisely n that

|Pn(z)| exp

(∑

j

U (nj/θj)µj (z)

)
≤ C, z ∈ C.

According to the preceding argument we can replace on the left each measure
(nj/θj)µj by nµj to get

|Pn(z)| exp

(∑

j

Unµj (z)

)
≤ C, z ∈ C,

i.e.
|Pn(z)| exp

(
nUµΓ(z)

)
≤ C, z ∈ C. (4.3)

But for z ∈ Γ we have

UµΓ(z) = log
1

cap(Γ)
,

so the claim in Theorem 2.1 follows from (4.3).

Proof of Theorem 2.2. We use the setup from the preceding proof, as well
as the disks ∆k(ε) from Proposition 3.3 for all of the arcs γj . According to that
proposition

|Pn,j(z)| exp(U
nµj (z)) ≥ cj , z ∈ ∂

(
γj ∪

⋃

k

∆k(ε)

)
, (4.4)
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where the union on the right is for those disks ∆k(ε) that are created for the
arc γj (for small ε > 0 these are precisely those disks ∆k(ε) that intersect γj).

Arguing as in the preceding proof, we obtain

|Pn,j(z)| exp(U
(nj/θj)µj (z)) ≥ cj , z ∈ ∂

(
γj ∪

⋃

k

∆k(ε)

)
. (4.5)

The logarithm of the left-hand side is harmonic in C\(γj ∪
⋃

k ∆k(ε)) (including
the point infinity), hence (4.5) is actually true throughout C \ (γ ∪

⋃
k ∆k(ε))

by the maximal principle. Here we can again replace each measure (nj/θj)µj

by nµj to conclude

|Pn,j(z)| exp(nU
µj (z)) ≥ cj , z ∈ C \

(
Γ ∪

⋃

k

∆k(ε)

)
,

where now we take the union on the right for all disks ∆k(ε) created for all
the arcs γj . On multiplying these inequalities together we get for the product
Pn =

∏
Pn,j of exact degree n

|Pn(z)| exp(nU
µΓ(z)) ≥ c, z ∈ C \

(
Γ ∪

⋃

k

∆k(ε)

)
. (4.6)

Since (see e.g. [20, Sec. 4.4] or [21, (I.4.8)])

UµΓ(z) = log
1

cap(Γ)
− g

C\Γ(z),

to complete the proof all we need to mention that for sufficiently small ε > 0
the curve σ in Theorem 2.2 lies in the set C \ (Γ ∪

⋃
k ∆k(ε)) because it is not

tangent to any of the γj ’s (c.f. also Proposition 3.2).

We still need to prove Lemma 4.1.

Proof of Lemma 4.1. First of all, note that the Green’s function g
C\Γ is

continuous on C by Wiener’s criterion [20, Theorem 5.4.1].
First let J be a closed subarc on Γ not containing any of the endpoints of

the arcs γj . Let G be a simply connected domain with Dini-smooth boundary
that lies in the unbounded component of C\Γ such that J lies on the boundary
of G, and let Φ be a conformal map from the unit disk ∆ onto G. If both sides
of J belong to ∂Ω then we choose such a G for both sides, and do the following
for both of them.

By the [19, Theorem 3.5]) this Φ can be extended to a continuously differ-
entiable function to the closed unit disk and Φ′ has a nonzero derivative there.
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The function h(z) = g
C\Γ(Φ(z)) is harmonic in ∆ and continuous on the closed

unit disk, so we have Poisson’s formula for it:

h(reiθ) =
1

2π

∫ π

−π

1− r2

1− 2r cos(t− θ) + r2
h(eit)dt. (4.7)

If J ′ is the arc of the unit circle that is mapped by Φ into J , then h(eit) = 0 on J ′,
so it follows from (4.7) that h (considered as a function on the closed unit disk)
is C∞ on any closed subarc of the interior of J ′. Hence g

C\Γ(z) = h(Φ−1(z))

is a C1-function on any closed subarc of the interior of J . Furthermore, (4.7)
gives also that

h(reit) ≥
1− r

1 + r

1

2π

∫ π

−π

h(eit)dt =
1− r

1 + r
h(0) > 0,

which gives via the mapping Φ

g
C\Γ(z + tn) ≥ ct

for any z ∈ J with a positive constant c > 0 depending only on G, where n is
the normal to γ at z in the direction of G. Hence

g
C\Γ

∂n
(z) ≥ c, z ∈ J. (4.8)

Now all we need to do is to cite the formula [17, II.(4.1)] (or apply [21,
I.(4.8)] and [21, Theorem II.1.5], which are valid also in the Dini smooth case
considered here) according to which then in the interior of J we have

ωΓ(z) =
1

2π

(
g
C\Γ

∂n+
(z) +

g
C\Γ

∂n−
(z)

)
, (4.9)

where n± are the two normals to Γ at z. The continuity of ωΓ on J follows from
the C1 smoothness of g

C\Γ there, while the positivity is a consequence of (4.8)

(where n is one of n± and note also that both normal derivatives in (4.9) are
nonnegative – of course, the normal derivative with respect to a normal pointing
into a bounded component of C \ Γ is 0).

Next, let E ∈ γl be an endpoint of the arc γl, and consider one of the external
sectors S attached to γl of angle απ, 0 < α ≤ 2, and let this angle be enclosed
by the arcs γl and γl1 (l1 = l is possible). Let again G be a domain lying in
the sector S ⊂ Ω such that G has on its boundary the part of γl ∪ γl1 that lies
in the disk {|z − E| ≤ ρ}, with some ρ > 0, and except for the corner at E of
opening απ, the boundary of G is Dini-smooth, see Figure 5. Let again Φ be a
conformal map from the unit disk onto G such that 1 is mapped into E. For
t ∈ Γ, |t−E| < ρ, let n denote the inner normal to ∂G at t. Set t = Φ−1(t) and
let n be the inner normal to the unit circle at the point t. By [19, Theorem 3.9]
the functions (with any local branch of the powers)

Φ(z)− E

(z − 1)α
and

Φ′(z)

(z − 1)α−1
(4.10)
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Figure 5: The domain G (α = α−)

are continuous in the closed unit disk (use also [19, Theorem 3.5] when z does
not lie close to 1). Now for small u → 0 the point t + un is mapped into the
point

Φ(t+ un) = t+ u|Φ′(t)|n
Φ′(t)

|Φ′(t)|
+ o(u) = t+ u|Φ′(t)|n+ o(u)

(use that Φ is conformal at the boundary, so nΦ′(t)/|Φ′(t)| is the normal to ∂G
at t). Hence for h(z) = g

C\Γ(Φ(z)) the formula

h(t+ un)− h(t)

u
= |Φ′(t)|

g
C\Γ(t+ u|Φ′(t)|n+ o(u))− g

C\Γ(t)

u|Φ′(t)|

shows that
∂h(t)

∂n
= |Φ′(t)|

∂g
C\Γ(t)

∂n
. (4.11)

In view of the positivity and boundedness of the expressions in (4.10), here

|Φ′(t)| = (1 + o(1))c1|t− 1|α−1 and
|t− E|

|t− 1|α
= (1 + o(1))c2, as t → 1,

with some constants c1, c2 > 0, furthermore, by the argument given in the first
part of the proof, the left-hand side in (4.11) is a positive C∞ function around
1. All these yield

∂g
C\Γ(t)

∂n
=

∂h(E)

∂n
(1 + o(1))

c
1− 1

α
2

c1
|t− E|

1
α−1, t ∈ γl, t → E. (4.12)
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If there is only one external sector attached to γl at E, then on the other
side of γl the Green’s function g

C\Γ is identically 0 (that side lies in one of the

connected components of C\Γ), and in that case Lemma 4.1 follows from (4.12)
and (4.9).

If there are two external sectors with angles α±π, do the aforementioned
analysis for both of them to get

∂g
C\Γ(t)

∂n±
=

∂h(E)

∂n
(1 + o(1))

c
1− 1

α
2,±

c1,±
|t− E|

1
α±

−1
, t ∈ γl, t → E (4.13)

where n± denote the two normals to γl at t. If απ is the larger of these two
external angles α±π, then (4.13) gives, via (4.9), that ωΓ(t)/|t − E|

1
α−1 has a

positive limit at E on γl .

5 Fast decreasing polynomials at corners

In this section we are going to apply Theorems 2.1 and 2.2 for constructing fast
decreasing polynomials which take their absolute maximum at (or close to) a
corner of a domain and exponentially decrease on the domain. We are going to
give the best possible rate depending on the angle at the corner.

Fast decreasing polynomials appear in many different situations (see e.g.
[10], [11], [12], [14, Theorem 7.5]) for they are particularly useful in localization
and in constructing well localized “partitions of unity”. As a model case consider
the interval [−1, 1], where we are interested in polynomials Pn of degree at most
n (or ≤ Cn with some fixed C) that have the property that Pn(0) = 1, and, as
x ∈ [−1, 1] moves away from the origin, the polynomials decrease fast in absolute
value. Two kinds of decrease have been particularly useful in applications:

(a) |Pn(x)| ≺ e−n|x|β , x ∈ [−1, 1],

(b) |Pn(x)| ≺ e−|nx|γ , x ∈ [−1, 1],

(where A ≺ B means that A ≤ CB with some constant C). From the results
in the paper [10] (see [25, Theorem 4.1] and [26, Lemma 4]) it follows that
(a) is possible if and only if β > 1, and (b) is possible if and only if γ < 1.
In particular, the decrease |Pn(x)| ≺ e−n|x| is not possible (for this order of
decreases one would need polynomials of degree ∼ n log n). In (a) the decrease is
exponentially fast in n at every point x ∈ [−1, 1], x 6= 1, but the n-th polynomial
starts to get small only for x ≥ 1/n1/β . In (b) the order of decrease is smaller
at every x, but the n-th polynomial starts to get small for x ≥ 1/n, and here
1/n is much smaller than 1/n1/β . We shall find the complete analogue of these
results around corner points. Absolutely new techniques are needed in these
cases, for no transformation will reduced the corner case to previously known
results.
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Let K be a compact set on the plane. In this part of the paper we may
always assume that C \ K is simply connected. Let K have a Dini-smooth
corner at z0 of inner angle απ. This means precisely that if Bδ(z0) is the disk
of radius δ about z0, then for small δ > 0 the set K ∩ Bδ(z0) is the closure of
a Jordan domain with piecewise Dini-smooth boundary consisting of two Dini-
smooth Jordan arcs J1, J2 ⊂ K connecting z0 with the boundary of Bδ(z0), and
of a circular arc on the boundary of Bδ(z0). The angle of K at z0 is what J1
and J2 form at z0 (with respect to K ∩Bδ(z0)).

We are interested in polynomials Pn which take the value 1 at z0, and, as
z ∈ K moves away from z0, the value Pn(z) decreases as fast as possible. This
decrease will be of the form ≤ D exp(−dnβ |z− z0|

γ) (with some fixed constants
D, d > 0) and our aim is to determine what β, γ are possible in terms of the
angle απ. Clearly, the smaller the γ is, the fastest is the decrease.

Values β > 1 are not possible at all: if for β > 1 we had polynomials of this
kind and B is a closed disk lying in the interior of K, then we would have on B

|Pn(z)| ≤ D exp(−cnβ)

with some c > 0. But then the Bernstein-Walsh lemma (see (6.2) below) would
imply with some C > 0

|Pn(z0)| ≤ D exp(−cnβ + Cn) → 0,

which contradicts Pn(z0) = 1.
First we consider the α < 1 case. Then for β ≤ 1 we have

Theorem 5.1 Let K be a compact set on the plane with a Dini-smooth corner
at z0 of inner angle απ, 0 < α < 1. If 0 < β ≤ 1, then for γ > β

2−α there exist
constants D, d > 0 such that for every n there is a polynomial Pn of degree at
most n with the following properties:

(i) Pn(z0) = 1,

(ii) |Pn(z)| ≤ De−dnβ |z−z0|
γ

, and

(iii) |Pn(z)| ≤ 1 on K.

Theorem 5.2 Under the conditions of Theorem 5.1 if γ < β
2−α , then no matter

what D, d > 0 are, for large n there are no polynomials of degree at most n with
the properties (i) and (ii).

Next, we discuss the γ = β
2−α “boundary” case. For that we need a slightly

stronger assumption than Dini-smoothness, namely we need to assume that the
corner at K is C1+ε smooth for some ε > 0, which we express by saying that
the corner is C1+ smooth.

Theorem 5.3 Assume, in addition to the assumptions of Theorem 5.1, that
the corner at z0 is C1+ smooth.
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(a) If β < 1, then for γ = β
2−α there are polynomials Pn with properties

(i)–(iii).

(b) If β = 1 and γ = 1
2−α , then for any D, d > 0 there is an n0 such that

for n ≥ n0 there are no polynomials Pn of degree n with the properties (i)
and (ii).

So far we have assumed that the angle at z0 was απ < π. For completeness
we mention the α = 1 case, which will be used in the applications in Sections 9
and 10. Note that then β/(2− α) becomes β.

Remark 5.4 Suppose that at z0 the set K has a C1+ smooth inner angle π,
and assume also that there is a disk in the complement of K that contains the
point z0 on its boundary. Then all conclusions of Theorems 5.1–5.3 hold.

Theorem 5.2 is also true when 1 < α < 2, but that is not so for Theorem 5.1;
in this case properties (i)–(iii) are not possible. Indeed, if Pn(z0) = 1, then the
level line {z

∣∣ |Pn(z)| = 1} has a subarc containing z0 and lying in the interior
of K, therefore |Pn(z)| ≤ 1 is not possible for all z ∈ K. It is an open problem
if Theorem 5.1 holds for 1 < α < 2 when we drop condition (iii).

In Theorem 5.3 we used C1+ smoothness at the corner. We are going to
construct an example showing that mere C1 smoothness is not enough.

Example 5.5 Let α < 1, β < 1. There is a K which has a C1 smooth angle at
0 of size απ such that for γ = β

2−α and for any D, d > 0 there is an n0 such
that for n ≥ n0 there are no polynomials Pn of degree n with the properties (i)
and (ii).

Theorems 5.1 and 5.2 will be proven in the next section using the results
from the first part of the paper and properties of some conformal maps and
Green’s functions. Theorem 5.3 (along with Example 5.5) will be proven in the
following two sections using the theory of weighted logarithmic potentials.

6 Proof of Theorems 5.1 and 5.2

We shall prove Theorem 5.1 in the equivalent form

Theorem 6.1 Let K be a compact set on the plane with a Dini-smooth corner
at z0 of inner angle απ, 0 < α < 1. If 0 < β ≤ 1, then for γ > β

2−α there exist
constants D, d > 0 such that for every n there is a polynomial Pn of degree at
most dn with the following properties:

(i) Pn(z0) = 1,

(ii) |Pn(z)| ≤ De−nβ |z−z0|
γ

, and

(iii) |Pn(z)| ≤ 1 on K.
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First we deal with the case when K is an isosceles triangle, and then extend
the result to arbitrary K. We need some preliminaries concerning conform
mappings.

If K is compact and C \ K is simply connected, then, by the Riemann-
mapping theorem, there is a unique conformal mapping Φ from C \K onto the
exterior of the unit disk with the normalization Φ(∞) = ∞ and Φ′(∞) > 0 (cf.
[6, Theorem 4.2]). If g

C\K(z) denotes Green’s function of C \ K with pole at
infinity, then

log |Φ(z)| = g
C\K(z) (6.1)

(see e.g. the proof of [20, Theorem 4.4.11]). If K is bounded by a Jordan curve,
then Φ has a continuous and injective extension to C \K, which we continue to
denote by Φ (see Charathéodory’s Theorem in [19, Theorem 2.6]).

The Green’s function g
C\K will often be used in the Bernstein-Walsh lemma

(6.2) ([30, p. 77] or [20, Theorem 5.5.7, p. 156]): if Qn is a polynomial of degree
at most n, then

|Qn(z)| ≤ engC\K(z)‖Qn‖K , z ∈ C. (6.2)

The following lemma states that the conformal mapping Φ possesses a kind
of quasi-distance-preserving property.

Lemma 6.2 ([2, Theorem 4.1, pp. 97-98]) Suppose that K has piecewise
Dini-smooth boundary. Let z1, z2, z3 ∈ (C \ K) ∪ ∂K. Then the conditions
|Φ(z1) − Φ(z2)| ≤ e1|Φ(z1) − Φ(z3)| and |z1 − z2| ≤ e2|z1 − z3| are equivalent;
the constants e1 and e2 are mutually dependent but independent of z1, z2, z3.

Remark 6.3 The lemma does not determine how large ej (j = 1, 2) are, so
these constants can be chosen as large as we want but, of course, under a fixed
bound.

For a point z ∈ ∂K denote Φ−1
(
(1+λ)Φ(z)

)
by z̃λ. A simple application of

the previous lemma shows that for any r1 there are positive constants r2 = r2(r1)
and r3 = r3(r1) such that if z, ζ ∈ ∂K and |ζ − z| ≤ r1|ζ − ζ̃λ| then

r2 ≤
|z − z̃λ|

|ζ − ζ̃λ|
≤ r3, (6.3)

in other words |ζ − ζ̃λ| ∼ |z − z̃λ| (c.f. [1, (3.5)]).

Let ∆ and ∆′ be similar isosceles triangles such that they are symmetric
with respect to the imaginary axis, they lie in the lower half-plane, and their
base is under their vertex (see Figure 6). Denote the vertex angle by απ with
0 < α < 1. Assume that the vertex of ∆ is at the origin while the vertex of ∆′

is at −τi (τ > 0). We suppose that the altitude ∆′ is 2 times as long as that of
∆.

In what follows B(z, r) = {w : |z − w| < r} denotes the open disk about
z ∈ C of radius r.
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Consider the conformal map Φ from the complement of ∆′ onto the exterior
of the unit disk. Denote its Green’s level line passing through the origin by L,
that is L = Φ−1

(
∂B(0, 1 + λ)

)
for an appropriate λ > 0 (see Figure 6).

Lemma 6.4 If τ is less then or equal to a suitable constant T > 0 and z ∈
∆ \

(
∆′ ∪ B(−τi, τ)

)
, then there is a constant s > 0 independent of τ ∈ [0, T ]

such that
s g

C\∆′(0) ≤
(
g
C\∆′(0)− g

C\∆′(z)
)
. (6.4)

Note that (6.4) claims the inequality

g
C\∆′(z) ≤ (1− s) log(1 + λ).

To prove the lemma we need an estimate for the distance between a point on
the boundary of ∆′ and the level line L. Let K be compact set with piecewise
Dini-smooth boundary such that C \K is simply connected. Let ζ1, . . . , ζN be
the corners of ∂K with angles different from π, and let α1π, . . . , αNπ be the
corresponding inner angles. Introduce the following function on ∂K:

Θλ(z) :=

{
λ2−αi if |z − ζi| ≤ |Φ−1

(
(1 + λ)Φ(ζi)

)
− ζi|

λ
∏N

i=0 |z − ζi|
1− 1

2−αi otherwise.
(6.5)

With this function the following lemma is valid, in which we set Lλ =
Φ−1

(
∂B(0, 1 + λ)

)
, the 1 + λ-level curve of Φ.

Lemma 6.5 ([29, Lemma 3.8]) If ∂K is a piecewise Dini-smooth curve then
there exists a constant d0 = d0(∂K) such that

1

d0
Θλ(z) ≤ dist

(
Lλ, z

)
≤ d0Θλ(z)

for all z ∈ ∂K.

In particular, the distance from ζj to Lλ is ∼ λ2−αj , and hence the smallest
distance ρλ between K and Lλ satisfies

1

d1
λ2−α∗

≤ ρλ ≤ d1λ
2−α∗

, (6.6)

where α∗ = min{1, α1, . . . , αN}. In view of (6.1) this implies that for any z 6∈ K
we have

g
C\K(z) ≤ C dist(z,K)

1
2−α∗ . (6.7)

For later use we record also that the same reasoning gives

g
C\H(w) ≤ C dist(w,H)

1
2−α′ , w < 0, (6.8)

if H is a triangle with vertices at 0, (a,±a tan(α′π/2)), a > 0, (so that at the
origin H has an angle equal to α′π).
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Figure 6: For explanation see the proof of Lemma 6.4.

Proof of Lemma 6.4. We introduce some notations (see Figure 6):

• ẑ := Φ−1
(
(1 + λ) Φ(z)

|Φ(z)|

)
– the point on the level line Lλ = Φ−1(∂B(0, 1+

λ)) corresponding to a z ∈ C \ Int(∆′).

• z0 := Φ−1
(

Φ(z)
|Φ(z)|

)
– the point on the boundary ∂∆′ corresponding to a

z ∈ C \ Int(∆′). Note that ẑ = ˜(z0)λ.

• ℓ (ℓ′) denotes the leg of ∆ (∆′) lying on the left side of the imaginary axis.

• z⊥0 denotes the nearest point on ℓ′ to a point z ∈ ∆ \
(
∆′ ∪ B(−τi, τ)

)

located between ℓ and ℓ′.

• A denotes the intersection of ℓ′ and the base of ∆.

First we mention that (for sufficiently small τ) ∆ lies inside the level line
L. Since L is convex (see [18, Theorem 2.9]), this follows if we show that
the leg ℓ lies inside the level line L. Indeed, let η be the midpoint of ℓ′, and
η⊥ the intersection of the line of ℓ with the line that passes through η and
is perpendicular to ℓ′ (which is the same as being perpendicular to ℓ). The
computation in (6.15) below shows for z0 = η that the distance from η to L is

≥ d5τ
1

2−α , and in view of α < 1, this is larger than τ for sufficiently small τ .
Thus, η⊥ lies inside L, and since L is convex, the same is true of the segment
connecting 0 and η⊥, and this last segment contains ℓ.

We are going to prove the existence of a constant c such that

1

c
|ẑ − z| ≤ |ẑ − z0| ≤ c|ẑ − z| (6.9)
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for every z ∈ ∆ \
(
∆′ ∪ B(−τi, τ)

)
. Then, by Lemma 6.2, there is a constant

1/2 > s > 0 such that

2sλ = 2s|Φ(ẑ)− Φ(z0)| ≤ |Φ(ẑ)− Φ(z)| (6.10)

whenever z ∈ ∆ \
(
∆′ ∪B(−τi, τ)

)
.

Let T̂ > 0 be so small that for every x ∈ [0, T̂ ]

(1− s)x ≤ log(1 + x) ≤ x

hold, and choose T so that, if τ = T then |Φ(0)| = 1 + T̂ .
Recall that |Φ(ẑ)| = 1 + λ = |Φ(0)| and note that Φ(ẑ)/Φ(z) is a positive

real number, hence

|Φ(z)| = |Φ(ẑ)| − |Φ(ẑ)− Φ(z)| = 1 + λ− |Φ(ẑ)− Φ(z)|.

Therefore, if z ∈ ∆ \
(
∆′ ∪B(−τi, τ)

)
then, by (6.10), we have that

|Φ(z)| ≤ 1 + λ− 2sλ = 1 + (1− 2s)λ.

So, if τ ≤ T also holds, then (6.1) implies that

g
C\∆′(0)− g

C\∆′(z) = log |Φ(0)| − log |Φ(z)| ≥ (1− s)λ− (1− 2s)λ

= sλ ≥ s log(1 + λ) = s g
C\∆′(0)

what proves (6.4).

Thus, it is left to prove (6.9). The left-hand side is easy: we only have to
note that, by Lemma 6.2, |z − z0| ≤ d1|ẑ − z0| with some suitable constant d1
(because |Φ(z)− Φ(z0)| ≤ λ = |Φ(ẑ)− Φ(z0)|). Therefore

|ẑ − z| ≤ |ẑ − z0|+ |z − z0| ≤ (1 + d1)|ẑ − z0|.

We are going to prove the second inequality in (6.9) in two steps depending
if z0 is far from (≥ dτ with some appropriately chosen d) or close to (≤ dτ) the
vertex −iτ of ∆′.

Step 1. Proof of the second inequality in (6.9) when |z0 + iτ | ≥ dτ

Note that, by Lemma 6.2, there is a constant c1 ≥ 1 such that

|z − z0| ≤ c1|z − z⊥0 |. (6.11)

We verify the existence of a constant d independent of τ such that if z0 ∈ ℓ′∩∆,
|z0 − (−τi)| ≥ dτ , then

c1τ sin
(α
2

)
≤

dist(L, z0)

2
. (6.12)
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Once this is done, we can write

|z − z0| ≤ c1|z − z⊥0 | ≤ c1τ sin
(α
2

)
≤

dist(L, z0)

2

≤
|ẑ − z0|

2
≤

|ẑ − z|+ |z − z0|

2
, (6.13)

that is |z − z0| ≤ |ẑ − z|, and therefore

|ẑ − z0| ≤ |ẑ − z|+ |z − z0| ≤ 2|ẑ − z|.

To prove (6.12) we look for an appropriate d ≥ 1. Let ζ0 := −τi and let
ζ1, ζ2 be the other two vertices of ∆′. The corresponding angles are denoted by
α0π, α1π, α2π, that is α0 = α and α1 = α2 = (1 − α)/2 respectively. Recall
that the altitude of ∆′ is 2 times as long as that of ∆, therefore if the legs of
∆ have a length h then for any point z0 on ℓ′ between the intersection point A
and the vertex ζ0 we have that

min(|z0 − ζ1|, |z0 − ζ2|) ≥ h.

Since Φ−1
(
(1 + λ)Φ(ζ0)

)
= 0, by Lemma 6.2, we have that

1

d2
τ ≤ dist(L, ζ0) ≤ d2τ

with some appropriate constant d2. Therefore, by Lemma 6.5, there exists a
constant d3 such that

1

d3
τ

1
2−α ≤ λ ≤ d3τ

1
2−α . (6.14)

Let now z0 ∈ ℓ′ ∩ ∆ be such that |z0 − ζ0| ≥ dτ . From the just obtained
inequality (6.14), from (6.5) and from Lemma 6.5 we get that

dist(L, z0) ≥
1

d0d3
τ

1
2−α

2∏

i=0

|z0 − ζi|
1− 1

2−αi

≥
1

d0d3
τ

1
2−α (dτ)1−

1
2−αh1− 1

2−α1 h1− 1
2−α2 = d4d

1− 1
2−α τ,(6.15)

where d4 = h2− 1
2−α1

− 1
2−α2 /d0d3. Hence, the inequality in (6.12) is satisfied if

d4d
1− 1

2−α τ ≥ 2c1τ sin
(α
2

)
.

This proves (6.12) with d :=
(

2c1
d4

sin
(
α
2

)) 2−α
1−α

.
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Step 2. Proof of the second inequality in (6.9) for |z0 + iτ | ≤ dτ

Let now z ∈ ∆\
(
∆′∪B(−τi, τ)

)
be a point between ℓ and ℓ′ for which |z0−ζ0| ≤

dτ . Apply (6.3) with ζ = ζ0 and r1 = d to get a constant c2 such that

|ẑ − z0| ≤ c2|ζ0 − 0| = c2τ.

Let ξ ∈ ℓ′ be the point for which

|ξ − ζ0| = (d+max(c1, c2))τ =: d̃τ

and denote by ξ⊥ the (nearer) intersection of the level line L and the line which
passes through ξ and is perpendicular to ℓ′ (see Figure 6). Since d+max(c1, c2) >
d, by Step 1, we have that

|ξ⊥ − ξ| ≥ dist(L, ξ) ≥ 2c1 sin
(α
2

)
τ,

from which it follows that

dist(ℓ, ξ⊥) ≥ 2c1 sin
(α
2

)
τ − sin

(α
2

)
τ =: d5τ.

On the other hand, by (6.11),

|z − z0| ≤ c1|z − z⊥0 | ≤ c1 sin
(α
2

)
τ

and |z0 − ζ0| ≤ dτ . Hence elementary geometric consideration shows that z lies
in the interior of the quadrilateral (ζ0, ξ, ξ⊥, 0). Likewise, since |ẑ − z0| ≤ c2τ ,
ẑ is a point on the subarc of L which joins ξ⊥ to the origin and lies in the
left-hand side of the imaginary axis. Because of the convexity of the level line L
(see [18, Theorem 2.9]) the segment connecting ξ⊥ with the origin lies between
L and the leg ℓ. Denote this segment (the dashed line in Figure 6) by S. Now,
by elementary geometrical consideration (see Figure 6), we can see that

|S| = dist(ξ⊥, 0) ≥ τ

√
d25 +

(
d̃+ cos

(α
2

))2
=: d6τ,

and, therefore,

|z − ẑ| ≥ dist(S, z) ≥
2τ cos

(
α
2

)

d6τ
d5τ := d7τ.

Hence we obtain that

|ẑ − z0| ≤ |ẑ − z|+ |z − z0| ≤ |ẑ − z|+ c1|z − z⊥0 | ≤ |ẑ − z|+ c1 sin
(α
2

)
τ

≤

(
1 +

c1 sin (α/2)

d7

)
|ẑ − z|.

This verifies Step 2.

26



Now we are ready to prove the existence part of Theorems 6.1 and 5.3 for
isosceles triangles. This fact is formulated in the following lemma.

Lemma 6.6 Let ∆ be an isosceles triangle with vertex at the origin and of
vertex angle απ, α < 1. Assume that γ > 1

2−α if β = 1 and γ = β
2−α if

0 < β < 1. Then there exist constants D > 0 and d > 0 such that for every n
there is a polynomial Pn of degree at most dn with the following properties:

(i) Pn(0) = 1,

(ii) |Pn(z)| ≤ De−nβ |z|γ , and

(iii) |Pn(z)| ≤ 1.

on the set ∆.

Proof. We may assume that ∆ is lying in the lower half-plane and it is
symmetrically situated with respect to the imaginary axis.

First we deal with the case β = 1.

Proof of Lemma 6.6 for β = 1

Fix n. Let T be the same number as in Lemma 6.4 and m = m(n) :=
[log2(nT

γ)], the (lower) integer part of log2(nT
γ).

Take m congruent isosceles triangles ∆′
k = ∆′

n,k on the lower half-plane lying
symmetrically on the imaginary axis with the following properties (see Figure
7):

• they are similar to ∆ and their altitude is 2 times as long as that of ∆,

• the k-th apex is located at −τki where

τk :=

(
2k

n

)1/γ

.

Let Φk denote the conformal map from the exterior of ∆′
k onto the exterior of

the unit disk. Let λk be the number for which Φ−1
k

(
(1 + λk)Φk(−τki)

)
= 0.

Applying Lemma 6.5 and Lemma 6.2 to −τki (cf. (6.14) with τ = τk, λ = λk),
we get that

λ2−α
k ∼ τk,

where ∼ indicates that the ratio of the two sides lies in between two positive
constants. Note that “∼” is independent of n and k. Hence, considering that
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Figure 7: For explanation see the proof of Lemma 6.6.

|Φk(0)| = 1 + λk and (6.1) holds we infer the existence of a constant c1 > 0
(independent of n and k) such that

1

c1
τ

1
2−α

k ≤ gk(0) ≤ c1τ
1

2−α

k , (6.16)

where gk := g
C\∆′

k
. Let

νk := r
2k

τ
1/(2−α)
k

, (6.17)

where r is an appropriate constant chosen later independently of n and k. Ap-
plying Theorems 2.1 and 2.2 to ∆′

k we get a polynomial Qk of degree ≤ νk such
that

‖Qk‖∆′
k
≤ Ccap(∆′

k)
νk (6.18)

and
|Qk(z)| ≥ c · cap(∆′

k)
νkeνkgk(z), (6.19)

whenever z ∈ {ti : t ∈ [0,−τk]}. Note that here the constants C, c > 0 are
independent of n and k since the triangles ∆n,k (n ∈ N, 1 ≤ k ≤ m(n)) are
congruent.
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It is clear from the construction (see the proofs of Theorems 2.1 and 2.2)
that the zeros of Qk lie symmetrically on the sides of ∆′

k with respect to the
imaginary axis.

We claim that the polynomial

Pn(z) :=

m∏

k=1

Qk(z)

Qk(0)
(6.20)

satisfies the lemma. Clearly, Pn(0) = 1.
To see (iii), investigate the polynomials Qk(z)/Qk(0) separately. Since the

zeros of Qk(z) lie symmetrically on the sides of ∆′
k, a simple geometric reasoning

shows that |Qk(z)/Qk(0)| ≤ 1 on Bk where Bk denotes the disk with center at
−τki and of radius τk. (Take two zeros which are mirror images of one another
onto the imaginary axis, and use that the product of the distances of these zeros
from the origin is greater than or equal to the product of the distances of these
zeros from a point in Bk.)

If z ∈ ∆′
k ∩∆ then by (6.18), (6.19) and (6.16) we get

∣∣∣∣
Qk(z)

Qk(0)

∣∣∣∣ ≤
Ccap(∆′

k)
νk

c · cap(∆′
k)

νkeνkgk(0)
≤

C

c
e−νk

1
c1

τ
1/(2−α)
k =

C

c
e−r2k/c1 . (6.21)

This shows that if r ≥ c1 log(C/c), then |Qk(z)|/|Qk(0)| ≤ 1.
Finally, if z ∈ ∆ \ (Bk ∪∆′

k) then by the Bernstein-Walsh lemma (6.2) and
by (6.18)–(6.19) we obtain that

∣∣∣∣
Qk(z)

Qk(0)

∣∣∣∣ ≤
Ccap(∆′

k)
νkeνkgk(z)

c · cap(∆′
k)

νkeνkgk(0)
=

C

c
eνk

(
gk(z)−gk(0)

)
. (6.22)

In view of (6.4) and (6.16) this line can be continued as

≤
C

c
e−νksgk(0) ≤

C

c
e−νks

1
c1

τ
1/(2−α)
k =

C

c
e−sr2k/c1 (6.23)

and this is less then or equal to 1, if r at least c1
s log(C/c). Multiplying all these

inequalities together we get that |Pn(z)| ≤ 1 holds.

To validate (ii) we split the triangle ∆ (see Figure 7):

• V0 := B1 ∩∆

• Vk := (Bk+1 \Bk) ∩∆, 1 ≤ k ≤ m− 1,

• Vm := ∆ \ (V0 ∪ · · · ∪ Vm−1) = ∆ \Bm.

If z ∈ V0 then |z| ≤ 2τ1 so, using the verified property (iii), we get that

|Pn(z)| ≤ 1 ≤ De−n(2τ1)
γ

≤ De−n|z|γ , (6.24)

if D ≥ e2
1+γ

.
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If z ∈ Vk, 1 ≤ k ≤ m−1, then 2 cos(απ2 )τk ≤ |z| ≤ 2τk+1. Similarly to (6.21)
and (6.23), we obtain that

|Pn(z)| ≤

∣∣∣∣
Qk(z)

Qk(0)

∣∣∣∣ ≤
C

c
e−νks

1
c1

τ
1/(2−α)
k . (6.25)

(We again used that |Ql(z)/Ql(0)| ≤ 1, 1 ≤ l ≤ m, on ∆.) It is enough to see
that the expression in the exponent on the right-hand side is less then or equal
to −n|z|γ . Note that

τk+1 =

(
2k+1

n

)1/γ

= 21/γτk.

For the exponent we have

νk
s

c1
τ
1/(2−α)
k = r

2k

τ
1/(2−α)
k

s

c1
τ
1/(2−α)
k =

rs

c1
2k. (6.26)

As regards n|z|γ , we estimate it as

n|z|γ ≤ n(2τk+1)
γ ≤ n|21+1/γτk|

γ = n21+γ

(
2k

n

)
= 2k+1+γ . (6.27)

These show that if r ≥ c1
s 2

1+γ then

νk
s

c1
τ
1/(2−α)
k ≥ n|z|γ

on Vk. Therefore we can end (6.25) as

|Pn(z)| ≤
C

c
e−n|z|γ . (6.28)

Finally, if z ∈ Vm, then
(
2 cos

(απ
2

))
T/21/γ ≤

(
2 cos

(απ
2

))
τm ≤ |z| ≤ h,

where h is the length of the legs of ∆, so we have to use the inequality h ≤
21/γ h

T τm instead of τk+1 ≤ 21/γτk, otherwise we can do much the same as for
1 ≤ k− 1 ≤ m, since for such a point z, (6.21) and (6.23) are also valid. Hence,
we can conclude that

max

(
c1
s
log

C

c
, 2

c1
s
, 21+γ c1

s
,

(
8
h

T

)γ
c1
s

)

is an appropriate choice for r.
We still have to examine the degree of Pn. The construction of Pn shows

that

deg(Pn) =

m∑

k=1

deg(Qk) =

m∑

k=1

νk = 2r

m∑

k=1

2k−1

τ
1

2−α

k
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Noting that the rightmost side is a Riemannian sum for the function 1/
(
x/n

)1/γ(2−α)
,

in view of the assumption γ(2− α) > 1 we have

deg(Pn) ≤ ν1 + 2r

∫ 2m

2

1
(
x
n

) 1
γ(2−α)

dx

≤ n
1

γ(2−α)

(
21−1/γ(2−α)r + 2r

∫ nTγ

2

1

x
1

γ(2−α)

dx

)
≤ dn.

Proof of Lemma 6.6 for β < 1

Recall that in this case γ = β
2−α .

The proof runs as before, we only sketch the necessary changes. In this case

m = m(n) :=
[
β log2(nT

1
2−α )

]

τk :=
(2k)1/γ

n2−α
,

and

νk := r
2k

τ
1/(2−α)
k

.

Choose the triangles ∆′
k and the polynomials Qk similarly as before and the

polynomial Pn as in (6.20). Pn satisfies (i)-(iii), the verification of which is
much the same as before.

Instead of (6.24) we should write

|Pn(z)| ≤ 1 ≤ De−nβ(2τ1)
γ

≤ De−nβ |z|γ ,

since z ∈ ∆0, so |z| ≤ 2τ1. Note that the νk in terms of τk is the same as before
(but τk has been changed). In particular, the reasonings leading to (6.21) and
(6.23) are valid in this case, as well. Now the analogue of (6.28), namely

|Pn(z)| ≤
C

c
e−nβ |z|γ ,

also holds if we consider that (6.23) is true with (6.26) in the exponent, and
instead of (6.27) we now have

nβ |z|γ ≤ nβ
(
2(1/γ)+1τk

)γ
= 2k+1+γ .

In view of γ(2− α) = β < 1 the degree of Pn can be estimated as

deg(Pn) ≤ ν1 + 2r

∫ 2m

2

1
(

x1/γ

n2−α

) 1
2−α

dx ≤ r21−1/βn+ 2rn

∫ nβTγ

2

1

x
1
β

dx ≤ dn.
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Remark 6.7 Let 0 < β < 1, ε > 0 and M0,M1 ∈ N be fixed. We shall
need later that for large n the inequality |Qk(z)/Qk(0)| ≤ 1, that was used to
prove property (iii), i.e. |Pn(z)| ≤ 1 for all z ∈ ∆, actually holds for k ≤ K0

if z lies close to ∆ and 0, namely this is the case if |z| ≤ M0/n
1/(2−α) and

dist(z,∆) ≤ M1|z|
1+ε. Indeed, if z lies in the ball Bk then this follows from

the preceding proof, so assume z 6∈ Bk (which can only happen for k ≤ k0 with
some fixed k0). Then note first of all that the distance from z to the level line
Lk of ∆′

k that passes through the origin is ≥ d0τk (with some d0 that depends
on the parameters in this remark). In fact, this is a consequence of (6.15), of
τk ≥ 1/n1/(2−α), and of the assumption

dist(z,∆) ≤ M1|z|
1+ε ≤ C/n(1+ε)/(2−α) ≪ d0τk.

Hence, Lemma 6.4 is true for this z (with a possibly different s), and then (6.22)–
(6.23) holds just as before, and those two formulae proved |Qk(z)/Qk(0)| ≤ 1
(by choosing the r in (6.23) sufficiently large).

To prove Theorem 6.1 for arbitrary K we need a polynomial which is 1 at z0
and, otherwise, less then 1 on the set K in absolute value. The existence of such
a polynomial comes from (e.g.) the following sharp form of Hilbert’s lemniscate
theorem. Recall that σ ⊂ C is a lemniscate if there is a polynomial p such that
σ = {z ∈ C : |p(z)| = 1}, in other words, a lemniscate is a polynomial level
line.

Lemma 6.8 ([15, Theorem 1.1]) Let Γ and Γ′ be Jordan curves such that
both of them are twice continuously differentiable in a neighborhood of a point
P , they touch each other at P and Γ′\{P} lies in the interior of Γ. Assume that
their curvatures at P are different. Then there is a lemniscate σ that separates
Γ and Γ′ in the sense that

• P ∈ σ,

• σ \ {P} ⊂ IntL \ (IntΓ′ ∪ Γ′),

where IntΓ denotes the interior of Γ.

Proof of Theorem 6.1. If γ > β
2−α , choose 1 > α̂ > α such that

β

2− α̂
< γ. (6.29)

Take an isosceles triangle ∆ with vertex at z0 and of vertex angle α̂π such that
the “sides” of the corner of K with απ angle lies inside ∆ near to z0 (see Figure
8). Since α̂ > α, this is possible.

Apply Lemma 6.6 with α̂ and γ to the triangle ∆ to get a polynomial P̂n of
degree at most d̂n with the properties (i)-(iii) on ∆. Thus, for z ∈ ∆

|P̂n(z)| ≤ D̂e−nβ |z−z0|
γ

. (6.30)
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K
απ

(2-α)π

∆

z
0

Figure 8: For explanation see the proof of Theorem 5.1.

(It can be assumed that |z − z0| ≤ 1 if z ∈ ∆.) Denote by M the supremum of
g
C\∆ on K \∆. Then the Bernstein-Walsh lemma (6.2) shows that

|P̂n(z)| ≤ enM

on K. (Remember that, by properties (i)-(iii), ||P̂n||∆ = 1.)
By Lemma 6.8 there exists a polynomial R with the following properties:

• R(z0) = 1

• ||R||K = 1, and ||R||K\∆ = 1− ε < 1.

(The reader should only consider the existence of two twice continuously differ-
entiable Jordan curves L,L′ through z0 such that their curvatures are different
at z0, L

′ \ {z0} ⊂ IntL \ {z0} and K \ {z0} ⊂ IntL′.) Therefore there is an
integer m1 such that

||Rm1 ||K\∆ ≤ e−M .

On the other hand, there exists an integer m2 such that

||Rm2 ||K\∆ ≤ e−diam(K)γ .

Now a simple calculation shows that the polynomial Pn := Rn(m1+m2)P̂n has
degree at most

(
deg(R)(m1 +m2) + d̂

)
n and possesses the properties (i)-(iii)

with respect to K.

Proof of Theorem 5.2. Suppose to the contrary that γ < β
2−α and for some

D, d > 0 there are polynomials Pn with the properties (i) and (ii) in Theorem
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5.1 for infinitely many n. Let α̃ < α be such that γ < β
2−α̃ still holds. Then,

since the angle of K at z0 is α, there is an isosceles triangle ∆ lying in K with
vertex at z0 and of vertex angle α̃π. We may assume that ∆ is so small that if
we enlarge it from z0 by a factor 2, then it still lies in K.

Let ∆δ be the translate of ∆ inside K by an amount δ in the direction of its
altitude (corresponding to the vertex at z0). According to (ii)

‖Pn‖∆δ
≤ De−dnβδγ . (6.31)

So, by the Bernstein-Walsh lemma (6.2), we get that

1 = |Pn(0)| ≤ De−dnβδγe
ng

C\∆δ
(0)

. (6.32)

Similarly to (6.16) there is a constant d1 such that

g
C\∆δ

(0) ≤ d1δ
1

2−α̃ . (6.33)

So we get from (6.32)

1 ≤ exp(logD + d1nδ
1

2−α̃ − dnβδγ). (6.34)

Considering that γ(2 − α̃) < β, the exponent on the right-hand side tends to
−∞ if δ = δn = 1

n2−α̃ , which contradicts (6.34).
This contradiction proves Theorem 5.2.

7 Proof of Theorem 5.3, Remark 5.4 and Exam-

ple 5.5

Proof of Theorem 5.3, (a). Let, as in (a), β < 1.
Without loss of generality we may assume that z0 = 0. Place K so that

y = ± tan(απ/2)t, t ≥ 0, are the two half-tangents to K at 0. If a is small,
then, by assumption, the intersection of K with the rectangle

[−2a, 2a]× [−2a tan(απ/2), 2a tan(απ/2)]

are two C1+ε smooth arcs Γ1, Γ2 (for some ε > 0) which are the graphs of some
functions

± tan(απ/2)x± γj(x), x ∈ [0, a], j = 1, 2

where γj are differentiable, their derivative satisfy a Lip ε condition and γ′(0) =
0. In particular, |γj(x)| ≤ Cx1+ε for all x ∈ [0, a] with some constant C.

For some small a consider the triangle ∆ enclosed by these two half-tangents
y = ± tan(απ/2)x, x ≥ 0 and the line x = 2a. Lemma 6.6 yields for this ∆
polynomials Sn of degree ≤ C0n such that Sn(0) = 1 and

|Sn(w)| ≤ 1, |Sn(w)| ≤ C0 exp(−(n|w|
1

2−α )β), w ∈ ∆. (7.1)
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According to what has been said, if z ∈ K lies sufficiently close to 0, then the
distance from z to ∆ is at most C1|z|

1+ε with some fixed C1.
We shall need a test triangle H, which we choose as follows. Let α′ < α be

sufficiently close to α, and letH be the triangle with vertices 0, (a,±a tan(α′/2)).
(Note: in this part of the proof we could have chosen α′ = α, but in the next
proof in the consideration below the role of K and ∆ will have to be reversed,
and then α′ < α may be necessary). If z0 is any point on the complex plane
then let Hz0 = z0 +H be the translate of H by z0. Since the angle α′π of H at
the origin is smaller than απ (the angle of ∆ at 0), it follows that if z0 ∈ ∆ lies
sufficiently close to 0, then the triangle Hz0 lies within ∆.

Let z ∈ K \∆ lie close to the origin, and let z0 ∈ ∆ be the closest point to
z on the horizontal line through z. Since the distance from z to ∆ is at most
C1|z|

1+ε, it follows that |z− z0| ≤ C2|z|
1+ε with some C2 that depends only on

∆ and C1. Now every point of Hz0 is of distance ≥ c1|z| from the origin (with
some c1 > 0 that depends only on α), hence we obtain from (7.1) the inequality
(note that the triangle Hz0 lies within ∆)

‖Sn‖Hz0
≤ C0 exp

(
−
(
n(c1|z|)

1
2−α
)β)

.

Hence,

|Sn(z)| ≤ C0 exp
(
−
(
n(c1|z|)

1
2−α
)β)

e
ng

C\Hz0
(z)

(7.2)

by the Bernstein-Walsh lemma (6.2). Here

g
C\Hz0

(z) = g
C\H(z − z0),

and z − z0 is a negative real number. Therefore, (6.8) yields the bound

g
C\Hz0

(z) ≤ C3|z − z0|
1

2−α′ ≤ C3(C2|z|
1+ε)

1
2−α′ ,

with some C3. As a consequence, for another constant C4 we have

g
C\Hz0

(z) ≤ C4|z|
1

2−α+ε′ ,

with some ε′ > 0 provided α′ < α is so close to α that the inequality (1+ε)/(2−
α′) > 1/(2− α) is true.

Thus, together with (7.2) we also have

|Sn(z)| ≤ C0 exp
(
−
(
n(c1|z|)

1
2−α
)β)

exp
(
C4n|z|

1
2−α+ε′

)
,

and this estimate holds true for all z ∈ K lying in a neighborhood of the origin.
Let now ∆̃ be a triangle with vertex at 0 and of the same height as the height

of ∆, but its inner angle at 0 let α̃π with an α̃ > α which satisfies

1

2− α
+ ε′ >

1

2− α̃
.
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According to the β = 1 case of Theorem 5.1 there are polynomials Tn of degree
at most C5n for some C5 such that Tn(0) = 1 and on ∆̃ we have

|Tn(z)| ≤ C5 exp
(
−C4n|z|

1
2−α+ε′

)
.

Hence, SnTn is a polynomial of degree at most C0C5n which is 1 at the origin
and which satisfies

|Sn(z)Tn(z)| ≤ C0C5 exp
(
−
(
n(c1|z|)

1
2−α
)β)

(7.3)

for all z ∈ K ∩ ∆̃ that lies sufficiently close to 0. Since this latter set con-
tains a K-neighborhood of 0, on multiplying this Sn(z)Tn(z) by a sufficiently
high degree polynomial from Lemma 6.8 as in the proof of Theorem 5.1 we get
polynomials that satisfy properties (i), (ii) (more precisely we shall get a poly-

nomial of degree ≤ C6n that satisfies (i), (ii) with d = c
β/(2−α)
1 , but then these

polynomials for n/C6 rather than for n are suitable in Theorem 5.3, (a)).
We still need to verify that the so constructed polynomials satisfy also prop-

erty (iii), i.e. they are bounded by 1 in absolute value on the set K. In view of
(7.3) this is certainly the case if |z| ≥ C6/n

(2−α) with a sufficiently large C6, so
consider only the case |z| ≤ C6/n

(2−α), z ∈ K (note also that the polynomials R
that need to be used as in the proof of Theorem 6.1 and which are guaranteed by
Lemma 6.8 are ≤ 1 in absolute value on K). All such z belong (for sufficiently
large n) to the triangle ∆̃, so |Tn(z)| ≤ 1 is true for them. On the other hand,
by the construction in Lemma 6.6 we have for Sn the representation

Sn(z) =

m∏

k=1

Qk(z)

Qk(0)

with the polynomials Qk from the proof of Lemma 6.6, and here each of the
factors satisfy |Qk(z)/Qk(0)| ≤ 1 by Remark 6.7 made after the proof of Lemma
6.6. Hence, |Sn(z)| ≤ 1, and property (iii) follows.

Proof of Theorem 5.3, (b). Let now β = 1.
In the next section we are going to prove

Theorem 7.1 If K is a triangle with inner angle απ at z0, then for β = 1 and
γ = 1

2−α and for any D, d > 0 there is an n0 such that for n ≥ n0 there are no
polynomials Pn of degree n with the properties (i) and (ii) from Theorem 5.1.

Now suppose that the claim is not true and there are polynomials Pn of
arbitrary high degree n for which (i) and (ii) in Theorem 5.1 are true for K.
Place the small triangle ∆ to K as in the just given proof of Theorem 5.3, (a).
If we reverse in that proof the role of K and ∆ then we obtain that for ∆ there
are polynomials Pn of arbitrary high degree for which (i) and (ii) are true, but
this is not the case according to Theorem 7.1. We omit the details.

36



Proof of Remark 5.4. The remark claims the following:

(a) If β < 1, then for γ = β there are polynomials Pn with properties (i)–(iii).

(b) If β = 1, then for γ > 1 there are polynomials Pn with properties (i)–(iii).

(c) If β = 1 and γ = 1, then for any D, d > 0 there is an n0 such that for
n ≥ n0 there are no polynomials Pn of degree n with the properties (i) and
(ii).

(d) For any β ≤ 1 and γ < β, then for any D, d > 0 there is an n0 such that
for n ≥ n0 there are no polynomials Pn of degree n with the properties (i)
and (ii).

The existence parts in (a) and (b) were proven in [25, Theorem 4.1] and in
[26, Lemma 4] (in those results only the existence of the disk in the complement
containing z0 on its boundary was used).

As for part (c), consider the proof of Theorem 5.3. Suppose that the position
of K is similar as in that proof, namely the positive and negative parts of the
imaginary axis are the two half tangents to K at z0 = 0, and K contains a small
interval [0, a0]. Replace in those proofs the triangle ∆ by a square [0, 2a]×[−a, a].
Now if there were polynomials as in (c) for infinitely many n then the proof
given for Theorem 5.3 would give polynomials Hn of degree at most n such that
Hn(0) = 1, and |Hn(it)| ≤ D1e

−nd1|t| for all t ∈ [−a, a], which is impossible by
[10, Theorem 1] (see also [10, Corollary 4]).

Finally, for the proof of (d) just follow the proof of Theorem 5.2.

The construction in Example 5.5. Consider the function

ϕ(t) =
(
tan

απ

2

)
t+

∫ t

0

1

log | log u|
du

on the interval [0, 10−2], and let K be bounded by the graph of ±ϕ and of the
segment connecting the points (10−2,−ϕ(10−2)) and (10−2, ϕ(10−2)). Clearly,
the angle of K at 0 is απ, and the boundary of K is piecewise C1 smooth. For
τ ∈ (0, 10−2/2) the tangent line to the curve of ϕ at the point

(
τ, ϕ(τ)

)
has

slope

ϕ′(τ) = tan
απ

2
+

1

log | log τ |
,

and that tangent line intersects the x axis at the point (δ, 0) with

δ = δ(τ) :=
tan(απ/2)τ + τ/ log | log τ | − ϕ(τ)

ϕ′(τ)

=
tan(απ/2)τ + τ/ log | log τ | − ϕ(τ)

tan(απ/2) + 1/ log | log τ |
≤ τ.
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If α̃π
2 is the angle between the x axis and that tangent line then

tan
α̃π

2
= tan

απ

2
+

1

log | log τ |
,

from which it follows that

α̃− α ∼
1

log | log τ |
.

Note that from the construction it follows that the isosceles triangle ∆δ with
vertex at δ, of vertex angle α̃π and of altitude 10−3 is part of K, hence if there
are polynomials Pn for infinitely many n with properties (i) and (ii) in Theorem
5.1, then we can apply formula (6.31) with γ = β

2−α :

‖Pn‖∆δ
≤ De−dnβδγ , (7.4)

and then exactly as in (6.32)

1 = |Pn(0)| ≤ De−dnβδγe
ng

C\∆δ
(0)

. (7.5)

Now the estimate (6.33) holds uniformly in α̃ lying in a closed subinterval of
(0, 1), hence there is a constant d1 such that

g
C\∆δ

(0) ≤ d1δ
1

2−α̃ , (7.6)

and so we obtain from (7.5)

1 ≤ exp(logD + d1nδ
1

2−α̃ − dnβδγ). (7.7)

For large n choose τ so that for the resulting δ = δ(τ) we have nδ
1

2−α̃ = 1,
i.e. δ = 1/n2−α̃ (but note that α̃ also depends on τ). Since γ = β/(2− α), the
last term in the exponent in (7.7) is then

−d
(
n1− 2−α̃

2−α

)β
= −d

(
n

α̃−α
2−α

)β
.

Since τ ≥ δ = 1/n2−α̃ and α̃ − α ∼ 1/ log | log τ |, we infer the existence of a
constant d2 independent of n such that α̃− α ≥ d2/ log | log n|, and

n
α̃−α
2−α ≥ ec logn/ log logn,

so the exponent on the right-hand side of (7.7) tends to −∞, which is a contra-
diction. This contradiction shows that for the K above there are no polynomials
Pn (for infinitely many n) that would satisfy (i) and (ii) in Theorem 5.1.
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8 Proof of Theorem 7.1

For s > 0 and 0 < α < 1 let τ = eiαπ/2, Σ+ the segment connecting 0 with τs,
Σ− the segment connecting 0 with τs and let Σ = Σ+ ∪ Σ− be the wedge from
se−iαπ/2 to 0 and then to seiαπ/2. This Σ has two sides, we consider the side
of Σ pointing towards the negative real axis its negative side (denoted by Σ−)
and the side pointing towards the positive real axis its positive side (denoted by
Σ+). Then at the origin Σ+ has an angle απ, while Σ− has an angle (2− α)π.

Theorem 7.1 is clearly a consequence of

Theorem 8.1 Let s > 0 and 0 < α < 1 be arbitrary. Then for any D, d > 0
there is an n0 such that for n ≥ n0 there are no polynomials Pn of degree n with
the properties

(i) Pn(0) = 1,

(ii) |Pn(z)| ≤ D exp(−dn|z|
1

2−α ), z ∈ Σ.

Proof. For the proof we need some results from the theory of weighted po-
tentials, see the book [21].

On Σ consider the “external field” Q(z) = −(d/2)|z|
1

2−α and the weight

function w(z) = exp(−Q(z)) = exp((d/2)|z|
1

2−α ). There is a unique probability
Borel measure µw on Σ that minimizes the weighted energy

∫ ∫
log

1

|z − t|
dµ(t)dµ(z) + 2

∫
Q(t)dµ(t)

(see [21, Theorem I.1.3]). Let Sw denote the support of µw.
The proof will proceed as follows. Assume to the contrary that polynomials

Pn with properties (i)–(ii) exist for arbitrary large degrees. We are going to
show that then

• Sw = Σ,

• µw is absolutely continuous on Σ with respect to arc (linear) measure on
Σ, and its density is obtained from the logarithmic potential of µw by
taking normal derivatives,

• this density formula produces a negative function close to the origin.

Since the density of a positive measure has to be nonnegative, this latter fact
will establish the required contradiction.

In this argument central role is played by the logarithmic potential

U(z) =

∫
log

1

|z − t|
dµw(t).

In our case for U we know that it is continuous everywhere ([21, Theorem
I.5.1(iv)’]), and there is a constant F such that (see [21, Theorem I.1.3])

U(z)− (d/2)|z|
1

2−α ≤ F, z ∈ Sw,
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and

U(z)− (d/2)|z|
1

2−α ≥ F, for z ∈ Σ, except for a set of zero capacity.

Since U is continuous, there is actually no exceptional set in the latter inequality,
i.e.

U(z)− (d/2)|z|
1

2−α ≥ F, z ∈ Σ. (8.1)

In particular,

U(z)− (d/2)|z|
1

2−α = F, z ∈ Sw. (8.2)

The unicity of µw and the symmetry of Σ onto the real line implies that µw

is symmetric onto the real line. In particular, Sw is also symmetric onto R,
hence

U(τx) =

∫ s

0

(
log

1

|τx− τt|
+ log

1

|τx− τt|

)
dµw(τt)

=

∫ s

0

(
log

1

|x− t|
+ log

1

|x− τ2t|

)
dµw(τt). (8.3)

First we claim that Σ− ∩ Sw is a segment. Indeed, suppose this is not the
case. Then there are 0 < a < b such that τa, τb ∈ Sw, but no τt lies in Sw for
t ∈ (a, b). For a fixed t ∈ [0, 1] \ (a, b) consider the second derivative of

log
1

|x− t|
+ log

1

|x− τ2t|
, τ2 = eiαπ,

with respect to x on the interval (a, b). It is

1

(x− t)2
−

1

x2 + t2 − 2xt cosαπ
+

2(x− t cosαπ)2

(x2 + t2 − 2xt cosαπ)2
,

which is clearly positive (the absolute value of the second term is smaller than
the first term). Thus, in view of (8.3), the function U(τx) is strictly convex

on [a, b]. Since so is −(d/2)|τx|
1

2−α , we get a contradiction to (8.1) and (8.2),

because U(τx) − (d/2)|τx|
1

2−α is less than F on (a, b) since it is convex and it
equals F at the two endpoints a and b. This contradiction proves that, indeed,
Σ− ∩ Sw is a segment (and by symmetry, the same is true of Σ+ ∩ Sw).

Assume now to the contrary that there are D, d > 0 and infinitely many
n and Pn such that (i) and (ii) in Theorem 8.1 are true. We claim that in
this case Sw is the whole Σ. To this end we need the following characterization
of the support Sw of µw ([21, Theorem IV.1.3]): z0 ∈ Sw if and only if for
any δ > 0 there is a polynomial Sn of degree n such that wn(z)|Sn(z)| =

exp
(
n(d/2)|τx|

1
2−α

)
|Sn(z)| attains its maximum on Σ in the neighborhood |z−

z0| < δ and nowhere else. Since (ii) implies

wn(z)|Pn(z)| = exp
(
n(d/2)|z|

1
2−α

)
|Pn(z)| ≤ D exp

(
−n(d/2)|z|

1
2−α

)
,
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this is certainly the case with z0 = 0, so 0 ∈ Sw. On the other hand, the polyno-
mial Q1(z) = z−τs/2 assumes its absolute maximum on Σ at the endpoint τs ∈

Σ−, and hence the same is true of w(z)|Q1(z)| = exp
(
(d/2)|z|

1
2−α

)
|z − τs/2|,

so τs also lies in Sw. Since Σ
−∩Sw is a segment, it follows that Σ−∩Sw = Σ−,

and from symmetry we can conclude the claim that Sw = Σ.
Let Ω = C \ Σ be the complement of Σ, and gΩ(z) the Green’s function of

Ω with pole at infinity. The function U(z) + gΩ(z) is continuous on the whole

plane, it is harmonic outside Σ (including ∞) and it equals F + (d/2)|z|
1

2−α on
Σ (see (8.1)–(8.2)), hence it is the solution of the Dirichlet problem with that
boundary function. Let h(z) be the solution of the Dirichlet problem in Ω with

boundary function |z|
1

2−α on Σ. Thus,

U(z) = (d/2)h(z)− gΩ(z) + F, z ∈ C. (8.4)

It is standard that on any closed subsegment of Σ that does not contain either
of the points 0, sτ, sτ , both gΩ and h (considered as functions on C) are Lip 1
functions (see the Remark after the proof). Hence, U is a Lip 1 function away
from the points 0, sτ, sτ , so we can apply [21, Theorem II.1.5] to conclude from
Sw = Σ that µw is absolutely continuous on Σ with respect to arc length, and
if ω(z) denotes its density then

ω(z) = −
1

2π

(
∂U(z)

∂n+
+

∂U(z)

∂n−

)
, (8.5)

where n± denote the normals to Σ at z ∈ Σ towards the positive and negative
sides of Σ. What we are going to show below is that the right-side of (8.5) is
negative if z ∈ Σ is sufficiently close to 0, and this contradiction proves the
claim in the theorem (since we obtained the contradiction from the assumption
that there are polynomials Pn with properties (i)–(ii)).

Thus, our task is to analyze the normal derivatives in (8.5) and to prove
that for z ∈ Σ lying close the origin the right-side of (8.5) is negative. In view
of (8.4) we shall deal with the normal derivatives of h and gΩ(z) separately.

Let ϕ be the conformal map from the unit disk D onto Ω = C \ Σ which
maps 0 into ∞ and 1 into 0 ∈ Σ−. Since ϕ(z) also has these properties, the
unicity of ϕ gives that ϕ(z) = ϕ(z). In particular, ϕ(−1) = 0 (∈ Σ+), the upper
half of the unit circle C1 is mapped onto Σ+ and the lower half is mapped onto
Σ−. At ζ = 1 the boundary ϕ(C1) has an angle θ = (2− α)π, while at ζ = −1
the boundary ϕ(C1) has an angle απ. The two arcs forming those angles are
straight segments, i.e. analytic arcs, hence by Lehman’s theorem [13], [19, Sec.
3.4, p.58], in the unit disk ϕ has the following expansion close to ζ = ±1 (with
the corresponding θ = 2−α or α and with appropriate branches of (z− ζ)θ and
log(z − ζ)). If θ is irrational, then

ϕ(z) =
∞∑

k=0

∞∑

j=1

ak,j(z − ζ)k+θj

= a01(z − ζ)θ
(
1 +

a02
a01

(z − ζ)θ +
a11
a01

(z − ζ) + · · ·

)
, a01 6= 0,
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while if θ = p/q is rational with relative prime p, q, then with some a010 6= 0

ϕ(z) =

∞∑

k=0

∞∑

j=1

[k/p]∑

m=0

akjm(z − ζ)k+θj(log(z − ζ))m = a010(z − ζ)θ ×

×

(
1 +

a020
a010

(z − ζ)θ +
a11[1/p]

a010
(z − ζ)(log(z − ζ))[1/p] + · · ·

)
.

These imply (we skip the computation) that if we set

f(x) = |ϕ(eix)|
1

2−α ,

then in the case ζ = −1, θ = α, we have with η := α/(2 − α) and with some
constant C1

0 ≤ f(x+ π) ≤ C|x|η, |f ′′(x+ π)| ≤ C|x|η−2, |x| ≤ 1, (8.6)

while at ζ = 1, i.e. when θ = 2− α > 1, we have that

f(x) = c1|x|+ f0(x) (8.7)

with some constant c1 > 0 and with an f0 satisfying

|f0(x)| ≤ C|x|2, |f ′′
0 (x)| ≤ C, |x| ≤ 1. (8.8)

Let

H(reix) =
1

2π

∫ π

−π

f(t)(1− r2)

1− 2r cos(x− t) + r2
dt (8.9)

be the Poisson integral of f . Since this has boundary value

f(x) = |ϕ(eix)|
1

2−α = h(ϕ(eix))

at eix, it follows that H(z) = h(ϕ(z)). If n denotes inner normal at eix to
the unit circle, then (in a neighborhood of the origin) one can easily see the
transformation formula (cf. (4.12))

∂h(z)

∂n−
=

∂H(eix)

∂n

1

|ϕ′(eix)|
, z = ϕ(eix), (8.10)

while for the normal derivative in the other direction we have

∂h(z)

∂n+
=

∂H(−eix)

∂n

1

|ϕ′(−eix)|
, z = ϕ(−eix). (8.11)

In (8.10) and (8.11) x is considered to be sufficiently close to 0 (so that ϕ(±eix)
lies on the side Σ∓).

1The constant C below may change from one place to the next one even within a line.
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Consider first (8.11). In that case ζ = −1, η = α/(2 − α), θ = α and (in
a neighborhood of the origin) |ϕ(−eix)| ∼ |x|α, |ϕ′(−eix)| ∼ |x|α−1 (meaning
that the ratio of the two sides lies in between two constants), hence from (8.6)
and from Lemma 8.3 below we can conclude that
∣∣∣∣
∂h(z)

∂n+

∣∣∣∣ ≤ C|x|η−1 1

|x|α−1
= C|x|

α
(2−α)

−α ≤ C|z|
1

2−α−1, z = ϕ(−eix).

(8.12)
The decomposition (8.7) yields the decomposition H(z) = H0(z) + c1H1(z),

where H0 is the Poisson integral of f0 and H1(z) is the Poisson integral of
f1(x) = |x|, x ∈ [−π, π]. In (8.10) we have ζ = 1, θ = 2 − α, |ϕ(eix)| ∼
|x|2−α, |ϕ′(eix)| ∼ |x|2−α−1, hence from (8.8) and from Lemma 8.3 below we
can conclude that

∣∣∣∣
∂H0(e

ix)

∂n

∣∣∣∣
1

|ϕ′(eix)|
≤ C

1

|x|2−α−1
≤ C|z|

1
2−α−1, z = ϕ(eix).

On the other hand, Lemma 8.4 shows that for x lying close to 0

∂H1(e
ix)

∂n

1

|ϕ′(eix)|
≥ c2

1

|x|2−α−1
log

1

|x|
≥ c3|z|

1
2−α−1 log

1

|z|
, z = ϕ(eix),

with some c3 > 0. These last two inequalities prove (see also (8.10)) that

∂h(z)

∂n−
=

∂H0(e
ix)

∂n

1

|ϕ′(eix)|
+ c1

∂H1(e
ix)

∂n

1

|ϕ′(eix)|
≥ c4|z|

1
2−α−1 log

1

|z|
. (8.13)

Next, let G(z) = gΩ(ϕ(z)). This is the Green’s function in the unit disk with
pole at the origin, so G(z) = log 1

|z| . This has normal derivative 1 at every point

of the unit circle, so we get from the analogues of (8.10) and (8.11) (replace
h,H with g,G there) that

∣∣∣∣
∂g(z)

∂n+

∣∣∣∣ ≤ C
1

|ϕ′(−eix)|
≤ C

1

|x|α−1
≤ C|z|

1
α−1, z = ϕ(−eix),

and
∣∣∣∣
∂g(z)

∂n−

∣∣∣∣ ≤ C
1

|ϕ′(eix)|
≤ C

1

|x|(2−α)−1
≤ C|z|

1
2−α−1, z = ϕ(eix),

in a neighborhood of the origin. Since 1/α > 1 > 1/(2− α), it follows that

∣∣∣∣
∂g(z)

∂n±

∣∣∣∣ ≤ C|z|
1

2−α−1. (8.14)

Now (8.12)–(8.14) and the representation (8.4) yield that for z ∈ Σ, z 6= 0,
lying sufficiently close to the origin the right-hand side of (8.5) is negative, which
is what we wanted to prove.
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Remark 8.2 The mapping ϕ is analytic at every point of the unit circle that
is not mapped into either of 0, sτ, sτ , therefore the above argument and sim-
ple properties of the Poisson kernel easily yield that both gΩ and h are Lip 1
functions (considered as functions) on any closed segment of Σ that does not
contain either of 0, sτ, sτ . This property was used in (8.5).

In the above proof we used the following two lemmas.

Lemma 8.3 Let f be a continuous function on [−π, π] and let H(z) be its
Poisson integral (8.9). Assume that f is twice differentiable on some (−ε, 0) ∪
(0, ε) and with some η, C > 0 it satisfies

|f(x)| ≤ C|x|η, |f ′′(x)| ≤ C|x|η−2 (8.15)

there.

(a) If 0 < η < 1, then the normal derivative of H at eix satisfies the inequality

∣∣∣∣
∂H(eix)

∂n

∣∣∣∣ ≤ C1|x|
η−1

in a neighborhood of the origin.

(b) If η > 1, then the normal derivative of H at eix is uniformly bounded in a
neighborhood of the origin.

Proof. We may assume 0 < x < ε/2 < 1/2. We have

∂H(eix)

∂n
= lim

r→1

H(reix)−H(eix)

1− r
= lim

r→1

1

2π

∫ π

−π

(f(t)− f(x))(1 + r)

1− 2r cos(x− t) + r2
dt.

The integral over |x − t| ≥ 1 is clearly uniformly bounded in r, therefore we
shall only need to estimate

lim
r→1

∫ x+1

x−1

(f(t)− f(x))(1 + r)

1− 2r cos(x− t) + r2
dt =

∫ 1

0

(f(x− u) + f(x+ u)− 2f(x))

1− cosu
du

(8.16)
(that the limit exists follows from the reasonings below and from the bounded
convergence theorem). For 0 ≤ u ≤ x/2 we get from the mean value theorem
and from the assumptions that the absolute value of the numerator on the right
is ≤ Cxη−2u2, and for u ≥ x/2 it is ≤ Cuη. At the same time the denominator
is

1− cosu = 2 sin2
u

2
≥ 2

(
2

π

u

2

)2

.

These give the following bound for (8.16) when η < 1:

≤ C

∫ x/2

0

xη−2du+ C

∫ 1

x/2

uη−2du ≤ Cxη−1.
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In a similar vein, (8.16) is bounded in a neighborhood of the origin if η > 1,
which proves part (b).

Lemma 8.4 Let f(x) = |x| for x ∈ [−π, π] and let H(z) be its Poisson integral
(8.9). In a neighborhood of the origin the normal derivative of H at eix satisfies
the inequality

∂H(eix)

∂n
≥ c0 log

1

|x|

with some c0 > 0.

Proof. Let 0 < x < 1. By the preceding proof

∂H(eix)

∂n
= O(1) +

∫ 1

0

|x− u|+ |x+ u| − 2|x|

1− cosu
du.

Here the integrand is 0 for 0 ≤ u ≤ x and it is 2(u− x) for u > x, therefore

∂H(eix)

∂n
= O(1) +

∫ 1

x

2(u− x)

1− cosu
du ≥ O(1) +

∫ 1

2x

u

1− cosu
du,

from which the claim is immediate since 1− cosu = 2 sin2 u
2 ≤ u2/2.

9 Nikolskii type inequalities for area measures

Let K be a compact set with piecewise C1+ smooth boundary such that C \K
is simply connected (actually, what follows is true in the finitely connected case
without much change). For 1 ≤ p < ∞ let

‖f‖Lp(K) =

(∫

K

|f |p
)1/p

be the Lp-norm with respect to area measure on K, and for p = ∞ let ‖ · ‖K =
‖ · ‖L∞(K) be the standard supremum norm. By Hölder’s inequality we have for
p ≤ q the inequality

‖f‖Lp(K) ≤ C‖f‖Lq(K)

with a C that depends only on the area of K. For polynomials we have a
converse inequality

‖Pn‖Lq(K) ≤ L‖Pn‖Lp(K)

where L depends on K, as well as the degree of the polynomial. This latter
dependence is heavily influenced by the smallest inner angle at the corners of
K, as is shown by
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Theorem 9.1 Let K be as before with piecewise C1+ smooth boundary, and let
απ be the smallest internal angle of K, which we assume to be positive. Then
there is a constant C depending only on K such that for 1 ≤ p < q ≤ ∞ and
any polynomial Pn of degree at most n = 1, 2, . . . we have

‖Pn‖Lq(K) ≤ Cn2(2−α∗)( 1
p−

1
q )‖Pn‖Lp(K), (9.1)

where α∗ = min(α, 1).
This estimate is sharp, for there are nonzero polynomials Pn of degree n =

1, 2, . . . such that

‖Pn‖Lq(K) ≥ cn2(2−α∗)( 1
p−

1
q )‖Pn‖Lp(K) (9.2)

with some constant c > 0.

This is the complete analogue of the classical Nikolskii inequality, see e.g.
[7, Theorem 4.2.6].

Proof of (9.1). First of all, it is sufficient to prove the q = ∞ case. Indeed,
suppose we know that

‖Pn‖L∞(K) ≤ Cn2(2−α∗) 1
p ‖Pn‖Lp(K). (9.3)

Then ∫

K

|Pn|
q ≤

∫

K

|Pn|
p‖Pn‖

q−p
L∞(K),

and if we apply here (9.3) then we get

∫

K

|Pn|
q ≤

∫

K

|Pn|
p
(
Cn2(2−α∗) 1

p ‖Pn‖Lp(K)

)q−p

,

which is (9.1).
As for the proof of (9.3) let M = ‖Pn‖K , and let z0 ∈ K be a point such

that this maximum is attained: |Pn(z0)| = M . According to (6.6) the Green’s
function g

C\K satisfies the bound

g
C\K(w) ≤ C1

(
dist(w,K)

) 1
2−α∗

with some constant C1, and since ‖Pn‖K = M , it follows from the Bernstein-
Walsh lemma (6.2) that in the 1/n2−α∗

-neighborhood of K we have the bound

|Pn(w)| ≤ MeC1 . (9.4)

Use this and Cauchy’s formula

P ′
n(z) =

1

2πi

∫

|z−ξ|=δ

Pn(ξ)

(ξ − z)2
dξ
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with δ = 1/n2−α∗

to conclude that on K we have

|P ′
n(z)| ≤ MeC1n2−α∗

. (9.5)

Since |Pn(z0)| = M and (for large n) any point w ∈ K which is of distance |w−
z0| ≤ 1/4eC1n(2−α∗) from z0 can be connected with z0 in K by a smooth path of
length ≤ 1/2eC1n(2−α∗), it follows that at every such w we have |Pn(w)| ≥ M/2.

Since the set of such w ∈ K’s has area ≥ c1
(
1/4eC1n(2−α∗)

)2
with a c1 that

depends only on K, it follows that

∫

K

|Pn|
p ≥ c1

(
1

4eC1n2−α∗

)2(
M

2

)p

, (9.6)

which implies (9.3).

Proof of (9.2). Let V be the vertex of K with smallest inner angle απ, and
suppose first that α < 1 (by the assumption in the theorem this α is positive).
Without loss of generality assume that V = 0, and for this point consider the
fast decreasing polynomials Pn of Theorem 5.3(a) with β = 1/2 and γ = 1

2(2−α) :

Pn(0) = 1, |Pn(z)|
p ≤ D exp

(
−dp(n|z|

1
2−α )1/2

)
. (9.7)

Since for k = 0, 1, 2, . . . and

2kn−(2−α) ≤ |z| ≤ 2k+1n−(2−α), z ∈ K,

we have
|Pn(z)|

p ≤ D exp
(
−dp(n|z|

1
2−α )1/2

)
≤ De−dp2k/2(2−α)

,

it follows that
∫

2kn−(2−α)≤|z|≤2k+1n−(2−α), z∈K

|Pn|
p ≤ De−dp2k/2(2−α)

(
2k+1n−(2−α)

)2
π.

In a similar manner,
∫

|z|≤n−(2−α), z∈K

|Pn|
p ≤ D

(
n−(2−α)

)2
π.

If we sum all these (for all k) we obtain
∫

K

|Pn|
p ≤ C

1

n2(2−α)
.

On the other hand, by the first part (part (a)) of the theorem we have
∫

K

|Pn|
p ≥ c‖Pn‖

p
K

1

n2(2−α)
≥ c

1

n2(2−α)
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with some c > 0 (note that Pn(0) = 1), thus, for Pn we have the two-sided
inequality

1

C

1

n2(2−α)
≤

∫

K

|Pn|
p ≤ C

1

n2(2−α)
, (9.8)

and this is what we wanted to get when the smallest internal angle is < π.

If the smallest internal angle at the corners of K is ≥ π then α∗ = 1,
and repeat the just given proof by replacing the vertex V by any point on
the boundary of K which is not a vertex, and to which there is a disk in the
complement of K which contains V on its boundary. Such a V and disk can
be easily obtained by taking a small disk in the complement of K close to a
non-vertex boundary point of K, and moving the disk towards that point until
it hits somewhere the boundary of K (and the hitting point will then be V ). At
this V the set K has a “corner” of angle π. The existence of the corresponding
fast decreasing polynomials (relative to V and K) from (9.7) is guaranteed by
Remark 5.4 (a), and the proof of (9.8) goes through with those fast decreasing
polynomials without any change.

So we get in either way a sequence {Pn} of polynomials such that

1

C

1

n2(2−α∗)
≤

∫

K

|Pn|
p ≤ C

1

n2(2−α∗)
(9.9)

with some C that depends only on K.
On writing this up also for q instead of p, the inequality (9.2) follows imme-

diately.

10 Markov type inequalities for area measures

In this section, we prove

Theorem 10.1 Let K be as in Theorem 9.1 with piecewise C1+ smooth bound-
ary, and let απ be the smallest internal angle of K, which we assume to be
positive. Then there is a constant C depending only on K such that for any
polynomial Pn of degree at most n = 1, 2, . . . we have

‖P ′
n‖Lp(K) ≤ Cn2−α∗

‖Pn‖Lp(K), (10.1)

where α∗ = min(α, 1).
This estimate is sharp, for there are nonzero polynomials Pn of degree n =

1, 2, . . . such that
‖P ′

n‖Lp(K) ≥ cn2−α∗

‖Pn‖Lp(K) (10.2)

with some constant c > 0.

This is the complete analogue of the classical Markov inequality for the deriva-
tive of polynomials on the unit circle, see [7, Theorem 4.1.4].
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Gj

Gj

Vj

Qj

Figure 9: A typical corner, the arc Γj covering it and the domain Gj attached
to Γj

Proof of (10.1). The boundary of K consist of finitely many C1+ arcs, call
the points where two such arcs are joined together a vertex. Cover the boundary
∂K by finitely many small closed subarcs Γj , 1 ≤ j ≤ m, such that each vertex
belongs to precisely one Γj . Choose domains Gj ⊆ K such that Gj ∩ ∂K = Γj ,
and Gj is C1+ smooth unless one of the vertices V of K belongs to the (one
dimensional) interior of Γj , in which case we require that ∂Gj is a smooth arc
which have both endpoints at V , see Figure 9.

Select the vertex V from ∂Gj if V belongs to Γj , and otherwise select a
point V from the (one dimensional) interior of Γj . In that latter case we can
still think of V as a vertex, namely with inner angle π.

Let j be arbitrary, and consider the corresponding Gj and Γj , and let Vj

be the point that is selected from ∂Gj . Then at Vj the domain G has an inner
angle αjπ with some 0 < αj , but otherwise (i.e. away from Vj) the boundary
of Gj is C1+ smooth. Let Qj ∈ Gj be a point on the the bisector of the two
half tangents to ∂Gj at the point Vj . If the subarcs Γj are small then we can
select Gj and Qj in such a way that Gj is starlike with respect to Qj , i.e. the
segment from Qj to any boundary point of Gj lies inside Gj . We may also
assume/achieve that the tangent lines to Gj (half tangents at Vj) do not pass
through the reference point Qj .

Let 1
2Gj be the domain that we obtain by shrinking Gj by a factor 1/2 from

the point Qj . It is sufficient to prove that for all j

‖P ′
n‖Lp(Gj\

1
2Gj) ≤ Cn(2−αj)‖Pn‖Lp(K), (10.3)

Indeed, n2−αj ≤ n2−α∗

and the Gj \
1
2Gj ’s cover a strip S ⊂ K attached to the

boundary of K, hence it follows that

‖P ′
n‖Lp(S) ≤ Cn(2−α∗)‖Pn‖Lp(K). (10.4)
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The rest of K, i.e. K \ S can be covered by finitely many annuli Aj , and for
each such annuli the proof of (10.4) yields

‖P ′
n‖Lp(Aj) ≤ Cn‖Pn‖Lp(K),

and (10.1) follows from these and (10.4).
For simpler notation we write G,V,Q, α for Gj , Vj , Qj , αj , and we may also

assume that Q = 0. Let γ be the boundary of G, sγ the arc measure on γ,
and let uγ be the u-homothetic copy of γ (with respect to the origin). γ has
a parametrization γ(t) = (γ1(t), γ2(t)), t ∈ [0, 1], γ(0) = γ(1) = V , where γj
is a C1+ smooth function with (γ′

1(t))
2 + (γ′

2(t))
2 > 0, and of course, dsγ =√

(γ′
1(t))

2 + (γ′
2(t))

2dt.
We shall use a special case of a result of V. V. Andrievskii, according to

which there is a constant C such that
∫

|R′
n|

pdsγ ≤ Cn(2−α)p

∫
|Rn|

pdsγ (10.5)

for all polynomials Rn of degree at most n. Indeed, this follows from [1, Theorem
1] (with s = 0 there) if we note that in the notation of that paper in the present
case ρ1/n(z) ≥ c/n2−α for all z ∈ γ, see Lemma 6.5 and its consequence (6.6).

Consider Φ(t, u) = uγ(t), (t, u) ∈ [0, 1] × [ 12 , 1), which maps [0, 1] × [ 12 , 1)
onto G \ 1

2G. The absolute value of its Jacobian is

|J(t, u)| = u|γ′
1(t)γ2(t)− γ′

2(t)γ1(t)|

is continuous and positive. Indeed, J(t, u) = 0 at some t, u would mean that
γ′
1(t)γ2(t)− γ′

2(t)γ1(t) = 0, i.e. at t the vectors γ′(t) and γ(t) would be parallel.
But that would mean that at γ(t) the tangent line to γ would pass through the
origin, which is not the case by the construction of the domain G.

Now
∫

G\ 1
2G

|P ′
n|

p =

∫

[0,1]×[ 12 ,1)

|P ′
n(uγ(t))|

p|J(t, u)|dtdu (10.6)

=

∫ 1

1/2

∫ 1

0

|P ′
n(uγ(t))|

p|J(t, u)|dtdu. (10.7)

Here, since both |J(t, u)| and |γ′(t)| are positive and continuous, we have

∫ 1

0

|P ′
n(uγ(t))|

p|J(t, u)|dt ≤ C

∫ 1

0

|P ′
n(uγ(t))|

p|γ′(t)|dt

= C

∫

γ

|P ′
n(uz)|

pdsγ(z) =
C

up

∫

γ

|R′
n(z)|

pdsγ(z),

where Rn(z) = Pn(uz). On applying (10.5) and reversing these steps we obtain
(recall that u ∈ [1/2, 1])

∫ 1

0

|P ′
n(uγ(t))|

p|J(t, u)|dt ≤ C1n
(2−α)p

∫ 1

0

|Pn(uγ(t))|
p|J(t, u)|dt.

50



Plugging this into (10.7) we get

∫

G\ 1
2G

|P ′
n|

p ≤ C1n
(2−α)p

∫

[0,1]×[ 12 ,1)

|Pn(uγ(t))|
p|J(t, u)|dtdu

= C1n
(2−α)p

∫

G\ 1
2G

|Pn|
p,

which is (10.3).

Proof of (10.2). Let V be the vertex of K with smallest inner angle απ, and
suppose first that α < 1 (by the assumption in the theorem α > 0). Without loss
of generality assume that V = 0, and for this point consider the fast decreasing
polynomials Pn of Theorem 5.3 (a) with β = 1/2 and γ = 1

2(2−α) (see (9.7)). If

z ∈ K lies of distance T/n2−α from 0 on the bisector of the angle at 0, then

|Pn(z)| ≤ D exp
(
−d
(
n(T/n2−α)

1
2−α
)1/2)

≤
1

2

if T is sufficiently large, hence on the segment [0, z] there is a w for which
|P ′

n(w)| ≥ n2−α/2T . Since ‖Pn‖K ≤ D, the argument leading to (9.5) (or
repeatedly apply (10.1)) gives that

|P ′′
n (z)| ≤ DeC1n2(2−α), z ∈ K,

which in turn implies (see the argument leading to (9.6)) that

|P ′
n(z)| ≥

n2−α

4T

if z ∈ K, |z−w| ≤ c1/n
2−α and c1 > 0 is sufficiently small. Since the intersection

of K with the set {z : |z − w| ≤ c1/n
2−α} has area measure ≥ c2/n

2(2−α), we
obtain (cf. (9.6)) ∫

K

|P ′
n|

p ≥ c2n
(2−α)(p−2).

Since by (9.9) ∫

K

|Pn|
p ≤ Cn−2(2−α),

the inequality (10.2) follows.
If the smallest internal angle at the corners of K is ≥ π then α∗ = 1,

and repeat the just given proof by replacing the vertex V by any point on
the boundary of K which is not a vertex, but for which there is a disk in the
complement of K that contains V on its boundary (see the end of the proof of
(9.2) in the preceding section).
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11 Christoffel functions

For a Borel-measure µ on the plane with compact support the n-th Christoffel
function is defined as

λn(µ, z) = inf
Pn(z)=1

∫
|Pn|

2dµ,

where the infimum is taken for all polynomials Pn of degree at most n that
take the value 1 at the point z. These play a significant role in the theory of
orthogonal polynomials, see the papers [16] and [22] for their applications. If
pn denote the orthonormal polynomials with respect to µ, then we have the
formula

1

λn(µ, z)
=

n∑

k=0

|pk(z)|
2. (11.1)

Orthogonal polynomials with respect to area measures go back to Carleman
[5]. If A

K
denotes the area measure on some closed Jordan domain K, then

inside the domain the Christoffel functions with respect to A
K

lie in between

two positive constants independent of n (but depending on the position of the
point z inside the domain), while outside the domain they are exponentially
small in n. This sharp decrease in the Christoffel functions around the boundary
has recently been used for a domain reconstruction procedure in the paper [9].
On the boundary of the domain the behavior of the n-th Christoffel function is
typically like a negative power of n, and the results from previous section easily
allow us to determine that power. For illustration we shall do that at a corner.

Theorem 11.1 Let the closed Jordan domain K have a C1+ smooth corner of
inner angle απ with 0 < α ≤ 1 at the point z0. Then

c

n2(2−α)
≤ λn(A

K
, z0) ≤

C

n2(2−α)
, n = 1, 2, . . . (11.2)

with some constants 0 < c,C.

The same result holds if K is the union of finitely many closed Jordan
domains.

Proof. Assume z0 = 0.
Let K1 ⊂ K be a compact subset such that K1 coincides with K in a

neighborhood of 0, but otherwise, i.e. away from 0, it has C1+ smooth boundary.
If we apply Theorem 9.1 with p = 2 and q = ∞ to the domain K1, then it follows
that if Pn(0) = 1, then

∫

K

|Pn|
2dA ≥

∫

K1

|Pn|
2 ≥

c

n2(2−α)

with some constant c depending only on K1, which proves the lower estimate
in (11.2).

52



To prove the upper inequality, let now K ⊂ K2 be a compact set such that
K2 coincides with K in a neighborhood of 0, but otherwise it has C1+ smooth
boundary. If we consider for K2 the fast decreasing polynomials Pn used in the
proof of Theorem 9.1 with the properties (9.7), then we have (see (9.8) for K2

replacing K there)
∫

K

|Pn|
2dA ≤

∫

K2

|Pn|
2dA ≤

C

n2(2−α)
,

and this proves the upper estimate in (11.2).

In view of (11.1) one easily gets the following estimates for the orthonormal
polynomials pn(z) with respect to area measures on K: under the assumptions
of Theorem 11.1 we have with some constant C

|pn(z0)| ≤ Cn2−α,

and for infinitely many n

|pn(z0)| ≥ Cn3/2−α.

Away from the corners more precise results can be found in the paper [24] for
domains with piecewise analytic boundary.
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