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Abstract

The best asymptotic constant for k-th order Markov inequality on a
general compact set is determined.

1 Introduction

Let P,, denote the set of all (complex) polynomials of degree at most n, and let
| flle = supgeg | f(x)] denote the supremum norm of the function f on the set E.
Two of the most classical polynomial inequalities are the Bernstein inequality
(see [2], [3, Corollary 4.1.2])

1P, ()] < ze(=1L1), (1)

=512l
m n|l[—1,1]»
and the Markov inequality (see [3, Theorem 4.1.4], [7])
1Pl i=1,07 < 0l Palli=1,15 (2)
where P, € P,,. For higher order derivatives iteration of (2) gives
1P N1y < 2 | Pall -y, 3)
but the correct estimate is (see [8] or [9, Theorem 1.2.2, Sec. 6.1.2]),
||P7Sk)H[—1,l] < Cn,k”Pn”[—l,l]v P, € Py, (4)
with

n?(n?—1)---(n? - (k—1)?)

O = (2k — 1) ’

(5)
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where (2k — 1)!! = 1-3-5.--(2k — 1). The equality is attained for the stan-
dard Chebyshev polynomial 7, (x) := cos(narccos(z)). If we write (4) in the
asymptotic form

2k

n
[P o1 < (1+ 0(1))(2T1)”||Pn”[71,1]7

where o(1) tends to zero (uniformly in P,) as n — oo, then we can see that
for large n the factor 1/(2k — 1)!! appears compared to the iterated (3). We
shall show that the appearance of this factor is universal, it emerges on other
compact sets, as well.
The classical Markov inequality implies that if E consists of finitely many
intervals, then
1P®5 < Cn*|| Pyl (6)

with some constant C' that depends only on the set E. Therefore, there is a
smallest Mg ; such that

1Pl < Meg(L+o(1)n | Pl &, (7)

where o(1) — 0 (uniformly in P,) as n — oo, and in this paper our aim is to
determine this Mg i, thereby providing the best possible asymptotic constant
in the k-th order Markov inequality. It follows from (1) that

|P(2)] < Cxnl|Palle, @ € K,

with some constant Cx uniformly on compact subsets K of the interior of FE,
and if we iterate this k times (for some fixed k) on nested intervals, then we
obtain that if K is a compact subset of the interior of F, then

PP (@) < Cin®|Palle, € K, (8)

i.e. inside the set F the k-th order Bernstein-Markov factor is of the order
O(n*). Therefore, the k-th derivative can be of size n?* only around endpoints
of E, and the constant in front of this n2* depends on what endpoint we are
considering. Thus, let £ = Ué-:l[agj,l,agj], and let a; be one of the endpoints
of E. If § > 0 is so small that [a; —, a; +6] does not contain any other endpoint
of E, then the asymptotic k-th order Markov constant for the endpoint a; is
the smallest number M, x for which it is true that

1PN e —s.a, 40 < (14 0(1)) Ma, k1°* || Pal| - (9)

(8) shows that this smallest M, x is independent of § > 0.
In view of (8) it is clear that the Mgy in (7) is the maximum of all these
Maj,k; 1 S j S 2l.

Mg = max M,.
,k 1§j§2l (I,J,ky

so it is sufficient to determine /\/laj’;C for each j. To describe it we need some
facts from potential theory. For the necessary concepts we refer to [10], [12] or
to [15].



Let E be a compact set on the real line. The equilibrium measure vg of E
minimizes the logarithmic energy

// log Tiﬂdu(z)du(t)

among all probability measures v on E. This vg is absolutely continuous (with
respect to linear Lebesgue measure) in the interior of F, and we denote by wg its
density (= Radon-Nikodym derivative) with respect to the Lebesgue measure.

Let E = Uézl[azj,l,agj} consist of the disjoint intervals [ag;_1,ag;]. It is
known (see e.g. [13, (2.4)]), that the equilibrium density is of the form

-1
wg(r) = Hl_211| ul , r € F, (10)
m i1 |z — ail
where 7; € (a9, a2:41),i =1,--+ ,1 — 1, are the unique numbers satisfying
azjt1 =1 _ -
/ Uimylo - 7) drx =0
27 fl:1 |z — a;

for y=1,2,--- ;1 —1. We define

-1
[[ici(a; — Ti)2

M, =2 ,
“ Hi;éj laj — ai|

j=1,--,2L (11)

It was proved in [13, Theorem 4.1] that for ¥ = 1 we have the equality
Mg, 1 = M,,, but, just in the case of E = [~1,1], this cannot be iterated to get
the correct result for higher derivative. Indeed, for higher derivative we have

k
a

Moy = G

as is shown by

Theorem 1. With the above notations, for fized k > 1 and for each 1 < j < 21,
we have

;c] n2k
(2k — 1! I

where o(1) tends to 0 uniformly in P, € P, as n — oo. Furthermore, this
estimate is asymptotically the best possible, for there is a sequence { P, € P},
of nonzero polynomials such that

||P7(Lk)HEﬁ[aj76,aj+5] < (1 + 0(1)) PnHEa (12)

k n2k

Mk
|P7(lk)(aj)| Z (1+0(1))mllpfn”E <13>



A more general result will be proved (with the help of Theorem 1) in Theorem

3.
Let us consider the example F = [—b, —a] U [a,b]. In this case | = 2, a1 =
—b, as = —a, agz = a, a4 = b, and, by symmetry, 71 = 0. Hence
2|
wg(t) = ,
=(f) /(2 — 2)(12 — a?)
20? b
Ma - Ma = =
! * (b—a)b+a)(2b) b2 —a?
2 2
M,, = M,, = a __

* (b—a)b+a)20) b2 —a?
Since M,, = M,, > M,, = M,,, we obtain that for fixed k

*) n2k b k
POt -t < (4 o) 5 () IPellcomatos

and this is the (asymptotically) best possible estimate for the k-th derivative of
general polynomials P, of degree n = 1,2,... in the sense that one cannot write
a smaller constant on the right.

2 Proof of Theorem 1

The proof uses the polynomial inverse image method, see [13, 14]. First we are
going to prove (12) in a special case when both the base set and the polyno-
mial P, are related to polynomial mappings. Then we deduce (12) in its full
generality from this special case, and at the end we verify (13).

Polynomial inverse images

Suppose that T is a real polynomial of degree N > 2 with real zeros X; <
Xo < -+ < Xn. Let V1 < Yo < -+ < Yn_1 be zeros of T}, and assume
that | Ty (Ys)] > 1 for s =1,2,--- , N — 1. Then there exists a unique sequence
of closed intervals Ey = [as,(s] such that Ty (Es) = [-1,1], X, € Es, 8 =
1,2,--- N and for each 1 < s < N — 1 the set F; N Esy1 contains at most
one point, call it 65 (if the intersection is not empty). We call such polynomials
admissible.

For an admissible polynomial the inverse image Ty '[~1, 1] consists of I dis-
joint intervals where 1 <[ < N. At the endpoints of subintervals of T' ]Ql[—l, 1],
as well at the points 65, the value of T is £1. Furthermore, T, does not vanish
at the endpoints of the subintervals of Ty 1[71, 1], and it has a simple zero at
every 0.

Polynomial inverse images under admissible polynomials possess several prop-
erties. One of them is the density among all sets consisting of finitely many
intervals (see [14, Theorem 3.1] and the references there).



Proposition 2. Given a set ¥ = Ué-zl[agj,l,agj] of disjoint closed intervals
and a positive number ¢, there is another set X' = Ul_,[ah; ,,db;] consisting
of the same number of intervals such that X' = T—1[—1,1] for an admissible
polynomial T, and for each 1 < j < 2l we have

la; —aj| <e.

The theorem also implies its strengthened form when we can choose if a
given a; is smaller or bigger than a;. In particular, we can require ¥ C ¥’ or
Y C 3. The proof of proposition 2 (given for example in [13]) also gives that
we can choose agj_1 = a'Qj_l for all j. Alternatively we can fix all as;.

For definiteness we assume that a; is a right endpoint of a subinterval of F
(left endpoints can be similarly handled).

In the proof of (12) in Theorem 1 first we assume F to be the inverse image
of [-1,1] under an admissible polynomial T of degree N, and also assume that
P, is of the form P, (z) = Ry, (Ty(x)) with some R,, € P,,, so that n = mN.

Taking derivatives we get

Pi(x) = R.,(Tn(x))Th(z),

Pl(z) = RI(Tn(x)(Tk(2))® + Rl (Tn(x)TH (),

P® () = Rﬁ?(h@))(%@))k+@Rﬁf*”<TN<x>><T;V<x>>’€*2Tx<x>
+e o R (T ()T (). (14)

Here we have used Faa di Bruno’s formula to calculate higher order derivatives
of composed functions Faa di Bruno’s formula [4] (see also [11, pp. 35-37])

o) =Y gomema oo [T [£22]™ )
dxk g o mylma! - my! g bl 7! ’
where the sum is over all k-tuples of nonnegative integers (mq, - - - ,my) satisfy-
ing
my +2mg + -+ + kmy = k. (16)

For fixed N and k, the functions T, Ty, - ,T](\f) are all bounded on F.
When m is large, the first term in (14) can be of order m?*, all other terms are
of smaller order by (6). Therefore, by the classical Markov inequality (4)

1P ()] < (14 0(1)Con il | Runl 1,11 | T (a5)]*.
In view of (4.10) of [13], we have [T (a;)| = N*M,,, and since n = mN, we
obtain
_ (mN)?[(mN)? — N?]- - [(mN)? — (k — 1)2N?]
2k — 1)1
(mN)2k 2k

(k-1 (2k—1)I

Cm,kNQk




Therefore,
Mk n2k
) (@ a5
P )] < (14 o0) gy I1Pal
where we used that || P, ||z = [[Rpm|/[—1,1). This is the desired inequality but only
for the endpoint a;.

The argument for points close to a; is similar. In fact, let € > 0 be given.
We can select 7 > 0 such that [a; —2n,a;] C E and for z € [a; —n, a;] it is true
that

(Thy(@)| < (14 &) Th(a)| = (1+ )My, N2

Then for z € [a; — n,a;] we get from (14) and again from the classical Markov
inequality (4) that

2k
|P7(Lk)(1:)| < (1—|—O(1))(1+€)kmN2kM§]HRmH[_l,l]
k
= (I+o(1)(1+ E)k(QTa'jl)””%HPnHE

Since € > 0 is arbitrary, (12) follows (with ¢ replaced by n) for P, = Ry, (Tn)
as m — o0o.

The general case of Theorem 1

We proceed with the proof of (12) in the general case. In view of (6), it is
sufficient to prove (12) for large n. So let E be an arbitrary set consisting of a
finite number of intervals: £ = U§:1 [az;—1, az;]. By Proposition 2 we can choose
admissible polynomials T such that the inverse image set E/ = Ty'[~1,1] =
Ul_[ah; 1, ab;] consists of I intervals and it lies arbitrary close to E. For a
given j we may choose a; to be an endpoint of E’ (i.e. a;» = a;), and we may
also have E/ C E. For the numbers 7; in (10) it is clear that they are C°-
functions of the endpoints a;. But then, if M is the quantity (11) for £ and
the corresponding 7; are denoted by 7/, given € > 0, we have Méj < (1+¢e) My,
if E’ lies sufficiently close to E.

Let E! = [a/, 5] be the intervals for E’ from the beginning of this section
(so that T (E;) = [~1,1]), and assume that a; € E] . Then a; is the right
endpoint of [of , B, ], i.e. a; = B . Assume that n > 0 is so small that
l[aj —2n,a;] C Ef . By Theorem VI.3.6 of [12], there are polynomials L, of

degree at most! [\/n] such that with some constants 0 < 8 < 1 and C we have

0< L ) <1, for x € F,
Ogl—Lﬁ(x)SCﬁ‘/ﬁ, for = € [a; —n,q; ],

OSLﬁ(ac)§CB\/ﬁ, for z € E"\ EY .

L[] denotes integral part



For an arbitrary polynomial P, consider P;(z) = L /(x)P,(z), which has
degree at most n + [v/n] and which satisfies

1P lle < P&,

Pi(z) = (1+0(8Y™))Pu(), for z € [a; —n, ay],
Piz) = OBY)|Pule, for x € E'\ E., . (17)
Now
(P W(x) = (L mPn)™ (x)
Yk
:L\/ﬁ(ﬂﬁ)Pr(Lk)(x)+Z<i>LE}( )P0 (),
=1
and so

(P () ~ P(@) = (Lyrla) ~ PO +Z() 2P0 ).

In view of (6) there exists a constant C; (that may depend on E’) such that for
alz e P and1<i<k

|L(\;);(33)| < (Vn)?|IL sl = Cin*| L gl e < Cint,
P (@)] < Chn® | Pl
and, in addition, on E'\ B, = E'\ [a} , 5. ]
L% (@) < CL v Izl o, < Cin'BY™
These show that we have
(P3P (@) = (P) P (@) = O (n*8Y" 402 ) | Pallrs @ € [a;—n.a], (18)
and
(P)®)(2)] = o(n%ﬂﬁ) 1Pllg,  wniformly for o € B\ E.,.  (19)

We denote by T]Qli the branch of Ty that maps [—1,1] onto E/. If we define

N
= PiTyi(Tn(2))),
i=1

then S(x) is a polynomial of degree at most deg(P;)/N < (n++/n)/N of Tn(x),
see [14, Section 5]. Thus, the degree of S is at most [(n + /n)/N|N < n+ /n.
Let « € [a; —n,a;]. When i = s then

Py (Ty (T (2)) = Py (@),



and for all i # so the points Ty (T (z)) belong to the set E' \ E. . We shall
prove in the next subsection that for all sufficiently large n

S® (@) — (P?Z)('“)(z)‘ <GB IPlle,  welay-nal.  (20)

with a constant Cy independent of x € [a; — 7, a;] and n.
By the properties of P (see (17)) and also by the fact that out of Tjgyli(TN(:r)),
1 <i < N, only one can belong to E; = [ , /. ], we have

ISz < (1+OBY")|Paller < (L+O0(BY™) || Palle (21)
(recall that E’ C F). Therefore, we get from (20) and (18)

1P 0y —nay) < ||S(k)||[a,~—n,aj]+O((\/B)‘/ﬁ+”2k_l)||Pn||E'
M.k
< (I+ 0(1))M(deg(5))2k||5|E/ +O((VB)V" + 0| P, | &
M.k
< (1+0(1))(2(k_]i)””2k5||9
Mk
< (1+0(1))(1+5)km”2knpn”&

where in the second inequality we used the special case of the theorem (applied
to E' and to S) that we proved in the first part of this section, in the third
inequality that deg(S) < [(n + +/n)/N]N < n + /n, and in the last inequality
we used that £’ C £ and M} < (1+¢)M,,. Since € > 0 is arbitrary, we obtain
(12) (with 0 replaced by n Wthh is permitted by (8)).

In order to prove (13), we select a polynomial inverse image set E' =
Ty'[-1,1], E C E', consisting of I intervals that lies close to E for which
a; is an endpomt and for which M, is close to My, say Mg > M, (1 —¢)
for some given € > 0. Let T, = cos(m arccos :1:) be the classmal Chebyshev
polynomials and set P, := T, (Tn). Since \Tm )(:|:1)| = Cp i (see (5)) and
Ty (a;)| = M('le2, we get for n = mN as before

1P (a3)] = [(Ton(T)*)(0)] = (1 + 0(1))Cn, N2 (M),

and here
2k

Con e N?F(M)F > (1 + o(D)h

N*ME (1 —¢e)F.

Since E C E' we have
1Polle < |1Paller = 1 Tmllj=1, = 1,

and so from n = mN we get

2k

[P (a;)] = (14 0(1))(1 — €)kmej | Pnll -



This is only for integers n of the form n = mN. For others just use Py, N
as P,, where [-] denotes integral part. Since here & = e > 0 is arbitrary, (13)
follows if we let N tend to oo slowly (and at the same time T '[—1,1] close to
E) as n — oo (in which case we have ey — 0).

Proof of (20)

The preceding proof used (20), and now we proceed with its proof. We keep the
notations used before.

Let z € (a; — n,a;), and for an i # so let TIG}Z»(TN(CLJ')) = v (it is one
of the endpoints of a subinterval of E7, s # sg). Since a; is an endpoint of a
subinterval of E’, we have T} (a;) # 0, hence close to a;

TN (z) — Tn(aj)| ~ |z — a4l

where T (a;) = £1 and A ~ B means that the ratio A/B remains in between
two positive constants. In a similar manner, if v, is an endpoint of a subinterval
of £’ then

T (y) = Tn(vs)l ~ |y — sl
for y lying close to v,. However, if v, is an interior point of E’, then T has a
simple zero at 7s, therefore

T (y) = T (v)] ~ Jy — s

for y lying close to 7,. These imply that in [a; — 7, a;]

1 |z —a;]"/? if v, = Ty (T (a4)) is not an endpoint of E’
1T (T (@) =] ~ { |z —jaj| o jotherwise
(22)
Note also that Ty has a simple zero or no zero at vs depending on if ~, is not
an endpoint of E’ or it is.

Differentiation gives

g o) Th)
2z (T (@) T (T (In ()

P Y (T @) T} ()

z7 (TRiTx (@) (T (T (TN (@)* | Ty (T (T (@)

and in general we obtain that
dm _ Qn,m(2)
(T4 (Tw (@) = ———
(Tx (T (T (2))))
with some Qp y, built up from Tj(\}/)(a:) and TI(\;’)(TJQ,li (Tn(2))), 1 <v < m using
multiplication and addition. Hence, in view of (22) and of what we said about
the derivative of T at the point v = T&}i (Tn(ay)), it follows that
am C C
— (TxN(T ) < <
drm ( N,z( N(it)) ‘ = |I*G,j|(2m_l)/2 = |x—aj\m

dxm

(23)




with a C (that may depend on T and m). By the Faa di Bruno formula (15)
the k-th derivative of P;(Tjglz(TN(x))) is a combination of terms of the form

ko gmy
oo dame

(Pt ma) (T Ty (1)) (T4(Tw (@)

with mq + 2me + - -+ + kmy, < k. Therefore, we obtain from (19) (apply it not
just for the k-th, but also to lower order derivatives of P;) and (23) that for
1 7é S0

Cyn2pvn

dk
’ |z — a;|*

P*(TN;(TN(x)))' <

st 1Pl

Let now 6 < 1 be such that 6* > /3. The preceding estimate gives for

z € [aj —n,a; — 0"] (provided 6™ < n)
dk — nn—kn n
e PRI @) < Cor 3T P e < GBI P

What we have obtained is that

S8 (@) = (PP @) = |3 2 PrTRA(Tn (@) < NCU(VB)Y| Pal

(24)
on the interval [a; — n,a; — "], where C; may depend on T and k. We want
to conclude that

155 = (2) oy —n,a,1 < 2NC1(v/B)V" | P - (25)

To do that we recall Remez’ inequality (see [5, Lemma 7.3]): if R,, is a polyno-
mial of degree at most n and m(R,,) is the measure of those z € [—1,1] where
|R,(z)] <1, then

4
HRn”[—l,l] <Tn (”W - 1) ) (26)

where T, (t) = cos(narccost) are the classical Chebyshev polynomials. In view

of
o) =5 (W V2~ D"+~ Vo2 1)),

a transformation of (26) yields that there is a ¢y > 0 such that for any polynomial
R,, of degree at most n and for any interval I the inequality

[Bnllr < 2[Rnllrys

is true provided the linear measure of J C I is < ¢o|I|/n?. Thus, for large n
the inequality (25) is, indeed, a consequence of (24) (which is true uniformly in
non [a; —n,a; —0"]), and (25) is nothing else than (20).

|

10



3 General compact sets on R

In this section, we will consider a compact set ¥ C R. We say that a € F is a
right endpoint of F if there is a p such that [a—2p, a] C E, but (a,a+2p)NE = 0.

As before, for a given k > 1 the asymptotic Markov factor of order k for
at such an endpoint a is the smallest number M, ; such that

1P 0= p.al < Mawn® 0| Pl (27)

is satisfied for all P, € P,. In this section we determine this M, ;. To do that
recall that the equilibrium measure of E is absolutely continuous on [a — 2p, d]
and its density wg is defined there. This wg has a 1/v/t type behavior at a, and
we define
M, = My(F) :=27% lim w?%(t)|t —al.
t—a—0

This quantity exists (see [6, Lemma 2.1]), and has already been used in the
paper [6]. It is immediate from (10) that if F consists of finitely many intervals
[ag;j—1,a2;] and a = ay;, then this M, is the M,,; defined in (11). Therefore,
the following theorem is an extension of Theorem 1.

Theorem 3. If E is a compact subset of R and a is a right endpoint of E, then
for fizted k > 1 and P,, € P,,, we have (for any small fized p > 0)

Mkn2k

1P lla—p.a) < (1+ 0(1))WIIPMIE, (28)

where o(1) tends to 0 as n — oo. Furthermore, this is asymptotically the best
estimate, for there is a sequence {P, € P}, of nonzero polynomials such

that

Mkn2k

[P ()] = (1+0(1)) 7

Pl (29)

Thus, for the best asymptotic Markov factor M, ; in (27) we have

2k
M

ek = -

Proof. First we prove (28), and in doing so first we assume that E is regular
with respect to the Dirichlet problem in C\ E.

Fix € > 0, and let J := [min F, max E|] be the smallest interval that contains
E. There exist a 0 < 7 < 1 and for each large n polynomials Q. of degree not
larger than [ne] such that

a) 1—e "< Q. <1lifz€la—pa+p,
b) 0 < Que(x) <1lifx€la—3p/2,a—p|Ula+ p,a+3p/2],
¢) 0< Que(z)<e ™ ifzed\|[a—3p/2,a+3p/2]

11



(see for example, [12, Corollary V1.3.6]). We may assume that E is not a finite
union of intervals, for in that case we can apply Theorem 1. Since R\ F is an
open set, we have R\ £/ = U32,[;, where I; are disjoint open intervals. We
assume that Iy and I are the unbounded submtervals of R\ E. For m >0
consider the set

E, =R\ (U}”:OIJ-). (30)
This set contains F and is of the form

E, = U;’lzl[aj,mv bj,m]
with a1 < bim < G2m < -+ < Gmm < bm,m. For sufficiently large m the

point a is a right endpoint of E,,, and by Proposition 2.3 of [6] we have

lim M, (Ep) = Ma(E). (31)

m—r oo

Let gr denote the Green’s function of C \ E with pole at infinity. The
regularity of E guarantees that gg is continuous and vanishes on E. Therefore,
there exists 0 < 6 < 1, 8 = 0(7), such that

if xcR, dist(z, E) <0, then gp(z) < 72

Choose m sufficient large such that dist(xz, E) < 6 for all z € E,,. Let P,
be an arbitrary polynomial of degree at most n. We apply Theorem 1 for the
polynomial P,Q,. on E,,. If x € E, then, by the properties of Q,., we have
|Pn(2)Qne(x)] < ||Pnlle. On the other hand, if x € E,, \ E, then, by the
Bernstein-Walsh lemma ([16, p. 77]) and by property c) of Qpe,

|Pn(2)Qne(®)] < ||Pulls exp(ngr(x)) exp(—nT)
< |IPull g exp(nt?) exp(—n7) < || Pyl -

Therefore
[PnQnellE,, < || Pulle- (32)

For = € [a — p, a]

k
(PoQue) P (@)] > PP (2)Que Z()Wﬂ (£)QY) (x).

j=1
Here 1 — e ™™ < Qne(2)| < 1, and by (6)

IQ2Ne < Cne)”,  |PP|s < Cn® || Pollp
with some constant C for all j =1,2,--- k. Hence, when x € [a — p, a], we get

12



from Theorem 1 when applied to the polynomial P,Q., and to the set E,,

o 4 ‘
PO@I =) < (B @I+ () Iplen e
(1 + ey
< (1+0(1))WMG(ETH)’“||PnQns||Em
+]| Pl 5Cr%n?
n2k
< el Palle (1 o)1+ M (B +C1?)

Since € > 0 and m are arbitrary, the inequality (28) follows if we apply (31).

The preceding proof used the regularity of . In order to remove that, we
use a theorem of Ancona [1]. Let E C R be a compact set of positive logarithmic
capacity. For each [, there exists a regular compact set E;” C E such that

1
cap(F) < cap(E; ) + 7

Because the union of two regular compact sets is regular, we may assume that
[a’ - 2,0, a] - E;l
According to what we have proven,

; Mo (B )
1P o < (14 o) ot Pl
M, (By)"
S O L

Since M,(E; ) can be made arbitrarily close to M,(E) by choosing [ large
enough (see [6, Proposition 2.3] and its proof), the inequality (28) follows.

Finally, we prove (29). We are going to select a sequence of polynomials
{P,}>2, with deg(P,) = n, such that

_1PM(a)|(2k — 1) .
1 = M, (F)".
ST +(E) ()

Consider the set F,, from (30) for such a large m, for which a is already a right
endpoint of E,,. This F,, is the union of finitely many closed intervals some of
them may be a singleton. Replace each such point in E,, by an interval of length
less than 1/m, and denote the resulting set again by E,,, which consists of non-
degenerated intervals. We can use the result in the previous section for this E,,:
there exists a sequence {Pp, 1, }52 1, deg(Pr,.n) < n, of nonzero polynomials such

that
2k

n
" ||P77L1"||Em’

@] 2 (1= 0p, ()M (B,)
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where og,, (1) depends on E,, and it tends 0 as n — oo for any fixed m. Since
E C E,,, we have || Py ||E,, > ||PmnllE, and hence

n2k

P > (1-— M, (B ————1| Pl -

PEM@) > (1 = 05, ()Ma(B) g1 Prns
By choosing m sufficiently large, M,(E,,) can be made arbitrarily close to
My (E) (see Proposition 2.3 and its proof in [6]), and then (33) follows for
P, = P,,, » if m, goes slowly to infinity as n — oo.
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