
A converse to a theorem of Salem and Zygmund∗

A. A. Danielyan V. Totik†

February 11, 2016

Abstract

By proving a converse to a theorem of Salem and Zygmund the pa-
per gives a full description of the sets E of points x where the integral∫ 1

0
(F (x+ t)−F (x− t))/tdt is infinite for a continuous and nondecreasing

function F . It is shown that for this it is necessary and sufficient that
E is a Gδ set of zero logarithmic capacity. Several corollaries are derived
concerning boundary values of univalent functions.

1 Introduction and main results

In this paper we shall use some of the notions of logarithmic potential theory, see
e.g. [1] or [9]. In particular, we shall need the concept of logarithmic capacity of
a compact set. Then it is usual to define the logarithmic capacity of a Borel set
as the supremum of the capacities of its compact subsets. We shall use several
times Choquet’s capacitability theorem [5, Section 5.8]: the capacity of a Borel
set H equals the infimum of the capacities of the open sets containing H. The
logarithmic capacity of a Borel set H will be denoted by cap(H).

For a continuous nondecreasing function F on R and for an x ∈ R let

Ix(F ) =

∫ 1

0

F (x+ u)− F (x− u)

u
du, (1)

and set
E(F ) = {x Ix(F ) = ∞.}

The finiteness of Ix has a close connection with the existence of the conjugate
function at the given point, with the convergence of various singular integrals as
well as with the convergence of conjugate series (see the “nondecreasing periodic
extension” discussion below).
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The following theorem is due to R. Salem and A. Zygmund (cf. Theorem
VII in [12]), who proved it in connection with convergence questions of Fourier-
series.

Theorem A Let F be a continuous and nondecreasing function on the real line.
Then the set E(F ) is of logarithmic capacity zero.

Since E(F ) is the intersection of the open sets

∞∪
n=1

{
x

∫ 1

1/n

F (x+ t)− F (x− t)

t
dt > N

}

for N = 1, 2, . . ., it is also a Gδ set (i.e. a countable intersection of open sets).
Thus, the condition of being a Gδ set of logarithmic capacity zero is necessary
for a set to be the set E(F ) for some continuous and nondecreasing function
F . The question whether the same condition is sufficient, as well, has remained
open. The main purpose of the present paper is to give an affirmative answer
to this question.

Theorem 1 If E ⊂ R is a Gδ set of logarithmic capacity zero, then there is a
continuous and nondecreasing function F such that E = E(F ).

Remark 2 Salem and Zygmund were working with continuous nondecreasing
functions on [0, 2π] and with their “nondecreasing periodic extension” defined
by F (x + 2π) − F (x) = F (2π) − F (0) for all x (see the footnote on p. 35 in
[12] and also [13], p. 11.). Of course, in that case E is 2π-periodic and of
zero logarithmic capacity, and the converse takes the form that if E ⊂ R is a
2π-periodic Gδ set of zero logarithmic capacity, then there is a continuous and
nondecreasing F on [0, 2π] such that for its nondecreasing periodic extension
we have E(F ) = E. In fact, we may assume that 0 ̸∈ E (otherwise use an
appropriate translation of E), apply Theorem 1 to E ∩ [0, 2π], and restrict the
function guaranteed by Theorem 1 to [0, 2π] (note that the finiteness of Ix(F )
depends only on the behavior of F around x).

We shall prove Theorem 1 in the next section, but before that we mention
some corollaries.

As an immediate corollary we have

Corollary 3 Let f be a 2π-periodic continuous function on the real line such
that f is piecewise monotone on [0, 2π]. Then the integral

− 1

π

∫ π

0

f(x+ t)− f(x− t)

2 tan(t/2)
dt, (2)

representing the trigonometric conjugate function f̃ , exists and is finite with the
exception of a Gδ set of zero logarithmic capacity. Conversely, if E ⊂ [0, 2π) is
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a Gδ set of zero logarithmic capacity, then there is a continuous and 2π-periodic
function f such that f is piecewise monotone on [0, 2π] and the set of points x
in [0, 2π) for which (2) does not exist coincides with E.

In the literature the integral (2) is usually taken in principal value sense, and
it is classical that in this sense (2) exists almost everywhere for any integrable
f . The corollary sharpens this for continuous, piecewise-monotone functions. In
this case, except for the points where f changes its monotonicity, (2) exists (as
an ordinary Lebesgue-integral) as a [−∞,∞]–valued function, and the corollary
is about the set of points where its value is finite.

It is not difficult to modify the proof so that the function f in the last claim
of the corollary is increasing on [0, π] and decreasing on [π, 2π].

A completely similar statement holds for the set where the Hilbert transform∫
R

f(t)

x− t
dt

exists for a piecewise monotone, and on R integrable function f .

Let ∆ be the open unit disk and let T be the unit circle. Suppose that
f is a univalent function in ∆ such that its radial limits (denoted again by
f(θ), |θ| = 1) exist everywhere on T. By a theorem of Beurling [2] the set
{θ ∈ T f(θ) = 0} is of logarithmic capacity zero. This set is also a Gδ set,
since it is the intersection of the open sets

∞∪
n=1

{
θ ∈ T |f(e−1/nθ)|+ 1

n
<

1

N

}
for N = 1, 2, . . .. As an application of Theorem 1 we prove the following con-
verse.

Corollary 4 Let E be a Gδ subset of T of zero logarithmic capacity. Then there
exists a univalent function f in ∆ such that its radial limits exist everywhere
on T and they are equal to zero exactly on E.

The particular case when E is closed is of special interest, and in this case
the conclusion can also be strengthened.

Corollary 5 If E ⊂ T is a closed set of zero logarithmic capacity, then there
exists a continuous function f on the closed unit disk ∆ which is univalent in
∆ such that f vanishes precisely at the points of E.

This corollary is the univalent analogue of Fatou’s interpolation theorem,
according to which if E ⊂ T is a closed set of Lebesgue measure zero, then
there exists a continuous function f in the closed unit disk ∆ which is analytic
in ∆ such that f vanishes precisely at the points of E. As Beurling’s theorem
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and Corollary 5 show, under the additional condition of univalency the role of
sets of zero measure is taken over by sets of zero capacity. We also mention that
an analogue of the Rudin-Carleson interpolation theorem for univalent functions
has been proved recently by C. J. Bishop (see [3], p. 608): if E ⊂ T is a closed
set of zero logarithmic capacity and h : T → T is an orientation-preserving
homeomorphism, then there is a conformal map f : ∆ → Ω ⊂ ∆ onto a Jordan
domain Ω such that f

E
= h

E
. Since Ω is a Jordan domain, f can be extended

to a continuous function on ∆. Even then Bishop’s theorem and Corollary 5 are
independent results since the function h is a homeomorphism, while Corollary
5 concerns the univalent extension of the identically zero function.

Finally, we derive from Theorem 1 a result of S. V. Kolesnikov. Suppose
again that f is a univalent function in ∆, and consider the set of points on T
at which the radial limit of f does not exist. By a classical theorem of Beurling
[2] this set is of zero logarithmic capacity. The following partial converse is due
to S. V. Kolesnikov [8].

Corollary 6 (Kolesnikov) Let E ⊂ T be any Gδ set of zero logarithmic ca-
pacity. Then there exists a bounded univalent function f in ∆ such that f has
radial limit at every point of T \ E and has no radial limit at any point of E.

The problem whether similar result is true for any Gδσ-set of logarithmic
capacity zero on T remains open.

2 Proof of Theorem 1

It is enough to prove the theorem for bounded E. Indeed, if we know the
result for bounded sets, then there is an Fn such that E ∩ [n, n + 1] = E(Fn).
We may modify Fn to be constant on (−∞, n − 1) and on (n + 2,∞), and
then by multiplication by a small number we may assume |Fn| ≤ 2−n. But then
F =

∑
Fn is an increasing continuous function for which E = ∪nE(Fn) = E(F ).

Thus, we may assume E to be bounded, and then by simple scaling that
E ⊂ [1/3, 2/3]. Since E is Gδ and of logarithmic capacity 0, by a theorem of
Deny [4] there is a finite measure ρ on C such that

U(ρ, z) :=

∫
log |z − t|dρ(t) = −∞

precisely if z ∈ E. Unfortunately, in Deny’s theorem the measure may not be
supported on the real line, so first we reprove Deny’s result along the original
proof.

In the lemmas that follow “open” is referring to the topology on R.

Lemma 7 Let O ⊂ (0, 1) be an open set. Then there is a continuous probability
measure νO on R for which

U(νO, x) ≤ log cap(O), x ∈ O, (3)
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and U(νO, z) is finite at all points.

Recall that the continuity of νO means that νO({x}) = 0 for all x (i.e. νO has
no point masses).

Proof. Let O = ∪∞
j=1(aj , bj) where the (aj , bj)’s are disjoint, and set Kn =

∪n
j=1[aj + 1/n, bj − 1/n] (skip the j-th term if aj + 1/n ≥ bj − 1/n). This is

a compact set of logarithmic capacity < cap(O), and if νn is its equilibrium
measure then, by Frostman’s theorem [9, Theorem 3.3.4],∫

log |x− t|dνn(t) = log cap(Kn) ≤ log cap(O), x ∈ Kn. (4)

Let νO be a weak∗-limit of the sequence {νn}, say νn → νO as n → ∞, n ∈ N . νn
is absolutely continuous on the interior of Kn and its density wn (with respect to
Lebesgue-measure) is a C∞-function (see e.g. for an explicit representation [11,
Lemma 4.4.1]). Let x ∈ O and choose δ > 0 such that [x−2δ, x+2δ] ⊂ O. Then
[x− 2δ, x+ 2δ] ⊂ Kn for all n ≥ n0, and on the set [x− 2δ, x+ 2δ] (actually on
the whole set Kn0) the sequence {νn}n≥n0 is a decreasing sequence of measures
([10, Theorem IV.1.6(e)]). These imply that νO is absolutely continuous on
(x − 2δ, x + 2δ) and on (x − δ, x + δ) we have wn ↘ wO(x), where wO is the
density of νO. Hence, by the monotone convergence theorem, we have as n → ∞,
n ∈ N , ∫ x+δ

x−δ

log |x− t|dνn(t) →
∫ x+δ

x−δ

log |x− t|dνO(t).

On the other hand, according to what we have just said νn
R \ [x− δ, x+ δ]

→

νO
R \ [x− δ, x+ δ]

in the weak∗ topology as n → ∞, n ∈ N , hence∫
R\[x−δ,x+δ]

log |x− t|dνn(t) →
∫
R\[x−δ,x+δ]

log |x− t|dνO(t).

Thus, we have proven that along the sequence n ∈ N∫
log |x− t|dνn(t) →

∫
log |x− t|dνO(t),

and then (3) follows from (4).
Since, by Frostman’s theorem,∫

log |z − t|dνn(t) ≥ log cap(Kn)

for all z, one can easily deduce that U(νO, z) is finite everywhere. Finally, the
finiteness of U(νO, z) at every z implies that νO is a continuous measure, i.e. it
has not atoms: νO({x}) = 0 for all x ∈ R.
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Lemma 8 Let E ⊂ [1/3, 2/3] be a Borel set of logarithmic capacity 0, ε > 0,
and let Ω ⊂ (1/4, 3/4) be an open set containing E such that cap(Ω) ≤ ε. Then
there exists a continuous measure νE,Ω on [1/4, 3/4] of total mass ≤ 1 such that

U(νE,Ω, x) ≤ −1

2
log(1/2ε) for all x ∈ E (5)

and
U(νE,Ω, x) ≥ −1. for all x ̸∈ Ω, (6)

Furthermore, U(νE,Ω, z) is finite for all z.

Proof. Let

Em = {x ∈ E e−2m+1

≤ dist(x,R \ Ω) < e−2m}.

Since the capacity of a segment of length l is l/4, the condition cap(Ω) < ε
implies that Em is empty if 2m+1 < log(1/2ε). By Choquet’s capacitability
theorem for every m there are open sets Em ⊂ Om ⊂ Ω such that cap(Om) <
e−8m . We may also assume that all points in Om lie of distance

e−2m+2

< · < e−2m−1

from R \ Ω.
Since Om lies in (1/4, 3/4), the measures νOm from the preceding lemma are

supported on [1/4, 3/4]. The measure

νE,Ω :=

∞∑
2m+1≥log(1/2ε)

1

4m
νOm

is continuous, and, by (3), we have for all x ∈ E, say for x ∈ Em,∫
log |x−t|dνE,Ω(t) ≤

1

4m

∫
log |x−t|dνOm(t) ≤ 1

4m
(−8m) = −2m ≤ −1

2
log(1/2ε),

while for x ̸∈ Ω∫
log |x− t|dνE,Ω(t) =

∞∑
2m+1≥log(1/2ε)

∫
log |x− t|dνOm(t),

and since the support of νOm lies in the closure of Om which is of ≥ e−2m+2

distance from x, we can continue the preceding line as∫
log |x− t|dνE,Ω(t) ≥

∞∑
2m+1≥log(1/2ε)

(
−2m+2

) 1

4m
≥ −1.
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That U(νE,Ω, z) is finite for all z is clear if z ̸∈ R, and for z ∈ R\Ω we have
just proved it. Finally, for z ∈ Ω there is an m0 such that dist(z,Om) ≥ δ with
some δ (that depends on z) for all m ≥ m0, hence, as before,∑

m≥m0

1

4m

∫
log |z − t|dνOm(t) ≥ log δ

(recall also that U(νOm
, z) is finite for all m).

Now we are ready to prove Deny’s theorem with a small addition on the
measure:

Lemma 9 If E ⊂ [1/3, 2/3] is a Gδ set of zero logarithmic capacity, then there
is a continuous and finite measure µ supported on [1/4, 3/4] such that U(µ, x) =
−∞ for all x ∈ E and U(µ, x) > −∞ for all x ∈ R \ E.

Proof. By Choquet’s capacitability theorem for every n there are open sets
E ⊂ Hn of capacity cap(Hn) ≤ e−2n+1

. Represent E as E = ∩nΩn where
the Ωn are open. We can replace Ωn by Ωn ∩ Hn, so we may assume that
cap(Ωn) ≤ 1

2e
−2n . With the νE,Ωn from the preceding lemma we set

µ =

∞∑
n=1

1

2n
νE,Ωn . (7)

This is a finite and continuous measure, and (5) (with ε = 1
2e

−2n) shows that

U(µ, x) ≤
∑
n

1

2n
(−1

2
2n) = −∞

if x ∈ E. On the other hand, if x ̸∈ E then there is an n0 such that x ̸∈ Ωn for
n ≥ n0, and then (6) yields

U(µ, x) ≥
∑
n<n0

U(νE,Ωn , x) +
∑
n≥n0

1

2n
(−1) > −∞.

After these preparations we turn now to the proof of Theorem 1. With the
µ from the previous lemma set

F (x) = µ((−∞, x]). (8)
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This is a continuous nondecreasing function on R, it is 0 on (−∞, 1/4) and it is
constant on [4/5,∞). We claim that Ix(F ) = ∞ for all x ∈ E. Indeed, let the
measure dν(t) = dt

t be defined on [0, 1], and for x ∈ E consider the triangle Vx

with vertices at (x, 0), (x− 1, 1), (x+1, 1). Consider the product measure µ× ν
on Vx:

(µ× ν)(Vx) =

∫ ∫
χVx(u, v)d(µ× ν)(u, v) =

∫
R

∫ 1

0

χVx(u, v)dν(v)dµ(u), (9)

where χVx is the characteristic function of Vx and we have used Fubini’s theorem.
For a fixed u ∈ [x− 1, x+ 1] (otherwise the inner integral is 0), we have∫ 1

0

χVx(u, v)dν(v) =

∫ 1

|x−u|
dν(v) =

∫ 1

|x−u|

dv

v
= − log |x− u|,

so U(µ, x) = −∞ gives that the double integral in (9) is ∞. But that integral
can also be written as ∫ 1

0

∫
R

χVx(u, v)dµ(u)dν(v),

and for a fixed v ∈ [0, 1] we have∫
R

χVx(u, v)dµ(u) = µ((x− v, x+ v]) = F (x+ v)− F (x− v),

that is

∞ = (µ× ν)(Vx) =

∫ 1

0

F (x+ v)− F (x− v)

v
dv,

which proves the claim x ∈ E(F ).
Similar reasoning shows that if x ̸∈ E then x ̸∈ E(F ) (since in this case

(µ× ν)(Vx) is finite).

Remark 10 It is also clear from the connection between µ and F why the
Salem-Zygmund result is true: if F is continuous and nondecreasing, and, say,
is constant on (−∞, 0) and on (1,∞) then F generates a measure µ of compact
support for which U(µ, x) = −∞ for all x ∈ E(F ). Now the Salem-Zygmund
theorem follows from the fact that a potential can be −∞ only on a set of zero
logarithmic capacity. (If cap(E(F )) > 0 then there is a compact set K ⊆ E(F )
of positive capacity. If ν is the equilibrium measure of K, then, by Frostman’s
theorem, U(ν, x) ≥ log cap(K), so

−∞ <

∫
U(ν, x)dµ(x) =

∫
U(µ, t)dν(t) =

∫
K

(−∞)dν = −∞,

a contradiction.)
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3 Proof of Corollaries 3–6

In the following lemma we use the definition of Ix(F ) from (1) not only for
continuous and nondecreasing, but for any continuous function F .

Lemma 11 Let E ⊂ [0, 2π] be a Gδ set of logarithmic capacity zero such that
0, π, and 2π do not belong to E. Then there exists a continuous and 2π-periodic
function F ≥ 0 with the properties:

1) F is nondecreasing on [0, π] and the set {x ∈ (0, π) Ix(F ) = ∞} coincides
with (0, π) ∩ E,

2) F is nonincreasing on [π, 2π] and {x ∈ (π, 2π) Ix(F ) = −∞} coincides with
(π, 2π) ∩ E,

3) The numbers I0(F ), Iπ(F ), I2π(F ) exist and they are finite.

Note that in 1) and 2) the existence of Ix(F ) is automatic by the assumed
monotonicity.

Proof. In the following reasoning we use the following simple fact: if g is
increasing and h is continuously differentiable in a neighborhood of a point x
and h′(x) > 0, then Ix(g) is finite precisely if Ix(gh) is finite.

By Theorem 1 there exists a continuous nondecreasing function φ (on R)
such that E = E(φ). Denote by φ1 the restriction of φ to [0, 2π]. Since E ⊂
(0, 2π), we have E = E(φ1). By shifting the function φ1 vertically (by adding a
constant), without loss of generality, we may assume φ1(π) = 0.

Also, without loss of generality, we may assume φ1(0) = −φ1(2π). Indeed, if
both φ1(0) and φ1(2π) are different from zero, this can be done for example by
replacing the values of the function φ1 on the subinterval [0, π] by the function
c φ1|[0,π] where c = −φ1(2π)/φ1(0). The case when both φ1(0) and φ1(2π) are
zero is trivial, since then φ1 is identically zero and E is empty. Finally, if for
example φ1(0) = 0 (thus, φ1 is identically zero on [0, π]), but φ1(2π) ̸= 0 (then
in fact φ1(2π) > 0), we redefine φ1 on [0, π] as a linear function which takes the
values −φ1(2π) and 0 at the points 0 and π, respectively.

Thus we may assume that we have a continuous nondecreasing function φ1

on [0, 2π], such that E = E(φ1), φ1(π) = 0, and φ1(0) = −φ1(2π). Consider
φ2 = −|φ1|, the 2π-periodic extension of which has all properties of F listed in
the lemma except the nonnegativity condition and possibly property 3).

The function φ3(x) = φ2(x)(x−π)2 has all properties of φ2, and in addition
it is differentiable at π, which implies that Iπ(φ3) is finite.

Next, φ4(x) = φ3(x) + φ1(2π)π
2 has all properties of φ3 but φ4 is also

nonnegative and φ4(0) = φ4(2π) = 0.
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Finally, the 2π-periodic extension of F (x) = φ4(x)x
2(x − 2π)2, x ∈ [0, 2π],

has all the required properties (note that F is differentiable at 0, π and 2π,
which implies property 3).

Proof of Corollary 3. Note that (2) is finite at x if and only if Ix(f) is
finite. Now the first statement in the corollary is an immediate consequence
of the Salem-Zygmund result Theorem A if we apply it to the finitely many
subintervals of [0, 2π] where f is monotone (the finitely many points where f
changes monotonicity does not play a role in the “Gδ, zero logarithmic capacity”
property of the set in question).

In the proof of the second statement we may assume that 0, π, 2π do not
belong to E (apply a translation if this is not the case), and then the second
claim in the corollary follows from Lemma 11 (set f = F ) using again the
equiconvergence of (2) and Ix(f).

Proof of Corollary 4. Since E is of logarithmic capacity zero, one can find
two diametrically opposite points on T which do not belong to E. Without loss
of generality we may assume them to be 1 and −1.

We identify the set E with its “image set” on [0, 2π] defined as {x ∈ [0, 2π]|eix ∈
E}. Then E on [0, 2π] satisfies the conditions of Lemma 11. Let F be the func-
tion from Lemma 11. By a result of W. Kaplan [7, Theorem 3], the function

G(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
F (θ) dθ

is univalent in ∆. If G(z) = u(z) + iv(z), then u, being the Poisson integral of
the continuous and periodic function F , is continuous on the closed unit disk.

Next, note that the function Ix(F ) behaves as the boundary function

F̃ (x) = − 1

π

∫ π

0

F (x+ t)− F (x− t)

2 tan 1
2 t

dt

of the conjugate harmonic function v(z), where G(z) = u(z) + iv(z) as above:
Ix(F )+πF̃ (x) is a continuous function of x. This is so because 1/t−1/2 tan(t/2)
is a continuous function around the origin. In particular, Ix(F ) and −F̃ (x) are
∞ or −∞ at exactly the same points, and hence v(z) → ∞ or v(z) → −∞ as
z ∈ ∆ tends radially to a point of E.

The continuity of F and its other properties stated in Lemma 11 imply that
the radial limits of v exist and are finite everywhere on the set T \ E (see for
example [13], p. 103, Theorem 7.20). The same properties also imply that on
the portion of E located on the upper semicircle the radial limits of v are equal
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to ∞, while on the portion of E located on the lower semicircle they are equal
to −∞ (see again [13], Theorem 7.20). From these facts it is clear that the
univalent function f(z) = 1

G(z)+1 satisfies the claim in the corollary.

Proof of Corollary 5. Since E is closed, in addition to the conclusions of
Lemma 11, one can also achieve (see the argument below) that for the function
F in Lemma 11 the quantity Ix(F ) (thus also F̃ (x)) is continuous at every point
x that belongs to the complement of E, and it is also continuous in the extended
sense at each point of E, where the values of the function are ±∞. Hence, again,
f(z) = 1

G(z)+1 has the claimed properties.

To see that we mention first of all, that, if in Lemma 7 the set O consists of
finitely many intervals, then there exists a continuous probability measure ν̃O
on R for which

U(ν̃O, x) ≤
1

2
log cap(O), x ∈ O, (10)

U(ν̃O, z) is finite at all points, and, in addition, the density of ν̃O with respect
to Lebesgue measure is continuously differentiable everywhere. Indeed, consider
the equilibrium measure νO of the closure O of O. For it we have (see the
reasoning in Lemma 7)

U(νO, x) = log cap(O) = log cap(O), x ∈ O. (11)

This ωO has C∞ density ω everywhere, except at the endpoints of the compo-

nents/subintervals of O, where it has a 1/
√
t-type singularity. Since there are

only finitely many endpoints, one can easily choose an increasing sequence {hn}
of nonnegative continuously differentiable functions that converge pointwise to
ω. By Lebesgue’s monotone convergence theorem then we have∫

log |x− t|hn(t)dt ↘ U(x) = log cap(O), x ∈ O,

hence this convergence is uniform on O by Dini’s theorem. Therefore, for large
n we have ∫

log |x− t|hn(t)dt <
1

2
log cap(O), x ∈ O,

and dν̃O(x) = hn(x)dx is an appropriate measure for (10).
Next, note that if E is closed in Lemma 8, then the sets Em in the proof of

that lemma are empty for all large m, furthermore, the Ωm in that lemma can
be taken to consist of finitely many intervals. Hence, the proof gives (use now
(10) instead of (3)) a νE,Ω as in the lemma for which the conclusions of Lemma
8 are true with (5) replaced by

U(νE,Ω, x) ≤ −1

4
log(1/2ε) for all x ∈ E, (12)
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and, in addition, νE,Ω has continuously differentiable density outside E.
Finally, if we use in the proof of Lemma 9 the just given strengthening of

Lemma 8, and we choose in that proof Ωn as some dn-neighborhood of the
compact set E, then we can conclude Lemma 8 for some µ with the additional
property that µ has continuously differentiable density outside E (indeed, one
only has to remark that in this case on every closed interval that is disjoint
from E all but finitely many terms in the sum (7) are zero, so the density
of the measure µ in (7) on every such interval is a finite sum of continuously
differentiable functions).

Therefore, if we define again F (x) = µ((−∞, x]) as in (8), then this F has all
the properties as before, and, in addition, it is continuously differentiable outside
E. This then implies that the integrals Ix(F ) converge locally uniformly in the
complement of E, and, as a consequence, the function Ix(F ) is a continuous
function in the complement of E. But this function is also continuous at every
point of E in the extended sense, i.e. Iy(F ) → ∞ if y → x ∈ E (recall that
Ix(F ) = ∞ if x ∈ E). Indeed, the integrals∫ 1

1/n

F (x+ t)− F (x− t)

t

are continuous functions of x and for n → ∞ they converge monotone increas-
ingly to Ix(F ). Hence, Ix(F ) is lower semi-continuous in x, therefore it is
continuous in the extended sense wherever it is ∞.

Now if we follow the proof of Corollary 4 with this modification, we can
conclude that the function f constructed there is continuous everywhere on T.

Proof of Corollary 6. Consider the proof of Corollary 4 and the functions
F , G constructed there. That proof shows that the range of G is part of the
vertical strip S bounded by the imaginary axis and the vertical line through the
point F (π) > 0 of the real axis.

In the complex plane consider a bounded simply connected (spiral shaped)
domain U called the “outer snake” which winds infinitely many times around
the unit circle. Let ζ = H(w) be a conformal map of the right half plane onto
U such that the boundary point of the right half plane at infinity corresponds
to the prime end of U having the unit circle as its impression. Then, as we
approach any point of E from ∆ radially, the values of the function G approach
∞ (while staying inside the strip S which is part of the right-half plane), and
so the values H(G(z)) wind indefinitely around the unit circle. It is easy to see
that at other points the radial limit of H(G(z)) exist, hence H(G(z)) has all
the properties stated in Corollary 6.

As a final note we mention that conformal mappings onto spiral domains
were earlier used by Kolesnikov [8].
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