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Universality Under Szegő’s Condition

Vilmos Totik

Abstract. _is paper presents a theoremon universality on orthogonal polynomials/randommatri-
ces under a weak local condition on the weight function w. With a new inequality for polynomials
and with the use of fast decreasing polynomials, it is shown that an approach of D. S. Lubinsky is
applicable. _e proof works at all points that are Lebesgue-points for both the weight function w
and logw.

1 Introduction and Results

In [6] D. Lubinsky found a simple and elementary approach to universality limits. He
had a secondmethod in [7] based on the theory of entire functions. _is second, pow-
erful method needs the veriûcation of some preliminary estimates, which, at general
points, are far from trivial. In this paperwe show how those preliminary estimates can
be proved under relatively light conditions, and we recapture/generalize the general
results of [11] and [14] in a precise, sharpened form.

Let µ be a positive ûnite Borel measure with compact support Σ on the real line.
We assume that Σ consists of inûnitely many points, and we can then form the or-
thonormal polynomials pn(µ; x) = γn(µ)xn + ⋅ ⋅ ⋅ with respect to µ. Let

Kn(µ; x , y) =
n

∑
j=0

p j(µ, x)p j(µ, y)

be the associated reproducing kernels. It is known that some universality questions
in random matrix theory can be expressed in terms of orthogonal polynomials, in
particular in terms of the oò-diagonal behavior of the reproducing kernel; see [3, 6,
8, 9] and the references therein. When Σ = [−1, 1] and dµ(x) = w(x)dx, a form of
universality in random matrix theory can be stated as

(1.1) lim
n→∞

Kn(x + a
w(x)Kn(x ,x) , x +

b
w(x)Kn(x ,x))

Kn(x , x)
=

sin π(a − b)
π(a − b)

(with Kn(x , y) = Kn(µ; x , y)) uniformly in a, b lying in some compact subset of the
real line. _is had been proved under strong conditions on w by various authors
and recently by Lubinsky [6] under continuity and positivity of w. More precisely,
Lubinsky proved that (1.1) holds uniformly in x ∈ S and locally uniformly in a, b ∈

R provided µ is in the Reg class (see below) with support [−1, 1], S ⊂ (−1, 1) is a
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2 V. Totik

compact set, µ is absolutely continuous in a neighborhood of S and its densityw (i.e.,
the Radon–Nikodym derivative with respect to Lebesgue-measure) is positive and
continuous on S.

Lubinsky had a second approach [7] to universality based on the theory of entire
functions. _iswork uses this second approach aboutwhichwe shall give some details
in the next section.

We shall need some concepts from potential theory, in particular, the logarithmic
capacity cap(Σ) and the equilibrium measure µΣ of a compact set Σ ⊂ R; see the
books [1,10,17]. Denote the density of the equilibriummeasure µΣ of Σ by ωΣ . It exits
everywhere on Int(Σ) (and it is continuous – actually C∞ – there).

We shall also need the concept of the Reg class. For the leading coeõcients γn(µ)
of pn(µ; x), it is known ([12, Corollary 1.1.7]) that

lim inf
n→∞ γn(µ)1/n

≥
1

cap(Σ)
,

and themeasure µ is called to be in the Reg class (or is called regular from the point
of view of orthogonal polynomials) if

(1.2) lim
n→∞ γn(µ)1/n

=
1

cap(Σ)
,

and the right-hand side is ûnite. _is is a rather mild assumption, and it holds under
fairly general conditions on µ (see [12, Chapters 3 and 4]). For various properties of
orthogonal polynomials with respect to regular measures; see [12]. In particular, if
ν, µ have the same support, ν ≥ µ and µ is regular, then so is ν (since γn(ν) ≤ γn(µ)).

M. Findley [4] proved a local version of (1.1) under the condition that the support
of µ is [−1, 1], logw ∈ L1 in a neighborhood of x and x is a Lebesgue-point for both
w and its local outer function. In [11] and [14] the limit (1.1) was veriûed for general
measures; in particular, [14] contains the result that (1.1) is true a.e. on an interval I
provided µ ∈ Reg and logw ∈ L1(I). _e proof used a complicated version of the
polynomial inverse image method, and it was pure luck that that method worked in
this case. _e main objective of this paper is to reprove and make more precise the
just-mentioned result using the second approach of Lubinsky developed in [7] (see
also [2]).
As before, let µ be a ûnite Borel measure with compact support Σ ⊂ R. We shall

always assume that µ is regular in the sense of (1.2), hence Σ is of positive capacity. If µ
is absolutely continuous with respect to Lebesguemeasure on an interval I ⊂ Int(Σ),
then we call its Radon-Nikodym derivative dµ(x)/dx with respect to Lebesguemea-
sures its density, and we denote it by w(x).
As usual, we say that x0 is a Lebesgue-point for w if

lim
r→0

1
2r ∫

r

−r
∣w(x0 + t) −w(x0)∣dt = 0,

and for ameasure µ = µsing+µa ,where dµa(x) = w(x)dx is its absolutely continuous
part and µsing is its singular part, we call x0 a Lebesgue-point for µ if it is a Lebesgue-
point for w and

lim
r→0

1
2r

µsing([x0 − r, x0 + r]) = 0.
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When w, µ are deûned on a rectiûable Jordan curve (or unions of such curves),
then one can similarly deûne the concept of Lebesgue-pointwith respect to arc length.

In what follows w(x)dx denotes the absolutely continuous part of µ.

_eorem 1.1 Assume that µ ∈ Reg is a measure with compact support Σ on the real
line such that logw ∈ L1(I) for some interval I, and assume that x0 ∈ I is a Lebesgue-
point for both µ and logw. _en universality (1.1) holds for µ at x0.

As a corollary, it follows that (1.1) is true almost everywhere on I. It was observed
by Levin and Lubinsky [5] that the universality in question implies ûne zero spacing of
orthogonal polynomials. Hence, as a second corollary,we have the following theorem
for the zeros zn ,1 < zn ,2 < ⋅ ⋅ ⋅ < zn ,n of the n-th orthogonal polynomial pn(µ, z).

_eorem 1.2 With the assumptions of_eorem 1.1, we have

lim
n→∞ n(zn ,k+1 − zn ,k)ωΣ(x0) = 1

for ∣zn ,k − x0∣ ≤ L/n with any ûxed L.

Recall that here ωΣ is the density of the equilibrium measure of the the support Σ
of µ.

In particular, if µ ∈ Reg andw is continuous and positive on some open subinterval
I of Σ, then, uniformly for x lying in any closed part of I, we have

lim
n→∞ n(zn ,k+1 − zn ,k)ωΣ(x) = 1

for ∣zn ,k − x∣ = o(1); i.e., the local zero spacing of the orthogonal polynomials re�ect
not just the global support, but also the position of the particular zero inside that
support. _is follows easily from the proofs below.

_eorem 1.1 follows from Lubinsky’s method in [7] or directly from [2,_eorem 1]
if we prove the following two results (see the next section for more details).

_eorem 1.3 Assume that µ ∈ Reg is ameasure on the real linewith compact support
Σ such that logw ∈ L1(I) for some interval I, and assume that x0 ∈ I is a Lebesgue-point
for both µ and logw. Let A > 0 be ûxed. _en for all real a

lim
n→∞

1
n
Kn(µ; x0 + a/n, x0 + a/n) =

ωΣ(x0)
w(x0)

,

and the convergence is uniform in a ∈ [−A,A] for any ûxed A.

_eorem 1.4 Assume that µ is a measure on the real line for which w , logw ∈

L1[−δ, δ] for some δ > 0 and 0 is a Lebesgue-point for both w and logw. _en for the
corresponding reproducing kernel we have for ∣z0∣ ≤ A and for suõciently large n ≥ nA,

(1.3) 1
n
Kn(z0/n, z0/n) ≤ CeC∣z0 ∣ ,

where C is a constant independent of z0 and A.
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In this theorem (1.3) needs to be veriûed for complex values z0.

2 Lubinsky’s Approach to Universality

In [7] not Kn , but the kernel

K∗
n(µ; x , y) =

n

∑
j=0

p j(µ, x)p j(µ, y)

was used. _is is the same as Kn for real x , y.
It was shown in [7], without the assumption µ ∈ Reg, that (1.1) holds at a point

x = x0 where w is continuous and positive if and only if

(2.1) lim
n→∞

K∗
n(x0 + a/n, x0 + a/n)

K∗
n(x0 , x0)

= 1

holds uniformly for a lying in compact subsets of the real line. _e proof of this
remarkable equivalence is along the following lines.

_e positivity and continuity of w at x0 easily implies that in a neighborhood
[x0 − δ, x0 + δ] an inequality 1

C ≤ 1
n K

∗
n(x , x) ≤ C holds, which then yields

1
n
∣K∗

n(ξ, t)∣ ≤ C

via the Cauchy–Schwarz inequality. _is and the classical Bernstein–Walsh lemma
for polynomials implies the bound

1
n
∣K∗

n(x0 + a/n, x0 + b/n)∣ ≤ CeC(∣a∣+∣b∣)

for complex a, b. _erefore, for

fn(a, b) =
K∗

n(x0 + a/(w(x0)K∗
n(x0 , x0)), x + b/(w(x0)K∗

n(x0 , x0)))
K∗

n(x0 , x0)
,

we also have

(2.2) ∣ fn(a, b)∣ ≤ CeC(∣a∣+∣b∣)

with a possibly diòerent C, which, however, is the same constant for all ∣a∣, ∣b∣ ≤ A for
any ûxed A provided n is suõciently large (depending on A).

Hence, { fn(a, b)}∞n=1 is a normal family in both a, b ∈ C, and for any (locally
uniform) limit f (a, b) of any subsequence of { fn(a, b)}∞n=1 we have the bound

∣ f (a, b)∣ ≤ CeC(∣a∣+∣b∣) .

To conûrmwith [7] let usmention that this last inequality, combinedwith the bound-
edness of f (a, b) on the real line (which is a consequence of (2.1)), implies (see [7, Sec-
tion 4, (4.4)])

∣ f (a, b)∣ ≤ CeC(∣Ia∣+∣Ib∣) .
_us, f (a, b) is an entire function of exponential type in each variable, and in [7]

Lubinsky used the theory of exponential functions together with some properties of
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K∗
n(ξ, t) and of some classical results forGaussian quadrature to show that necessarily

f (a, b) = sin π(a − b)
π(a − b)

.

_e crucial inequality (2.2) is a consequence (use Cauchy–Schwarz) of

(2.3) 1
n
Kn(x0 + a/n, x0 + a/n) ≤ CeC∣a∣ ,

(here Kn and not K∗
n is used!) uniformly in ∣a∣ ≤ A for any ûxed A and suõciently

large n (say n ≥ nA), provided we know the behavior K∗
n(x0 , x0)/n ∼ 1.

Once the equivalence of (1.1) and (2.1) is established, (1.1) follows immediately at
x = x0 if a limit

(2.4) 1
n
K∗

n(µ; x0 + a/n, x0 + a/n) = L

(with a ûnite L > 0) can be established uniformly in a lying on any compact subset of
the real line, and hereK∗

n can be replaced byKn . _eoretically, (2.1) could be true even
if a limit like (2.4) does not hold, though so far no example has been found. Moreover,
until now the limit (2.4) has been established only for measures in the Reg class.
Aswe can see from this setup, to prove (1.1) along these lines one needs two things:

(A) to prove the equivalence of (1.1) with (2.1), and
(B) to establish (2.1).

We have alreadymentioned that (A) has been done in [7] providedw is continuous
and positive at x0. If we drop this condition, the crucial inequality (2.3) becomes
rather non-trivial, and the aim of _eorem 1.4 is to establish it under the Lebesgue-
point condition stated there (cf. also [7,_eorem 2.1], where (A) is proved at a Lebes-
gue-point provided w has a positive lower bound in a neighborhood of x0). For part
(B) presently the only approach is via a limit like (2.4) using the Reg condition. _e
limit (2.4) is also less obvious in the non-continuous case, and it is the aim of_eorem
1.3 to establish (2.4) under the aforestated Lebesgue-point condition.

We emphasize, that in this paper both (A) and (B) are proved under the same
Lebesgue-point condition using the same polynomial inequality to be discussed in
Lemma 3.1.

Since some of the arguments sketched above are somewhat subtle in our case, we
also mention that the suõciency of _eorems 1.3 and 1.4 for _eorem 1.1 follows di-
rectly from [2, _eorem 1] by Avila, Last, and Simon. In fact, these authors used a
modiûcation of themethod of Lubinsky to prove in [2,_eorem 1] that (1.1) holds at
a point x = x0 that is a Lebesgue-point for µ if
(a) (2.1) holds uniformly for a lying in compact subsets of the real line,
(b) lim inf n→∞ 1

n Kn(x0 , x0) > 0,
(c) for every ε > 0 there is a Cε such that for any R there is an N so that for all n > N

and for all z ∈ C with ∣z∣ < R we have
1
n
Kn(x0 + z0/n, x0 + z0/n) ≤ Cε exp(ε∣z0∣2).

Now if x0 is a Lebesgue-point for both µ (∈ Reg) and logw, then _eorem 1.3 implies
(a) and (b), while_eorem 1.4 implies (c), so it is le� to prove_eorems 1.3 and 1.4.
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3 Proof of Theorem 1.4

By simple scaling we can assume δ = 1.
For the proofwe need to consider the reciprocal of the diagonal of the reproducing

kernel; the Christoòel functions associated with µ are deûned as

λn(z, µ) = Kn(z, z)−1
= (

n

∑
k=0

∣pk(z)∣2)
−1
= inf

Pn(z)=1∫
∣Pn ∣

2dµ,

where the inûmum is taken for all polynomials of degree at most n that take the value
1 at z.

We shall prove_eorem 1.4 in the equivalent form

(3.1) λn(z0/n, µ) ≥
e−C∣z0 ∣

Cn
.

Since λn( ⋅ , µ) is monotone increasing in themeasure µ, we can assume that the sin-
gular part µs of µ is zero; i.e., dµ(x) = w(x)dx and µ is supported on [−1, 1]. By
symmetry, it is enough to consider Iz0 ≥ 0.

_e proof is based on the next lemma.

Lemma 3.1 Let w ≥ 0 be a function on [−1, 1] such that w , logw ∈ L1[−1, 1], and let
0 be a Lebesgue-point for logw. _en there is a constant M such that for x ∈ [−1, 1] we
have

(3.2) ∣Pn(x)∣2 ≤ MeM
√

n∣x ∣ n∫
1

−1
∣Pn ∣

2w

for any polynomials Pn of degree at most n = 1, 2, . . . .

Note however, that outside [−1, 1] (and close to 0) nothing more than ∣Pn(z)∣ ≤
M exp(Mn∣z∣) (more precisely ∣Pn(z)∣ ≤ M exp(Mn∣Iz∣)) can be said (just think of
the classical Chebyshev polynomials with w ≡ 1).

Proof of Lemma 3.1 _e following version of Lemma 3.1 was proved in [16, Lem-
ma 3].

Lemma 3.2 Let γ be a C1+α (α > 0) smooth simple Jordan curve (a homeomorphic
image of the unit circle) with arc length measure sγ , w ≥ 0 a (sγ-measurable) function
on γ such that w , logw ∈ L1(sγ), and let ζ0 ∈ γ be a Lebesgue-point for logw (with
respect to sγ). _en there is a constant M such that for z ∈ γ we have

(3.3) ∣Qn(z)∣2 ≤ MeM
√

n∣z−ζ0 ∣ n∫
γ
∣Qn ∣

2w dsγ

for any polynomials Qn of degree at most n = 1, 2, . . . .

We are going to apply this with γ = C1, the unit circle. Let

Q2n(z) = znPn(
1
2
( z + 1

z
)) .
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_is is a polynomial of degree at most 2n such that ∣Q2n(e i t)∣ = ∣Pn(cos t)∣. Deûne
on C1 the weight W(e i t) = w(cos t)∣∣ sin t∣, for which we have

∫
C1

∣Q2n(z)∣2W(z)dsC1(z) = ∫
π

−π
∣Q2n(e i t)∣2W(e i t)dt

= ∫

π

−π
∣Pn(cos t)∣2w(cos t)∣ sin t∣dt

= 2∫
1

−1
∣Pn(x)∣2w(x)dx .

Under the map e i t → cos t, the point i is mapped into 0, and it is clear that z0 = i is
a Lebesgue-point for logW (with respect to arc-measure on C1). Hence we can apply
(3.3) to Q2n to get

∣Q2n(e i t)∣2 ≤ MeM
√

2n∣e i t−i∣ n∫
C1

∣Q2n ∣
2W dsC1 .

Since for t ∈ [0, π] we have ∣e i t − i∣ ∼ ∣ cos t∣, estimate (3.2) follows.

We shall also use the following lemma on fast decreasing polynomials, which was
proved in [16, Lemma 4].

Lemma 3.3 Let K be a compact subset of the plane, Ω the unbounded component of
its complement, and Z ∈ ∂Ω a point on the outer boundary of K. Assume that there is
a disk in Ω that contains Z on its boundary. _en for every β < 1 there are constants
c1 ,C1 > 0, and for every n = 1, 2, . . . polynomials Sn of degree at most n, such that
Sn(Z) = 1, ∣Pn(z)∣ ≤ 1 for z ∈ K and

∣Sn(z)∣ ≤ C1e−c1(n∣z−Z∣)
β
, z ∈ K .

(_e constants C1 , c1 depend on β.) We shall apply this lemma to a K, say bounded
by a smooth Jordan curve, which contains the segment [−2, 2] on its boundary and
contains all the segments [−2, 2]− iρ with 0 < ρ ≤ 1 in its interior. If ∣z0∣ ≤ A, Iz0 ≥ 0
and n is suõciently large, then we shall set Z = 0, β = 2/3 in Lemma 3.3 and consider
with the Sn from that lemma the polynomials S∗n(z) = Sn(z − z0/n). For it we have
S∗n(z0/n) = 1, and for x ∈ [−1, 1] (in which case z ∶= x − z0/n lies in K)

(3.4) ∣S∗n(x)∣ ≤ C1e−c1(n∣x−z0/n∣)
2/3

≤ C1ec1 ∣z0 ∣
2/3
e−c1(n∣x ∣)

2/3

with some absolute constants c1 ,C1 > 0.
Now we are ready for the proof of (3.1).

Proof of (3.1) Recall that dµ(x) = w(x)dx, x ∈ [−1, 1] and w , logw ∈ L1[−1, 1]. We
have to estimate λn(z0/n, µ) from below for ∣z0∣ ≤ A. Let Pn be a polynomial of degree
at most n such that Pn(z0/n) = 1 and

λn(z0/n, µ) = ∫ ∣Pn ∣
2w .

If

∫ ∣Pn ∣
2w ≥

1
n
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then there is nothing to prove, otherwise we obtain from Lemma 3.1 that

(3.5) ∣Pn(x)∣2 ≤ MeM
√

n∣x ∣ , x ∈ [−1, 1].
With the S∗n from (3.4), let

(3.6) Rn(z) = Pn(z)S∗n(z).
_is has degree at most 2n, it has value 1 at z0/n, and we estimate its square integral
with respect to w on [−1, 1] as follows.

_e Lebesgue-point property of w at 0 means that for every ε > 0 there is a ρ > 0
such that if 0 ≤ τ ≤ ρ, then

(3.7) ∫∣ζ∣≤τ
∣w(ζ) −w(0)∣dζ ≤ ετ.

We deûne themeasure ν as dν(x) = w(0)dx on [−1, 1]. We shall compare the values
λn(z0/n, µ) and λ2n(z0/n, ν) of the Christoòel functions associated with µ and ν,
respectively. From that comparison (3.1) will follow using the following facts. Since
themeasure ν is just a constant multiple of the Lebesgue-measure, for it we have (see
e.g., [13,_eorem 1])

λn(x , ν) ∼
1
n

uniformly on [−1/2, 1/2], hence there is a constant C0 such that

(3.8)
n

∑
j=0

q j(x)2
≤ C0n, x ∈ [−1/2, 1/2],

where q j denote the orthonormal polynomials with respect to ν (they are a constant
multiple of the classical Legendre polynomials). Let z0 ∈ C be arbitrary. _ere are
constants ∣ε j ∣ = 1 such that

n

∑
j=0

∣q j(z0/n)∣2 =
n

∑
j=0
ε jq j(z0/n)2 .

For the polynomial Q(z) = ∑n
j=0 ε jq j(z)2 we then have Q(z0/n) = ∑n

j=0 ∣q j(z0/n)∣2,
and at the same time for all x ∈ [−1/2, 1/2] the inequality ∣Q(x)∣ ≤ C0n holds (because
of (3.8)). _erefore, by the Bernstein–Walsh lemma [18, p. 77] if

g(z) = log ∣2z +
√

(2z)2 − 1∣

denotes the Green’s function of C ∖ [−1/2, 1/2], then
n

∑
j=0

∣q j(z0/n)∣2 = ∣Q(z0/n)∣ ≤ e2ng(z0/n)C0n ≤ eC2 ∣z0 ∣C0n,

where we used that g is Lip 1 in a neighborhood of the origin. _is inequality proves

(3.9) λ2n(z0/n, ν) ≥ w(0)c2e−C2 ∣z0 ∣/n
with some constants c2 ,C2 > 0 that are independent of n and z0, and then, aswe shall
see, a similar inequality holds for λn(z0/n, µ).
Clearly,

λ2n(z0/n, ν) ≤ ∫
1

−1
∣Rn ∣

2w(0)
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with the polynomial Rn from (3.6), and we compare the right-hand side with the
square integral of Rn against w. It follows from (3.4) and (3.5) that

∣Rn(x)∣ ≤
√

MC1ec1 ∣z0 ∣
2/3
exp(M

√
n∣x∣/2 − c1(n∣x∣)2/3) , x ∈ [−1, 1],

and hence

(3.10) ∣Rn(x)∣ ≤ M1ec1 ∣z0 ∣
2/3
exp(−(c1/2)(n∣x∣)2/3) , x ∈ [−1, 1]

with some constant M1.
It follows from (3.7) for 2k/n < ρ/2, k = 1, 2, . . . , that

∫
2k/n≤∣x ∣≤2k+1/n

∣Rn(x)∣2∣w(x) −w(0)∣dx ≤ M2
1 e2c1 ∣z0 ∣

2/3
ε 2

k+1

n
exp(−(c1/2)22k/3) ,

and also

∫∣x ∣≤2/n
∣Rn(x)∣2∣w(x) −w(0)∣dx ≤ M2

1 e2c1 ∣z0 ∣
2/3
ε 2
n
.

For the integral over ∣x∣ ≥ ρ/2, we write (see (3.10))

∫
ρ/2≤∣x ∣≤1

∣Rn(x)∣2∣w(x) −w(0)∣dx ≤ C3M2
1 e2c1 ∣z0 ∣

2/3
exp(−(c1/2)(nρ/2)2/3) .

Summing these up we obtain

∫[−1,1]
∣Rn ∣

2dν − ∫[−1,1]
∣Rn ∣

2dµ ≤ C4M2
1 e2c1 ∣z0 ∣

2/3 ε
n
+ o(1/n)

with a constant C4 that depends only on w. Hence, in view of ∣Rn(ζ)∣ ≤ ∣Pn(ζ)∣, it
follows that

λ2n(z0/n, ν) ≤ λn(z0/n, µ) + C4M2
1 e2c1 ∣z0 ∣

2/3 ε
n
+ o(1/n).

Given A (recall that ∣z0∣ ≤ A), choose ε > 0 so that

C4M2
1 e2c1 ∣A∣

2/3
ε ≤ w(0)c2e−C2A

4

(cf. (3.9)), and then with this ε > 0 for suõciently large n, say for n ≥ nA, we get from
the previous estimate,

λ2n(z0/n, ν) ≤ λn(z0/n, µ) +
w(0)c2e−C2A

2n
.

_is gives, in view of (3.9),

λn(z0/n, µ) ≥
w(0)c2e−C2 ∣z0 ∣

2n
,

and (3.1) has been veriûed.
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4 Proof of Theorem 1.3

We prove the theorem in the equivalent form

lim
n→∞ nλn(x0 + a/n, µ) =

w(x0)
ωΣ(x0)

.

We use themethod of [16].
Without loss of generality we can assume that x0 = 0 and the support of µ is con-

tained in [−1/2, 1/2].
We need to prove that, under the assumption that the point 0 is a Lebesgue-point

for both µ and logw, we have

(4.1) lim sup
n→∞

nλn(a/n, µ) ≤
w(0)
ωΣ(0)

and

(4.2) lim inf
n→∞ nλn(a/n, µ) ≥

w(0)
ωΣ(0)

.

Recall that the Lebesgue-point property of µ at 0 means that for every ε > 0 there is a
ρ > 0 such that if 0 ≤ τ ≤ ρ, then (3.7) as well as
(4.3) µsing({x ∣ ∣x∣ ≤ τ}) ≤ ετ
hold.

We deûne the measure ν as dν(t) = w(0)dt in a small neighborhood of 0 and
ν = µ outside of that neighborhood. It easily follows from the localization theorem
[12,_eorem 5.3.3] that ν is also in theReg classwith support equal to the support of µ.
We shall compare the values λn(a/n, µ) and λn(a/n, ν) of the Christoòel functions
associated with µ and ν, respectively. Since the density ν is constant (= w(0)) in a
neighborhood of 0, in this neighborhood we have (see [13] and also [15, Section 8])

(4.4) lim
n→∞ nλn(x , ν) =

w(0)
ωΣ(0)

locally uniformly (recall that Σ is the support of µ and ωΣ is the density of the equi-
librium measure of Σ). In particular,

lim
n→∞ nλn(a/n, ν) =

w(0)
ωΣ(0)

uniformly in ∣a∣ ≤ A for any given A > 0.
We can assume that ρ in (3.7) and (4.3) is so small that in [−ρ, ρ]we have dν(x) =

w(0)dx.

Proof of (4.1) It follows from the proof of (4.4) in [15] that there are polynomials Qn
of degree at most n such that Qn(a/n) = 1, ∣Qn(z)∣ ≤ 1 for all z ∈ Σ and

(4.5) lim
n→∞ n∫ ∣Qn ∣

2dν = w(0)
ωΣ(0)

.

With β = 2/3 and some small δ > 0, let Sδn be the polynomials of degree δn from
Lemma 3.3 for K = [−1, 1] and Z = 0, and set Rn(x) = Qn(x)Sδn(x − a/n). _is
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is a polynomial of degree at most n(1 + δ) with Rn(a/n) = 1, ∣Rn(x)∣ ≤ ∣Qn(x)∣ ≤ 1
(x ∈ Σ), and thiswillbeour testpolynomial to get anupperbound for λn(1+δ)(a/n, µ).

We estimate the integral of ∣Rn ∣
2 against µ using the Lebesgue-point properties

(3.7) and (4.3). Since for ûxed A and for ∣a∣ ≤ A

∣Rn(t)∣ ≤ C1 exp(−c1(nδ∣t − a/n∣)2/3) ≤ CA exp(−c1(nδ∣t∣)2/3) , t ∈ [−1/2, 1/2]

with some c1 ,C1 ,CA (where CA may depend on A), it follows for 2k/nδ < ρ/2, k =

1, 2, . . . , that (see (3.7))

∫
2k/nδ≤∣t∣≤2k+1/nδ

∣Rn(t)∣2∣w(t) −w(0)∣dt ≤ CAε
2k+1

nδ
exp(−c122k/3)

and also

∫∣t∣≤2/nδ
∣Rn(t)∣2∣w(t) −w(0)∣dt ≤ ε 2

nδ
.

On the other hand, for the integral over ∣t∣ ≥ ρ/2, we write

∫
ρ/2≤∣t∣, t∈Σ

∣Rn(t)∣2∣w(t) −w(0)∣dt ≤ C exp(−c1(nδρ/2)2/3) .

Summing these up we obtain

∫
Σ
∣Rn ∣

2w − ∫
Σ
∣Rn ∣

2w(0) ≤ C ε
δn
+ o(1/n),

where C may depend on A but not on ε, δ, or n.
Similar reasoning based on (4.3) rather than (3.7) gives

∫
Σ
∣Rn ∣

2dµsing ≤ C
ε
δn
+ o(1/n).

From these (as well as from the estimates leading to these inequalities) and from
the fact that ν = µ outside the interval where dν(x) = w(0)dx, we infer

∫ ∣Rn ∣
2dµ − ∫ ∣Rn ∣

2dν ≤ C ε
δn
+ o(1/n).

Hence, we obtain from (4.5)

lim sup
n→∞

n(1 + δ)λn(1+δ)(a/n, µ) ≤ lim sup
n→∞

n(1 + δ)∫ ∣Rn ∣
2dµ

≤ lim sup
n→∞

n(1 + δ)∫ ∣Qn ∣
2dν + C2

ε
δ
(1 + δ)

= (1 + δ) w(0)
ωΣ(0)

+ C2
ε
δ
(1 + δ)

with some constant C2 that depends only on A. _en the monotonicity of λn in n
implies that for the whole sequence of natural numbers

lim sup
n→∞

nλn(a/n, µ) ≤ (1 + δ) w(0)
ωΣ(0)

+ C2
ε
δ
(1 + δ).

Letting ε → 0 and then δ → 0, we obtain (4.1)
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Proof of (4.2) Assume again that 0 ∈ Σ is a Lebesgue-point for both µ (see (3.7),
(4.3)) and logw, and select ρ so that (3.7), (4.3) is true for all τ ≤ ρ.
Assume to the contrary that there is an α < 1 and an inûnite sequence N ⊆ N of

the natural numbers such that for every n ∈ N there are polynomials Qn of degree at
most n with the properties Qn(a/n) = 1 and

(4.6) ∫ ∣Qn ∣
2dµ ≤ α w(0)

ωΣ(0)
1
n
.

In particular,

∫
Σ
∣Qn ∣

2w ≤ α w(0)
ωΣ(0)

1
n
.

Let ∆ > 0 be such that logw ∈ L1[−∆, ∆]. Recall that ν was equal to µ outside a
small neighborhood of 0, and it does not matter what neighborhood we take, so we
can assume that µ and ν coincide outside [−∆, ∆].

Lemma 3.1, transformed from [−1, 1] onto [−∆, ∆], gives

∣Qn(t)∣ ≤ M exp(M
√

n∣t∣), t ∈ [−∆, ∆],

with some constant M (recall that 0 is a Lebesgue-point of logw, so Lemma 3.1 is
applicable).

With β = 2/3 and some δ > 0 consider again the polynomials Sδn of degree δn
from Lemma 3.3 for K = [−1, 1] and for the point Z = 0, and set

Rn(x) = Qn(x)Sδn(x − a/n).

_is is a polynomial of degree at most n(1 + δ) with

Rn(a/n) = 1, ∣Rn(t)∣ ≤ ∣Qn(t)∣ (t ∈ Σ),

and this will be our test polynomial to get an upper bound for λn(1+δ)(1, ν), n ∈ N.
Since, as before,

∣Sδn(t − a/n)∣ ≤ CA exp(−c1(nδ∣t∣)2/3) , t ∈ [−1/2, 1/2], ∣a∣ ≤ A,

it immediately follows that

∣Rn(t)∣ ≤ MCA exp(M
√

n∣t∣ − c1(nδ∣t∣)2/3) , t ∈ [−∆, ∆],

and hence

(4.7) ∣Rn(t)∣ ≤ CAMδ exp(−(c1/2)(nδ∣t∣)2/3) , t ∈ [−∆, ∆]

with an Mδ depending on δ.
It follows from (3.7) and (4.7) for 2k/nδ < ρ/2(≤ ∆), k = 1, 2, . . . , that

∫
2k/nδ≤∣t∣≤2k+1/nδ

∣Rn(t)∣2∣w(t) −w(0)∣dt ≤ C2
AM2

δε
2k+1

nδ
exp(−(c1/2)22k/3) ,

and also

∫∣t∣≤2/nδ
∣Rn(t)∣2∣w(t) −w(0)∣dt ≤ C2

AM2
δε

2
nδ

.
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For the integral over ∆ ≥ ∣t∣ ≥ ρ/2, we have

∫
ρ/2≤∣t∣≤∆

∣Rn(t)∣2∣w(t) −w(0)∣dt ≤ C2
ACM2

δ exp(−(c1/2)(nδρ/2)
2/3) ,

where C is the integral of ∣w(t) −w(0)∣ over [−∆, ∆]. Summing these up we obtain

∫[−∆,∆]
∣Rn ∣

2dν − ∫[−∆,∆]
∣Rn ∣

2wds ≤ C2
ACM2

δ
ε
δn
+ o(1/n).

_ese yield again (as ν = µ outside [−∆, ∆])

∫ ∣Rn ∣
2dν ≤ ∫ ∣Rn ∣

2dµ + C2
ACM2

δ
ε
δn
+ o(1/n).

Hence, in view of ∣Rn(t)∣ ≤ ∣Qn(t)∣, it follows from (4.6)

lim sup
n∈N

n(1 + δ)λn(1+δ)(a/n, ν) ≤ lim sup
n∈N

n(1 + δ)∫ ∣Rn ∣
2dν

≤ lim sup
n∈N

n(1 + δ)∫ ∣Rn ∣
2dµ + C2

ACM2
δ
ε
δ
(1 + δ)

≤ (1 + δ)α w(0)
ωΣ(0)

+ C2
ACM2

δ
ε
δ
(1 + δ),

and here CA and C are independent of ε and δ. But for (1 + δ)α < 1 (and we can
make this happen by selecting a small δ) and small ε, this contradicts (4.4). _is
contradiction proves the lower estimate in (4.2) and the proof is complete.
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