
On a problem of B. Mityagin∗

Vilmos Totik†

January 3, 2017

1 The problem

In connection with an uncertain principle Boris Mityagin [2] formulated the
following problem. For given 0 < p < ∞ and d ≥ 1, characterize those non-
empty subsets A,B of Rd for which

f(x+ a)− f(x) ∈ Lp(Rd) for all a ∈ A, (1)

and
f(x) sin⟨x, b⟩ ∈ Lp(Rd) for all b ∈ B, (2)

imply f ∈ Lp(Rd) for any measurable function f on Rd (here ⟨x, b⟩ denotes the
inner product of x and b). He showed (for p ≥ 1) that if

(i) A = αZd and B = βZd, or

(ii) A = {a} and B = {b} are singletons,

then (1) and (2) imply f ∈ Lp(Rd) if and only if αβ is not an integer multiple
of π in case (i) and ⟨a, b⟩ is not an integer multiple of π in case of (ii). He has
also conjectured the statement in

Proposition 1 (1) and (2) imply f ∈ Lp(Rd) for every measurable function f
on Rd if and only if there are a ∈ A and b ∈ B such that ⟨a, b⟩ is not an integer
multiple of π.

This paper is devoted to the proof of this proposition. A relatively simple
modification of the proofs shows that the claim is true also for L∞(Rd).

The sufficiency part of Proposition 1 easily follows from the method of [2]
(which fact was mentioned in that paper), but we follow a different and shorter
path.

∗AMS Classification: 26B15, Key words: shifts of functions, Lp spaces
†Supported by ERC Advanced Grant No. 267055

1



2 Sufficiency in Proposition 1

Let a ∈ A and b ∈ B be such that ⟨a, b⟩ is not an integer multiple of π. If we
multiply the function in (1) by sin⟨x, b⟩ and add the function in (2), then we
obtain f(x+ a) sin⟨x, b⟩ ∈ Lp(Rd), i.e. f(x) sin⟨x− a, b⟩ ∈ Lp(Rd), which is the
same as f(x)| sin⟨x− a, b⟩| ∈ Lp(Rd). Thus, f(x)h(x) ∈ Lp(Rd), where

h(x) = | sin⟨x, b⟩|+ | sin⟨x− a, b⟩|.

On the line ℓ = {tb t ∈ R} the function h(tb) is continuous, non-zero (a
zero would mean that both t⟨b, b⟩ and t⟨b, b⟩ − ⟨a, b⟩ — and hence also ⟨a, b⟩
— are integer multiples of π, which is not the case by the assumption) and
periodic in t ∈ R with period π/⟨b, b⟩, hence it has there a positive lower
bound: h(tb) ≥ δ > 0. Since on the hyperplanes of Rd that are perpendicular
to ℓ the function h is constant, it follows that h(x) ≥ δ for all x ∈ Rd, and
hence fh ∈ Lp(Rd) implies f ∈ Lp(Rd).

3 Necessity in Proposition 1

Suppose now that

⟨a, b⟩ ∈ πZ for all a ∈ A and b ∈ B. (3)

We are going to construct a measurable function f ̸∈ Lp(Rd) for which (1) and
(2) are true.

Let A be the additive group generated by A with vector addition in Rd as
the group operation. Then

⟨a, b⟩ ∈ πZ for all a ∈ A and b ∈ B, (4)

is also true, hence we may replace A by A. If A is the closure of A in the metric
of Rd, then (4) remains true when A is replaced by A, so we may assume that A
is a closed subgroup of Rd. We shall need the following description of A, which
is basically known (c.f. [1, M. 4.8], [3, Theorem 4.20]) and fairly easy to prove.
Since our formulation is somewhat more precise than what is in the literature,
for completeness we give a proof at the and of this note.

Lemma 2 (a) There is a subspace V of Rd and a discrete subgroup G in its
orthogonal complement V ⊥ such that A = G + V .

(b) The discrete subgroups of Rd are the free groups generated by linearly
independent elements.

(a) means that every a ∈ A can be uniquely written in the form a = g + v
where g ∈ G and v ∈ V . (b) means for the G in (a) that there are linearly
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independent elements g1, . . . , gm ∈ G such that every g ∈ G can be uniquely
written in the form

g = α1(g)g1 + · · ·+ αm(g)gm,

with some integers α1(g), . . . , αm(g). Set

α(g) = max
1≤j≤m

|αj(g)|,

and
Sk = {g ∈ G α(g) = k}.

Since the different elements kg1+α2g2+ · · ·αmgm with −k ≤ αj ≤ k all belong
to Sk, we have |Sk| ≥ (2k + 1)m−1. On the other hand, every element of Sk

belongs to one of the sets {g αj(g) = ±k,−k ≤ αi(g) ≤ k if i ̸= j}, 1 ≤ j ≤ m.
Each of these sets has 2(2k + 1)m−1 elements, hence |Sk| ≤ 2m(2k + 1)m−1.
Thus, if A ∼ B means that A/B lies in between two positive constants, then
we have |Sk| ∼ (k+ 1)m−1 for all k. As a consequence we obtain that if M > 0
is any number, then for ε ≥ 0∑

a∈A

1

(α(a) +M)m+ε
< ∞ ⇔ ε > 0. (5)

Indeed, this is immediate since∑
a∈A

1

(α(a) +M)m+ε
=

∞∑
k=0

∑
a∈Sk

1

(α(a) +M)m+ε
=

∞∑
k=0

|Sk|
(k +M)m+ε

∼
∞∑
k=0

(k + 1)m−1

(k +M)m+ε
,

and it is clear that the last sum diverges (terms are ∼ 1/k) if ε = 0, and
converges (terms are ∼ 1/k1+ε) if ε > 0.

In the proof of the necessity we distinguish two cases.

Case I: A is discrete. Thus, in this case V = {0} and A = G. Since A is
discrete, there is an M such that the distance in between different elements of
A is at least 2/M1/d (just note that if there were different elements arbitrarily
close to each other, then their difference would be non-zero and arbitrarily close
to 0, contradicting the discrete character of A).

Assume first that the number m in the description of G is bigger than 0. For
a ∈ A let Ba be the (closed) ball of radius 1/(α(a) +M)m/d with center at a,
and set f = χ∪a∈ABa , where χE denotes the characteristic function of the set
E. Since the balls Ba are disjoint by the choice of M , and the d-dimensional
volume of a ball of radius r is θdr

d with some number θd, it follows that the Lp

norm of f is

θd
∑
a∈A

1

(α(a) +M)m
= ∞
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by (5), so f ̸∈ Lp(Rd). On the other hand, below we show that (1) and (2) are
true, and that will complete the proof of the necessity in the case when A is
discrete and m ≥ 1.

It is sufficient to prove (1) for the generators gj , j = 1, . . . ,m. Choose such
a gj , and consider the set

Fj = {x f(x+ gj)− f(x) ̸= 0}.

Since f(x+gj)−f(x) takes only the values 0,±1, if we show that meas(Fj) < ∞,
then (1) follows. But x ∈ Fj means that either x ∈ Ba0 for some a0 ∈ A and
x+ gj ̸∈ ∪a∈ABa, or the other way around (i.e. x+ gj ∈ Ba0 and x ̸∈ ∪a∈ABa).
These two cases are similar (just replace x by x+gj and gj by −gj), so consider
the first one. Let Br(z) denote the (closed) ball about z and of radius r. Since
x+ gj ̸∈ ∪a∈ABa, we have in particular

x+ gj ̸∈ Ba0+gj = B(α(a0+gj)+M)−m/d(a0 + gj),

which is the same as
x ̸∈ B(α(a0+gj)+M)−m/d(a0).

Therefore, by the assumption

x ∈ B(α(a0)+M)−m/d(a0) \B(α(a0+gj)+M)−m/d(a0). (6)

This is possible only if α(a0 + gj) > α(a0). But in any case, the definition of
the function α shows that α(a0+ gj) ≤ α(a0)+1, so we must have α(a0+ gj) =
α(a0) + 1. But then from (6) it follows that

meas(Fj ∩ Ba0) ≤ 2 meas
(
B(α(a0)+M)−m/d(a0 + gj) \B(α(a0+gj)+M)−m/d(a0 + gj)

)
= 2θd

(
1

(α(a0) +M)m
− 1

(α(a0) + 1 +M)m

)
∼ 1

(α(a0) +M)m+1
,

and so
meas(Fj) =

∑
a0∈A

meas(Fj ∩ Ba0) < ∞

in view of (5). This proves (1).

Now consider property (2). Let b ∈ B. Since ⟨a, b⟩ ≡ 0 (mod π) for all
a ∈ A, it follows that if x ∈ Ba, then (in what follows |x| denotes the Euclidean
norm of x ∈ Rd)

| sin⟨x, b⟩| = | sin⟨x− a, b⟩| ≤ |x− a||b| ≤ |b|
(α(a) +M)m/d

,

and so∫
Ba

|f(x) sin⟨x, b⟩|pdx ≤
(

|b|
(α(a) +M)m/d

)p

meas(Ba) = |b|p θd
(α(a) +M)m+mp/d

.
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Therefore, (5) implies∫
|f(x) sin⟨x, b⟩|pdx =

∑
a∈A

∫
Ba

|f(x) sin⟨x, b⟩|pdx =
∑
a∈A

|b|p θd
(α(a) +M)m+mp/d

< ∞.

This is property (2), and the proof is complete when A is discrete and m ≥ 1.
If A is discrete but m = 0, then A = A = {0}, so (1) is automatic for all

f , and to get the necessity just set f(x) = |x|−d/p(1 + |x|)−2 which is not in
Lp(Rd), but f(x)|x| ∈ Lp(Rd) implying (2).

Case II: A is not discrete. In this case, V ̸= {0}. Let l ≥ 1 be the dimension
of V , and assume first again that G ̸= {0}, i.e. m ≥ 1. Since G is discrete, there
is an M > 0 such that different elements of G are of distance > 2/M (m+l)/(d−l).
This implies that any two elements of g + V and g′ + V are of distance >
2/M (m+l)/(d−l) if g, g′ ∈ G are different (note that G lies in V ⊥).

Let D be the (closed) unit ball in V ⊥. It is of dimension d− l > 0 (note that
V cannot be the whole Rd because m ≥ 1), and for a y ∈ V and g ∈ G let

Dy,g = y + g +D · (|y|+ α(g) +M)−(m+l)/(d−l),

which is a d−l dimensional ball about g+y of radius (|y|+α(g)+M)−(m+l)/(d−l).
Set

Eg = ∪y∈V Dy,g

and f = χ∪g∈GEg . According to what we have just said, the different Eg’s are

disjoint (since any element of Eg is of distance ≤ 1/(α(g) + M)(m+l)/(d−l) ≤
1/M (m+l)/(d−l) from g + V ). It is easy to see that each Eg is closed, so f is
measurable. Using Fubini’s theorem we obtain that

meas(Eg) =

∫
V

θd−l
1

(|y|+ α(g) +M)m+l
dy ∼ 1

(α(g) +M)m
, (7)

where we used that for τ ≥ 0∫
V

1

(|y|+ L)m+l+τ
dy ∼ 1

Lm+τ
(8)

uniformly in L > 0. Indeed, this is immediate if we make the substitution
y = Ly′ in the integral.

In view of (7) and (5)

meas (∪g∈GEg) ∼
∑
g∈G

1

(α(g) +M)m
= ∞,
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and hence f ̸∈ Lp(Rd). To complete the proof we shall show that, on the other
hand, f satisfies both (1) and (2).

It is enough to prove (1) for all a = v, v ∈ V and for all generators a = gj
of G. This second one is similar to what we did in the discrete case. Indeed, let
again

Fj = {x f(x+ gj)− f(x) ̸= 0},

and it is sufficient to show that meas(Fj) < ∞. Now x ∈ Fj means that either
x ∈ Dy,a0 for some y ∈ V and a0 ∈ G and x + gj ̸∈ ∪g∈GEg, or the other way
around, and we may consider the first case. Then

x ∈ y + a0 +D · (|y|+ α(a0) +M)−(m+l)/(d−l)

but
x+ gj ̸∈ y + a0 + gj +D · (|y|+ α(a0 + gj) +M)−(m+l)/(d−l),

i.e.
x ̸∈ y + a0 +D · (|y|+ α(a0 + gj) +M)−(m+l)/(d−l),

and so

x ∈ y+a0+

(
D

(|y|+ α(a0) +M)(m+l)/(d−l)
\ D
(|y|+ α(a0 + gj) +M)(m+l)/(d−l)

)
.

(9)
As in the discrete case this is possible only if α(a0 + gj) = α(a0) + 1, and then
it follows that the (d − l)-dimensional measure of Fj ∩ (Ea0 ∩ (y + V ⊥)) is at
most twice the difference

θd−l

(|y|+ α(a0) +M)m+l
− θd−l

(|y|+ α(a0) + 1 +M)m+l
∼ 1

(|y|+ α(a0) +M)m+l+1
.

If we integrate this with respect to y ∈ V , then we obtain from (8) that the
measure of Fj ∩Ea0 is at most a constant times (α(a0) +M)−(m+1), and hence

meas(Fj) =
∑
a0∈G

meas(Fj ∩ Ea0) ≤ C
∑
a0∈G

1

(α(a0) +M)m+1
< ∞,

where we used again (5).

Consider now (1) for a = v ∈ V . This time set

F ∗
v = {x f(x+ v)− f(x) ̸= 0}.

Now x ∈ F ∗
v means that either x ∈ Dy,a0 for some y ∈ V and a0 ∈ G and

x + v ̸∈ ∪g∈GEg, or the other way around, and consider again the first case.
Then

x ∈ y + a0 +D · (|y|+ α(a0) +M)−(m+l)/(d−l)
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but
x+ v ̸∈ y + v + a0 +D · (|y + v|+ α(a0) +M)−(m+l)/(d−l),

i.e.
x ̸∈ y + a0 +D · (|y + v|+ α(a0) +M)−(m+l)/(d−l).

Hence

x ∈ y+a0+

(
D

(|y|+ α(a0) +M)(m+l)/(d−l)
\ D
(|y|+ |v|+ α(a0) +M)(m+l)/(d−l)

)
.

It follows that the (d − l)-dimensional measure of F ∗
v ∩ (Ea0

∩ (y + V ⊥)) is at
most twice the difference

θd−l

(|y|+ α(a0) +M)m+l
− θd−l

(|y|+ |v|+ α(a0) +M)m+l
∼ 1

(|y|+ α(a0) +M)m+l+1

(in this very last step the ∼ depends on |v| but not on y or a0). If we integrate
this with respect to y ∈ V , then we obtain from (8) that the measure of F ∗

v ∩Ea0

is at most a constant times (α(a0) +M)−(m+1), and hence

meas(F ∗
v ) =

∑
a0∈G

meas(F ∗
v ∩ Ea0) ≤ C

∑
a0∈G

1

(α(a0) +M)m+1
< ∞,

because of (5). This finishes the proof of (1).

Next, consider property (2). Let b ∈ B. Since ⟨a, b⟩ ≡ 0 (mod π) for all
a ∈ A, it follows that if x ∈ By,g then

| sin⟨x, b⟩| = | sin⟨x− g − y, b⟩| ≤ |x− g − y||b| ≤ |b|
(|y|+ α(a) +M)(m+l)/(d−l)

,

and so∫
By,g

|f(x) sin⟨x, b⟩|pdx ≤
(

|b|
(|y|+ α(a) +M)(m+l)/(d−l)

)p

θd−l(radius of By,g)
d−l

= |b|pθd−l
1

(|y|+ α(a) +M)m+l+(m+l)p/(d−l)
.

If we integrate this for y ∈ V then (8) implies∫
Eg

|f(x) sin⟨x, b⟩|pdx ≤
∫
V

|b|pθd−l
1

(|y|+ α(a) +M)m+l+(m+l)p/(d−l)
dy

∼ 1

(|y|+ α(a) +M)m+(m+l)p/(d−l)
.
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Therefore, we obtain from (5)∫
|f(x) sin⟨x, b⟩|pdx =

∑
g∈G

∫
Eg

|f(x) sin⟨x, b⟩|pdx ∼
∑
g∈G

1

(α(a) +M)m+(m+l)p/(d−l)
< ∞,

and the proof of the necessity is complete when m ≥ 1.

If m = 0 (i.e. G = {0}) but V ̸= Rd, then do the preceding proof with
m = 0 with the modification that now instead of (8) we use∫

V

1

(|y|+ L)l
dy = ∞.

However, in the m = 0 case it is now possible that V = Rd. In that case
necessarily B = {0}, so (2) is automatic, and to have the necessity just pick a
function f on Rd which is not in Lp but for which (1) holds for all a ∈ Rd (for
example, set f(x) = (|x|+ 1)−d/p.)

4 Proof of Lemma 2

For part (b) see [3, Theorem 4.20]. To prove part (a), let A ⊂ Rd be the closed
group in question. Let V ⊂ Rd be the largest subspace of Rd that lies in A
(since the sum of two subspaces lying in A also lies in A, there is such a largest
subspace), and let V ⊥ be the orthogonal complement of V . We claim that there
is a δ > 0 such that all a ∈ A \ V lies of distance ≥ δ from V . Indeed, if this
is not the case, then for every n there are an ∈ A that lie outside V such that
their distance from V is < 1/n. Let vn ∈ V be the closest element of V to an.
Then an − vn ∈ V ⊥. By compactness, the sequence {(an − vn)/|an − vn|} has
a convergent subsequence, and we may assume that (an − vn)/|an − vn| → u.
Then u is a unit vector lying in V ⊥. If λ > 0, then (an− vn)[λ/|an− vn|] → λu,
where [·] denotes integral part, and since each (an − vn)[λ/|an − vn|] belongs
to A, we obtain that λu ∈ A for all λ > 0, and hence for all λ ∈ R. But this
means that all vectors v+λu, v ∈ V , λ ∈ R, lie in A, which is impossible by the
maximality of V . As a corollary it follows that G := A∩ V ⊥ is a discrete group
(if we had different elements a, a′ ∈ A∩V ⊥ arbitrarily close to each other, then
their difference a−a′ would be in V ⊥ and hence would lie outside V , but would
lie close to zero, and hence to V , which is not possible).

Every a ∈ A has a unique representation a = aV ⊥ + aV with aV ⊥ ∈ V ⊥ and
aV ∈ V . Since aV ∈ V ⊂ A, it follows that aV ⊥ ∈ A. Therefore, G := {aV ⊥} =
A ∩ V ⊥, so this is a subgroup, and part (a) follows.
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