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Abstract

These are the extended notes of the plenary lecture on the conference

Constructive Functions 2014, Nashville, TN, USA. It deals with the prob-

lem how much zeros on the boundary of a set raise the norm of polynomials

compared to the minimal norms.

1 The formula

The formula in question is

µn = cos

(

π

2(n+ 1)

)−n−1

. (1)

To understand what it means, let C1 be the unit circle, and recall that if
Pn(z) = anz

n + · · ·+ 1 is a polynomial, then

‖Pn‖C1
≥ 1,

where we used the notation

‖f‖E = sup
z∈E

|f(z)|

for the supremum norm. Indeed, since Pn(0) = 1, this follows from the maxi-
mum principle, or from the formula

1 =

∣

∣

∣

∣

1

2πi

∫

C1

Pn(ξ)

ξ
dξ

∣

∣

∣

∣

≤ ‖Pn‖C1
.

Now what happens if, in addition, Pn has a zero somewhere on the unit circle?
In this case we claim that

‖Pn‖C1
≥ 1 +

1

8πn
,
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i.e. the norm must increase by a universal factor 1+1/30n. To see that we may
assume without loss of generality that Pn(1) = 0 and ‖Pn‖C1

≤ 2 (if this latter
is not true, then the claim holds). By Riesz’s inequality [11] for the derivative
of a polynomial we have

‖P ′
n‖C1

≤ n‖Pn‖C1
≤ 2n.

Hence, if ξ = eix ∈ C1, |x| ≤ 1/4n, then (the integration is along the corre-
sponding arc of the unit circle)

|Pn(ξ)| =
∣

∣

∣

∣

∣

∫ ξ

1

P ′
n(u)du

∣

∣

∣

∣

∣

≤
∫ ξ

1

|P ′
n(u)||du| ≤

1

4n
2n =

1

2
,

therefore,

1 =

∣

∣

∣

∣

1

2πi

∫

C1

Pn(ξ)

ξ
dξ

∣

∣

∣

∣

≤
∫

C1

|Pn| ≤ ‖Pn‖C1

2π − 1/2n

2π
+

1

2

1/2n

2π
.

Now if we rearrange this inequality it follows that

‖Pn‖C1
≥ 2π − 1/4n

2π − 1/2n
≥ 1 +

1

8πn
.

In the opposite direction G. Halász [6] proved in 1983 that there is a Pn(z)
with Pn(1) = 0 such that

‖Pn‖C1
≤ e2/n,

and he asked to determine

µn = inf
Pn(0)=1, Pn(1)=0

‖Pn‖C1
.

This problem was solved in the paper [7] by M. Lachance, E. B. Saff and R.
Varga, who proved the formula (1).

The topics in this paper are related to formula (1): they discusses several
situations where zeros on the boundary raise the minimal norm.

2 More zeros

In this section, we briefly describe what happens if there are more than one zero
on the unit circle.

Let us agree that whenever we write Pn (or Rn etc.), then it is understood
that the degree of Pn (of Rn etc.) is at most n.

Theorem 2.1 There is an absolute constant c > 0 such that if Pn(0) = 1 and
Pn has kn zeros on C1, then

‖Pn‖C1
≥ 1 + c

kn
n
.
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Theorem 2.2 There is an absolute constant c > 0 such that if Pn(0) = 1 and
Pn has n|J |/2π + kn zeros on a subarc J = Jn of the unit circle, then

‖Pn‖C1
≥ exp(ck2n/n).

See [19] by V. Totik and P. Varjú.
As an immediate corollary we obtain that if Pn(0) = 1 and ‖Pn‖C1

= 1+o(1),
then

(i) Pn have o(n) zeros on C1,

(ii) Pn have at most n|J |/2π + o(
√
n) zeros on any subarc J = Jn of the unit

circle.

In particular, if such polynomials have zeros somewhere on the unit circle, then
the multiplicity of those zeros is necessarily o(

√
n) (as n → ∞). Let us note

that, on the other hand, ‖Pn‖C1
= O(1) is already compatible with a zero on

C1 of multiplicity
√
n.

Next, we show that Theorem 2.2 and its corollary are sharp disregarding the
constant c. First of all, we mention

Theorem 2.3 If z1, . . . , zkn
are kn ≤ n/2 points on the unit circle, then there

is a Pn(z) = anz
n + · · ·+ 1 such that zj are its zeros and

‖Pn‖C1
≤ exp(4k2n/n).

Indeed, we have already mentioned Halász’ theorem: for every m there is an
Rm with Rm(0) = 1, Rm(1) = 0 such that

‖Rm‖C1
≤ e2/m.

Now all we need to do is to set

Pn(z) =

kn
∏

j=1

R[n/kn](z/zn,j).

The sharpness of Theorem 2.1 is somewhat more subtle. The first result in
this direction was in [19], but the correct statement is due to V. Andrievskii
and H.-P. Blatt [3]:

Theorem 2.4 Let α > 1, and for each n let Xn be a set of kn points on the unit
circle such that the distance between different points of Xn is at least α2π/n.
Then there are polynomials Pn(z) = anz

n + · · · + 1 such that Pn vanishes at
each point of Xn and

‖Pn‖C1
≤ 1 +Dαkn/n.

Note that here the condition α > 1 is necessary. Indeed, if α < 1, then
consider the α2π/n-spaced sequence Xn of kn points consisting of

eijα2π/n, j = 0, 1, . . . , kn − 1,
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and let J = Jn be the (counterclockwise) arc on the unit circle from 1 to
eiknα2π/n. Now if Pn is a polynomial with Pn(0) = 1 such that it has a zero at
every point of Xn, then there are ≥ (1−α)kn excess zeros of Pn on Jn compared
to n|Jn|/2π, therefore, it follows from Theorem 2.2 that

‖Pn‖C1
≥ exp(c(1− α)2k2n/n),

which is much bigger than 1 +Dαkn/n if kn → ∞.

3 General curves

The preceding results formulated for the unit circle have extensions to Jordan
curves. To state them we need the concept of the equilibrium measure of a
compact set E ⊂ C (see [4] or [10] for more details). It is the unique measure
µE on E that minimizes the logarithmic energy

∫ ∫

log
1

|z − t|dµ(z)dµ(t)

among all unit Borel-measures on E (provided there is a measure on E at all
for which this energy is finite).

Examples:

• dµ[−1,1](x) =
1

π
√
1−x2

dx.

• dµC1
(eit) = 1

2πdt.

Let now K be a smooth Jordan curve (homeomorphic image of the unit
circle) and z0 a fixed point inside K. The following result was proven by An-
drievskii and Blatt [3]: If K is an analytic Jordan curve and Pn with Pn(z0) = 1
has kn zeros on K, then with α > 0-separation (in terms of the conformal map
of the exterior onto the exterior of C1) of these zeros

‖Pn‖K ≥ 1 + c
kn
n
,

and with α > 1-separation it is possible to have

‖Pn‖K ≤ 1 + Cα
kn
n
.

Here, in the first part, the separation condition and the analyticity of K can be
omitted (see [16]):

Theorem 3.1 If K is a C1+ smooth Jordan curve and if Pn with Pn(z0) = 1
has kn zeros on K, then

‖Pn‖K ≥ 1 + c
kn
n
.
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As before, here c > 0 is a positive constant depending only on K.
[16] also has the full analogue of Theorem 2.2:

Theorem 3.2 Under the assumptions of Theorem 3.1 if Pn(z0) = 1 and Pn

has nµK(J) + kn zeros on a subarc J = Jn of K then

‖Pn‖K ≥ exp(ck2n/n).

This is sharp:

Theorem 3.3 If w1, . . . , wkn
is a set of kn ≤ n points on K, then there is a

Pn such that Pn(z0) = 1, all wj are zeros of Pn and

‖Pn‖K ≤ exp(Ck2n/n).

Here the constants c, C > 0 depend only on K.

4 Widom’s conjecture

We started this paper with polynomials Pn(z) = anz
n + · · · + 1 on the unit

circle. Now Qn(z) = znPn(1/z) = zn + · · · has leading coefficient 1 and
|Qn(z)| = |Pn(z)| on C1, so the results for the circle about polynomials with
constant term 1 have a direct translation for polynomials with leading coeffi-
cient 1. The situation is different regarding results on Jordan curves that we
have just discussed.

To deal with general curves, we need to introduce the notion of the log-
arithmic capacity of a compact set K ⊂ C (see [4] or [10] for more details).
If

I(K) =

∫ ∫

log
1

|z − t|dµK(z)dµK(t)

is the minimal energy on K for all unit Borel measures on K (see the preceding
section), then cap(K) = exp(−I(K)) is called the logarithmic capacity of K (if
µK does not exist, i.e. when all unit Borel measures on K have infinite energy,
then we set cap(K) = 0).

Examples:
A segment of length ℓ has capacity ℓ/4, in particular cap([−1, 1]) = 1/2.
A disk/circle of radius r has capacity r, in particular cap(C1) = 1.

There is a related quantity, the so called Chebyshev constant t(K) associated
with K. The number

tn(K) = inf ‖zn + · · · ‖K ,

where the infimum is taken for all monic polynomials of degree n, is called the n-
th Chebyshev number of K. It is easy to show that there is a unique minimizing
polynomial Tn(z) = zn + · · ·, called the Chebyshev polynomial of degree n for
K.

Examples:
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• If K = [−1, 1] then tn(K) = 1
2n−1 , Tn(x) =

1
2n−1 cos(n arccosx).

• If K = C1, then tn(K) = 1, Tn(z) = zn.

It is easy to see that the sequence {tn(K)1/n}∞n=1 converges, and actually
its limit equals its infimum. It is a basic fact due to M. Fekete, G. Szegő and
A. Zygmund, that {tn(K)1/n}∞n=1 converges to cap(K) (see e.g. [10, Corollary
5.5.5]). Hence, we always have (see also [10, Theorem 5.5.4])

‖zn + · · · ‖K ≥ cap(K)n.

Now it is a fundamental problem how close one can get to this theoretical lower
limit, i.e. how small tn(K)/cap(K)n can be (it is always ≥ 1). For example, if
K is a circle, then tn(K)/cap(K)n = 1, so in this case tn(K)/cap(K)n attains
the smallest possible value. However, if K = [−1, 1], then, as we have just
seen, tn(K)/cap(K)n = 2, therefore, in this case, the fraction tn(K)/cap(K)n

stays away from the smallest possible value 1 by a factor 2. This latter fact
is true for any real set, for K. Schiefermayr [12] proved that if K ⊂ R, then
tn(K) ≥ 2cap(K)n. A general upper estimate for tn(K)/cap(K)n was given by
H. Widom [22] in 1969: if K consists of smooth Jordan curves and arcs (recall
that a Jordan arc is the homeomorphic image of a segment), then tn(K) ≤
Ccap(K)n with some constant C that depends only on K.

Widom also proved that if K consists of m ≥ 2 smooth Jordan curves, then
tn(K)/cap(K)n does not have a limit, and its limit points typically (i.e. except
for some special configurations when the limit points form a finite set) fill a whole
interval [1,Γ] with an explicitly given Γ. This non-convergence phenomenon had
already been observed by N. I. Achiezer [1] in 1931 in the case when the set
consisted of two intervals. His result was extended by Widom to the following
form: if K consists of m ≥ 2 intervals on the real line, then tn(K)/cap(K)n

does not have a limit, and its limit points typically fill the whole interval [2, 2Γ],
where Γ is the same quantity as before (just written up for the interval case).
Regarding this result Widom conjectured that if K consists of C2+ smooth
Jordan curves and arcs and there is at least one arc present, then

lim inf
n→∞

tn(K)

cap(K)n
≥ 2. (2)

Here one can observe again the phenomenon we are discussing in this paper:
when K consist of Jordan curves, then the zeros of polynomials that minimize
the norm tend to stay in the interior of the curves. However, when there is an arc
present, that arc does not have an interior, and the zeros, that necessarily appear
also around that arc component, need to stay on, or close to the boundary, and
that is the reason why the norm is raised by a factor > 1 compared to the
theoretically possible lowest value cap(K)n.

Widom’s conjecture (2) is not true: it was proved by J.-P. Thiran and C.
Detaille [13] in 1989 that if K is a subarc on the unit circle of central angle 2α,
then

tn(K) ∼ cap(K)n2 cos2
α

4
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(here ∼ means that the ratio of the two sides tends to 1 as n tends to infinity).
Now if α < π approaches π, then the right-hand side approaches

cap(K)n2 cos2
π

4
= cap(K)n,

so the limit of tn(K)/cap(K)n can be as close to 1 as one wishes.
However, it was proven in [17] that Widom’s conjecture is partially true:

Theorem 4.1 If K, consisting of C1+ smooth Jordan curves and arcs, contains
at least one arc, then there is a β > 0 for which

tn(K) ≥ (1 + β)cap(K)n, n = 1, 2, . . . . (3)

Actually, in [22] Widom had a complete description of the behaviour of the
Chebyshev numbers for unions of Jordan curves, namely he established that

tn(K) ∼ cap(K)nνn

with a rather explicitly defined sequence {νn}. He conjectured that if there is
an arc present, then the formula changes by a factor 2, i.e. in that case

tn(K) ∼ 2cap(K)nνn,

and he verified this conjecture when K consists of intervals on the real line. In
[20] it was shown that the opposite is true.

Theorem 4.2 If K consists of C2+ smooth Jordan curves and arcs and there
is at least one Jordan curve present, then

lim sup
tn(K)

cap(K)nνn
< 2.

For a more precise statement let Karc be the union of the arc components
of K.

Theorem 4.3 If K consists of C2+ smooth Jordan curves and arcs and K is
symmetric with respect to the real line, then the limit points of tn(K)/cap(K)n

lie in the interval
[

2µK(Karc), 2µK(Karc)Γ
]

(4)

and typically fill this interval.

In the last sentence “typically fill this interval” means that this is the case
except when there is a special rational relation between the harmonic measures
of the components, see [22] for more details.

In this theorem Γ is the quantity mentioned before, and though we do not
define it explicitly, we want to point out that if Karc = ∅ then the interval in (4)
becomes [1,Γ], while if Karc = K (i.e. K lies on the real line) then (4) becomes
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[2, 2Γ]. Theorem 4.3 in these two cases had been established by Widom, and
Theorem 4.3 sort of connects these two extreme situations.

Next, we mention the following related results from [15]. Recall that if K
consists of m ≥ 2 smooth Jordan curves, then Widom’s results imply that
necessarily there is an infinite sequence N ′ of the natural numbers such that for
n ∈ N ′

tn(K) ≥ (1 + β)cap(K)n

with some β > 0.

Theorem 4.4 Let K be the union of m ≥ 2 analytic Jordan curves lying exte-
rior to each other. There is an infinite sequence N such that for n ∈ N

tn(K) ≤
(

1 +
C

n1/(m−1)

)

cap(K)n.

Theorem 4.5 There is a K which is the union of m circles such that for any
n

tn(K) ≥
(

1 +
c

n1/(m−1)

)

cap(K)n.

When K consists of m real intervals, then the right-hand sides must be multi-
plied by two, see [14]:

Theorem 4.6 Let K be the union of m ≥ 2 disjoint intervals on the real line.

• There is a sequence N ′ such that for n ∈ N ′

tn(K) ≥ 2(1 + β)cap(K)n.

• There is another sequence N such that for n ∈ N

tn(K) ≤ 2

(

1 +
C

n1/(m−1)

)

cap(K)n.

• There is a K which is the union of m intervals such that for any n

tn(K) ≥ 2
(

1 +
c

n1/(m−1)

)

cap(K)n.

Let us explain what is happening here and what is the difficulty in getting
close to cap(K)n by the norm of a monic polynomial of degree n. If

Pn(z) = zn + · · · = (z − z1) · · · (z − zn),

then

log |Pn(z)| =
n
∑

j=1

log |z − zj | =
∫

log |z − t|dνn(t),
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where νn is the counting measure on the zeros of Pn (taking into account mul-
tiplicity). We want this expression to be not much bigger than n log cap(K) for
z ∈ K. Now if µK is the equilibrium measure of K, then

n log cap(K) = n

∫

log |z − t|dµK(t),

so we want
∫

log |z − t|dνn(t)−
∫

log |z − t|d(nµK)(t) (5)

to be as small as possible for all z ∈ K. Note that here two measures of
equal masses n are involved. Let K1, . . . ,Km be the connected components of
K. The numbers µK(Kj) are called the harmonic measures of these compo-
nents. Now (5) being small for all z ∈ K implies (this is not trivial) that all
|νn(Kj) − nµK(Kj)|, j = 1, 2, . . . ,m, are small. However, νn(Kj) is always an
integer, while nµK(Kj) need not be close to an integer, and this is the reason
why, for all n, tn(K)/cap(K)n cannot be too close to 1 in general, and too
close to 2 if K lies on the real line. In fact, we can see that a simultaneous Dio-
phantine approximation problem emerges: one should approximate all harmonic
densities µK(Kj), j = 1, . . . ,m, by numbers of the form pj/n with a common
denominator. Kronecker’s theorem tells us that this is possible for certain n’s
with error ≤ C/n1/(m−1), and this is the reason for the appearance of the terms
c/n1/(m−1) in Theorems 4.4–4.6.

For sets on the real line this heuristics can be made very precise. Indeed, let
{x} denote the distance of an x ∈ R from the nearest integer, and set

κn = min
{

{nµK(Kj)} j = 1, . . . ,m
}

.

The proof of Theorems 3 and 4 in [14] can be easily modified to show the
following theorem.

Theorem 4.7 Let K be the union of m ≥ 2 disjoint intervals on the real line.
There are constants c, C > 0 depending only on K such that for all n we have

2
(

1 + c
κn

n

)

cap(K)n ≤ tn(K) ≤ 2
(

1 + C
κn

n

)

cap(K)n.

Now in special circumstances it may happen that κn = 0 for certain n’s
(namely when all µK(Kj) are rational), and then tn(K)/cap(K)n assumes its
minimal value 2. But note that if m ≥ 2, then it cannot happen that κn is small
for all n. Indeed, there are infinitely many n’s for which {nµK(K1)} ≥ 1/3
(consider the rational and irrational cases for µK(K1) separately).

We close this section by an analogue of Theorems 2.1 and 2.2, see [18].

Theorem 4.8 Let K be a family of C1+ smooth Jordan curves lying exterior
to each other. If Pn = zn + · · · has kn zeros on K, then

‖Pn‖K ≥ (1 + ckn/n)cap(K)n.
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Note that here we could allow arc components, as well, since an arc compo-
nent automatically implies (3) in view of Theorem 4.1.

Theorem 4.9 Let K be a family of C1+ smooth Jordan curves or arcs lying
exterior to each other. If Pn = zn + · · · has nµK(J) + kn zeros on a subarc
J = Jn of K, then

‖Pn‖K ≥ exp(ck2n/n)cap(K)n.

In particular, if
‖Pn‖K = (1 + o(1))cap(K)n

along a sequence n ∈ N , then Pn have o(n) zeros on K, and Pn cannot have a
zero on K of multiplicity ≥ c

√
n.

These imply that if all zeros of Pn are on K (like for Fekete polynomials),
then there is a β > 0 such that

‖Pn‖K ≥ (1 + β)cap(K)n

even if K is a single C1+ smooth Jordan curve. Here the smoothness of K is
necessary, without it these results are not true.

Theorem 4.10 There is a Jordan curve K and Pn(z) = zn + · · ·, n = 1, 2, . . .,
with all their zeros on K such that

lim inf
n→∞

‖Pn‖K
cap(K)n

= 1.

5 Discrepancy theorems

The problem we are dealing with is related to some classical discrepancy theo-
rems, the first of which was proved by P. Erdős and P. Turán in 1950.

Let Pn(x) = xn + · · ·, and assume that all zeros of Pn are real and

‖Pn‖[−1,1] ≤ An/2
n.

Theorem 5.1 (Erdős-Turán, 1950) For any −1 ≤ a < b ≤ 1
∣

∣

∣

∣

∣

#{xj ∈ (a, b)}
n

−
∫ b

a

1

π
√
1− x2

dx

∣

∣

∣

∣

∣

≤ 8

√

logAn

n
. (6)

Introduce the normalized zero distribution:

νn =
1

n

∑

j

δxj
,

where {zj} is the zero set for Pn, with which an equivalent form of (6) is the
following: with the Chebyshev distribution

dµ[−1,1](x) =
1

π
√
1− x2

dx
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for any interval I ⊂ [−1, 1] we have

∣

∣νn(I)− µ[−1,1](I)
∣

∣ ≤ 8

√

logAn

n
.

This discrepancy theorem has been extended to very general situations. To
state one extension, let K be a finite union of smooth Jordan arcs, and let J be
a subarc on K. A “neighborhood” J∗ of J is depicted on Figure 5

J

J*

Figure 1: A set J∗ associated with J

The following theorem is due to Andrievskii and Blatt, see [2, Theorem
2.4.2].

Theorem 5.2 Let K be the union of finitely many C2+ smooth Jordan arcs,
and Pn(z) = zn + · · · monic polynomials such that

‖Pn‖K ≤ Ancap(K)n.

If νn is the normalized zero distribution of Pn, then for any subarc J ⊂ K we
have

|νn(J∗)− µK(J∗)| ≤ C

√

logAn

n

with some constant C that depends only on K.

Note that this implies the following analogue of Theorem 2.2: If there are
nµK(J) + kn zeros on J , then

kn
n

≤ |νn(J∗)− µK(J∗)| ≤ C

√

logAn

n
,

which, after rearrangement gives

An ≥ exp(ck2n/n),

i.e.
‖Pn‖K ≥ exp(ck2n/n)cap(K)n.
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6 A problem of Erdős

We started this paper with the observation (see also the beginning of Section
4) that if Pn(z) = zn + · · ·, then zeros of Pn on the boundary of the unit circle
imply that the norm cannot be too close to 1. In particular, if all the zeros of
Pn are on the unit circle, then (this is an excercise for the reader)

‖Pn‖C1
≥ 2.

The example zn − 1 shows that here the constant 2 is the correct one, but note
that the zeros of zn − 1 are the n-th roots of unity, and this zero set changes
completely when we move from n to n+1. Erdős conjectured that if the zero sets
for different n are nested, then boundedness cannot happen, i.e. if {zn} ⊂ C1

is any sequence of points on the unit circle and

Pn(z) = (z − z1) · · · (z − zn)

are the polynomials with zeros in the first n terms of the given sequence, then

sup
n

‖Pn‖C1
= ∞,

i.e. ‖Pnk
‖C1

→ ∞ for some sequence {nk} (note that the full sequence {‖Pn‖C1
}∞n=1

may not converge to ∞, as an easy example based on 2k-th roots of unity with
k = 1, 2, . . . shows). Erdős’ conjecture was verified by Wagner [21] in 1980. The
strongest result so far is due to J. Beck [5], who proved

Theorem 6.1 There is a θ > 0 such that, under the preceding assumptions,

‖Pn‖C1
≥ nθ

for infinitely many n.

There had been an earlier conjecture, namely that perhaps even ‖Pn‖C1
≥

n+ 1 is true for infinitely many n, but that was disproven by C. N. Linden [9]
in 1977: There is a sequence {zn} ⊂ C1 and a θ∗ < 1 such that

‖Pn‖C1
≤ nθ∗

, n ≥ n0.

What happens if here, instead of the unit circle, we consider some other
compact set K ⊂ C and an arbitrary sequence {zn} from K? Recall that in
this case Pn(z) = zn + · · ·, and hence

‖Pn‖K ≥ cap(K)n,

so the analogue of Erdős’ question is if ‖Pn‖K/cap(K)n is necessarily unbounded
or not. However, if K is the unit disk and the sequence {zn} is the identically
zero sequence, i.e. zn ≡ 0, then

Pn(z) = (z − z1) · · · (z − zn) ≡ zn,
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and in this case the norm is identically 1 = cap(K)n, i.e. the minimal possible
norm is achieved. This example shows that to find the correct analogue of
Wagner’s theorem, one should restrict the sequence to lie on the other boundary
of K (which is the boundary of the unbounded component of the complement of
K). Now Wagner’s proof can be modified to show that if K consists of smooth
Jordan curves and arcs, then for any {zn} ⊂ K and Pn(z) = (z− z1) · · · (z− zn)
we have

sup
‖Pn‖K
cap(K)n

= ∞.

It is not clear if this is true without the smoothness assumption, i.e. if this
statement is true for all compact K (and for any {zn} on the outer boundary
of K).

7 High order zeros/incomplete polynomials

The motivation for this paper was a result of Lachance, Saff and Varga, so let
us finish with another theorem of them.

Let K be a family of disjoint smooth Jordan arcs on the plane. We have
already mentioned in Section 5 that Theorem 5.2 implies the following: if Pn =
zn + · · · has nµK(J) + kn zeros on a subarc J = Jn of K (e.g. it has a zero
somewhere of multiplicity kn), then

‖Pn‖K ≥ exp(ck2n/n)cap(K)n.

In particular, if Pn has a zero at some point of K of multiplicity kn ∼ λn, then

‖Pn‖1/nK /cap(K) ≥ exp(cλ).

In connection with incomplete polynomials, in the paper [8] Lachance, Saff and
Varga answered the following question: what is the best asymptotic lower bound
Θ(λ) for

‖Pn‖1/n[−1,1]/cap([−1, 1])

if Pn has a zero of order kn ∼ λn at 1? They proved the formula

Theorem 7.1

Θ(λ) = (1 + λ)1+λ(1− λ)1−λ.
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