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Abstract

The best asymptotic constant for k-th order Markov inequality on a

general compact set is determined.

1 Introduction

Let Pn denote the set of all (complex) polynomials of degree at most n, and let
‖f‖E = supx∈E |f(x)| denote the supremum norm of the function f on the set E.
Two of the most classical polynomial inequalities are the Bernstein inequality
(see [2], [3, Corollary 4.1.2])

|P ′
n(x)| ≤

n√
1− x2

‖Pn‖[−1,1], x ∈ (−1, 1), (1)

and the Markov inequality (see [3, Theorem 4.1.4], [7])

‖P ′
n‖[−1,1] ≤ n2‖Pn‖[−1,1], (2)

where Pn ∈ Pn. For higher order derivatives iteration of (2) gives

‖P (k)
n ‖[−1,1] ≤ n2k‖Pn‖[−1,1], (3)

but the correct estimate is (see [8] or [9, Theorem 1.2.2, Sec. 6.1.2]),

‖P (k)
n ‖[−1,1] ≤ Cn,k‖Pn‖[−1,1], Pn ∈ Pn, (4)

with

Cn,k :=
n2(n2 − 1) · · · (n2 − (k − 1)2)

(2k − 1)!!
, (5)
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where (2k − 1)!! = 1 · 3 · 5 · · · (2k − 1). The equality is attained for the stan-
dard Chebyshev polynomial Tn(x) := cos(n arccos(x)). If we write (4) in the
asymptotic form

‖P (k)
n ‖[−1,1] ≤ (1 + o(1))

n2k

(2k − 1)!!
‖Pn‖[−1,1],

where o(1) tends to zero (uniformly in Pn) as n → ∞, then we can see that
for large n the factor 1/(2k − 1)!! appears compared to the iterated (3). We
shall show that the appearance of this factor is universal, it emerges on other
compact sets, as well.

The classical Markov inequality implies that if E consists of finitely many
intervals, then

‖P (k)
n ‖E ≤ Cn2k‖Pn‖E (6)

with some constant C that depends only on the set E. Therefore, there is a
smallest ME,k such that

‖P (k)
n ‖E ≤ ME,k(1 + o(1))n2k‖Pn‖E , (7)

where o(1) → 0 (uniformly in Pn) as n → ∞, and in this paper our aim is to
determine this ME,k, thereby providing the best possible asymptotic constant
in the k-th order Markov inequality. It follows from (1) that

|P ′
n(x)| ≤ CKn‖Pn‖E , x ∈ K,

with some constant CK uniformly on compact subsets K of the interior of E,
and if we iterate this k times (for some fixed k) on nested intervals, then we
obtain that if K is a compact subset of the interior of E, then

|P (k)
n (x)| ≤ C∗

Knk‖Pn‖E , x ∈ K, (8)

i.e. inside the set E the k-th order Bernstein-Markov factor is of the order
O(nk). Therefore, the k-th derivative can be of size n2k only around endpoints
of E, and the constant in front of this n2k depends on what endpoint we are
considering. Thus, let E = ∪l

j=1[a2j−1, a2j ], and let aj be one of the endpoints
of E. If δ > 0 is so small that [aj−δ, aj+δ] does not contain any other endpoint
of E, then the asymptotic k-th order Markov constant for the endpoint aj is
the smallest number Maj ,k for which it is true that

‖P (k)
n ‖E∩[aj−δ,aj+δ] ≤ (1 + o(1))Maj ,kn

2k‖Pn‖E . (9)

(8) shows that this smallest Maj ,k is independent of δ > 0.
In view of (8) it is clear that the ME,k in (7) is the maximum of all these

Maj ,k, 1 ≤ j ≤ 2l:
ME,k = max

1≤j≤2l
Maj ,k,

so it is sufficient to determine Maj ,k for each j. To describe it we need some
facts from potential theory. For the necessary concepts we refer to [10], [12] or
to [15].
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Let E be a compact set on the real line. The equilibrium measure νE of E
minimizes the logarithmic energy

∫∫

log
1

|z − t|dν(z)dν(t)

among all probability measures ν on E. This νE is absolutely continuous (with
respect to linear Lebesgue measure) in the interior of E, and we denote by ωE its
density (= Radon-Nikodym derivative) with respect to the Lebesgue measure.

Let E = ∪l
j=1[a2j−1, a2j ] consist of the disjoint intervals [a2j−1, a2j ]. It is

known (see e.g. [13, (2.4)]), that the equilibrium density is of the form

ωE(x) =

∏l−1
i=1 |x− τi|

π
√

∏2l
i=1 |x− ai|

, x ∈ E, (10)

where τi ∈ (a2i, a2i+1), i = 1, · · · , l − 1, are the unique numbers satisfying

∫ a2j+1

a2j

∏l−1
i=1(x− τi)

π
√

∏2l
i=1 |x− ai|

dx = 0

for j = 1, 2, · · · , l − 1. We define

Maj
:= 2

∏l−1
i=1(aj − τi)

2

∏

i6=j |aj − ai|
, j = 1, · · · , 2l. (11)

It was proved in [13, Theorem 4.1] that for k = 1 we have the equality
Maj ,1 = Maj

, but, just in the case of E = [−1, 1], this cannot be iterated to get
the correct result for higher derivative. Indeed, for higher derivative we have

Maj ,k =
Mk

aj

(2k − 1)!!
,

as is shown by

Theorem 1. With the above notations, for fixed k ≥ 1 and for each 1 ≤ j ≤ 2l,
we have

‖P (k)
n ‖E∩[aj−δ,aj+δ] ≤ (1 + o(1))

Mk
aj
n2k

(2k − 1)!!
‖Pn‖E , (12)

where o(1) tends to 0 uniformly in Pn ∈ Pn as n → ∞. Furthermore, this

estimate is asymptotically the best possible, for there is a sequence {Pn ∈ Pn}∞n=1

of nonzero polynomials such that

|P (k)
n (aj)| ≥ (1 + o(1))

Mk
aj
n2k

(2k − 1)!!
‖Pn‖E . (13)
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Amore general result will be proved (with the help of Theorem 1) in Theorem
3.

Let us consider the example E = [−b,−a] ∪ [a, b]. In this case l = 2, a1 =
−b, a2 = −a, a3 = a, a4 = b, and, by symmetry, τ1 = 0. Hence

ωE(t) =
|t|

π
√

(b2 − t2)(t2 − a2)
,

Ma1
= Ma4

=
2b2

(b− a)(b+ a)(2b)
=

b

b2 − a2

Ma2
= Ma3

=
2a2

(b− a)(b+ a)(2b)
=

a

b2 − a2
.

Since Ma1
= Ma4

> Ma2
= Ma3

, we obtain that for fixed k

‖P (k)
n ‖[−b,−a]∪[a,b] ≤ (1 + o(1))

n2k

(2k − 1)!!

(

b

b2 − a2

)k

‖Pn‖[−b,−a]∪[a,b],

and this is the (asymptotically) best possible estimate for the k-th derivative of
general polynomials Pn of degree n = 1, 2, . . . in the sense that one cannot write
a smaller constant on the right.

2 Proof of Theorem 1

The proof uses the polynomial inverse image method, see [13, 14]. First we are
going to prove (12) in a special case when both the base set and the polyno-
mial Pn are related to polynomial mappings. Then we deduce (12) in its full
generality from this special case, and at the end we verify (13).

Polynomial inverse images

Suppose that TN is a real polynomial of degree N ≥ 2 with real zeros X1 <
X2 < · · · < XN . Let Y1 < Y2 < · · · < YN−1 be zeros of T ′

N , and assume
that |TN (Ys)| ≥ 1 for s = 1, 2, · · · , N − 1. Then there exists a unique sequence
of closed intervals Es = [αs, βs] such that TN (Es) = [−1, 1], Xs ∈ Es, s =
1, 2, · · · , N and for each 1 ≤ s ≤ N − 1 the set Es ∩ Es+1 contains at most
one point, call it θs (if the intersection is not empty). We call such polynomials
admissible.

For an admissible polynomial the inverse image T−1
N [−1, 1] consists of l dis-

joint intervals where 1 ≤ l ≤ N . At the endpoints of subintervals of T−1
N [−1, 1],

as well at the points θs, the value of TN is ±1. Furthermore, T ′
N does not vanish

at the endpoints of the subintervals of T−1
N [−1, 1], and it has a simple zero at

every θs.
Polynomial inverse images under admissible polynomials possess several prop-

erties. One of them is the density among all sets consisting of finitely many
intervals (see [14, Theorem 3.1] and the references there).

4



Proposition 2. Given a set Σ = ∪l
j=1[a2j−1, a2j ] of disjoint closed intervals

and a positive number ε, there is another set Σ′ = ∪l
j=1[a

′
2j−1, a

′
2j ] consisting

of the same number of intervals such that Σ′ = T−1[−1, 1] for an admissible

polynomial T , and for each 1 ≤ j ≤ 2l we have

|aj − a′j | < ε.

The theorem also implies its strengthened form when we can choose if a
given a′j is smaller or bigger than aj . In particular, we can require Σ ⊂ Σ′ or
Σ′ ⊂ Σ. The proof of proposition 2 (given for example in [13]) also gives that
we can choose a2j−1 = a′2j−1 for all j. Alternatively we can fix all a2j .

For definiteness we assume that aj is a right endpoint of a subinterval of E
(left endpoints can be similarly handled).

In the proof of (12) in Theorem 1 first we assume E to be the inverse image
of [−1, 1] under an admissible polynomial TN of degree N , and also assume that
Pn is of the form Pn(x) = Rm(TN (x)) with some Rm ∈ Pm, so that n = mN .

Taking derivatives we get

P ′
n(x) = R′

m(TN (x))T ′
N (x),

P ′′
n (x) = R′′

m(TN (x))(T ′
N (x))2 +R′

m(TN (x))T ′′
N (x),

...

P (k)
n (x) = R(k)

m (TN (x))(T ′
N (x))k +

k(k − 1)

2
R(k−1)

m (TN (x))(T ′
N (x))k−2T ′′

N (x)

+ · · ·+R′
m(TN (x))T

(k)
N (x). (14)

Here we have used Faà di Bruno’s formula to calculate higher order derivatives
of composed functions Faà di Bruno’s formula [4] (see also [11, pp. 35–37])

dk

dxk
f(g(x)) =

∑ k!

m1!m2! · · ·mk!
f (m1+···+mk)(g(x))

k
∏

i=1

[g(i)(x)

i!

]mi

, (15)

where the sum is over all k-tuples of nonnegative integers (m1, · · · ,mk) satisfy-
ing

m1 + 2m2 + · · ·+ kmk = k. (16)

For fixed N and k, the functions TN , T ′
N , · · · , T (k)

N are all bounded on E.
When m is large, the first term in (14) can be of order m2k, all other terms are
of smaller order by (6). Therefore, by the classical Markov inequality (4)

|P (k)
n (aj)| ≤ (1 + o(1))Cm,k‖Rm‖[−1,1]|T ′

N (aj)|k.
In view of (4.10) of [13], we have |T ′

N (aj)| = N2Maj
, and since n = mN , we

obtain

Cm,kN
2k =

(mN)2[(mN)2 −N2] · · · [(mN)2 − (k − 1)2N2]

(2k − 1)!!

≤ (mN)2k

(2k − 1)!!
=

n2k

(2k − 1)!!
,
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Therefore,

|P (k)
n (aj)| ≤ (1 + o(1))

Mk
aj
n2k

(2k − 1)!!
‖Pn‖E ,

where we used that ‖Pn‖E = ‖Rm‖[−1,1]. This is the desired inequality but only
for the endpoint aj .

The argument for points close to aj is similar. In fact, let ε > 0 be given.
We can select η > 0 such that [aj − 2η, aj ] ⊂ E and for x ∈ [aj − η, aj ] it is true
that

|T ′
N (x)| ≤ (1 + ε)|T ′

N (aj)| = (1 + ε)Maj
N2.

Then for x ∈ [aj − η, aj ] we get from (14) and again from the classical Markov
inequality (4) that

|P (k)
n (x)| ≤ (1 + o(1))(1 + ε)k

m2k

(2k − 1)!!
N2kMk

aj
‖Rm‖[−1,1]

= (1 + o(1))(1 + ε)k
Mk

aj

(2k − 1)!!
n2k‖Pn‖E .

Since ε > 0 is arbitrary, (12) follows (with δ replaced by η) for Pn = Rm(TN )
as m → ∞.

The general case of Theorem 1

We proceed with the proof of (12) in the general case. In view of (6), it is
sufficient to prove (12) for large n. So let E be an arbitrary set consisting of a
finite number of intervals: E = ∪l

j=1[a2j−1, a2j ]. By Proposition 2 we can choose

admissible polynomials TN such that the inverse image set E′ = T−1
N [−1, 1] =

∪l
j=1[a

′
2j−1, a

′
2j ] consists of l intervals and it lies arbitrary close to E. For a

given j we may choose aj to be an endpoint of E′ (i.e. a′j = aj), and we may
also have E′ ⊂ E. For the numbers τi in (10) it is clear that they are C∞-
functions of the endpoints aj . But then, if M

′
aj

is the quantity (11) for E′ and
the corresponding τi are denoted by τ ′i , given ε > 0, we have M ′

aj
≤ (1 + ε)Maj

if E′ lies sufficiently close to E.
Let E′

s = [α′
s, β

′
s] be the intervals for E′ from the beginning of this section

(so that TN (E′
s) = [−1, 1]), and assume that aj ∈ E′

s0 . Then aj is the right
endpoint of [α′

s0 , β
′
s0 ], i.e. aj = β′

s0 . Assume that η > 0 is so small that
[aj − 2η, aj ] ⊂ E′

s0 . By Theorem VI.3.6 of [12], there are polynomials L√
n of

degree at most1 [
√
n] such that with some constants 0 < β < 1 and C we have

0 ≤ L√
n(x) ≤ 1, for x ∈ E′,

0 ≤ 1− L√
n(x) ≤ Cβ

√
n, for x ∈ [aj − η, aj ],

0 ≤ L√
n(x) ≤ Cβ

√
n, for x ∈ E′ \ E′

s0 .

1[·] denotes integral part
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For an arbitrary polynomial Pn consider P ∗
n(x) = L√

n(x)Pn(x), which has
degree at most n+ [

√
n] and which satisfies

‖P ∗
n‖E′ ≤ ‖Pn‖E′ ,

P ∗
n(x) = (1 +O(β

√
n))Pn(x), for x ∈ [aj − η, aj ],

P ∗
n(x) = O(β

√
n)‖Pn‖E′ , for x ∈ E′ \ E′

s0 . (17)

Now

(P ∗
n)

(k)(x) = (L√
nPn)

(k)(x)

= L√
n(x)P

(k)
n (x) +

k
∑

i=1

(

k

i

)

L
(i)√
n
(x)P (k−i)

n (x),

and so

(P ∗
n)

(k)(x)− P (k)
n (x) = (L√

n(x)− 1)P (k)
n (x) +

k
∑

i=1

(

k

i

)

L
(i)√
n
(x)P (k−i)

n (x).

In view of (6) there exists a constant C1 (that may depend on E′) such that for
all x ∈ E′ and 1 ≤ i ≤ k

|L(i)√
n
(x)| ≤ C1(

√
n)2i‖L√

n‖E′ = C1n
i‖L√

n‖E′ ≤ C1n
i,

|P (i)
n (x)| ≤ C1n

2i‖Pn‖E′ ,

and, in addition, on E′ \ E′
s0 = E′ \ [α′

s0 , β
′
s0 ]

|L(i)√
n
(x)| ≤ C1(

√
n)2i‖L√

n‖E′\E′

s0
≤ C1n

iβ
√
n.

These show that we have

|(P ∗
n)

(k)(x)− (Pn)
(k)(x)| = O

(

n2kβ
√
n+n2k−1

)

‖Pn‖E′ , x ∈ [aj−η, aj ], (18)

and

|(P ∗
n)

(k)(x)| = O
(

n2kβ
√
n
)

‖Pn‖E′ , uniformly for x ∈ E′ \ E′
s0 . (19)

We denote by T−1
N,i the branch of T−1

N that maps [−1, 1] onto E′
i. If we define

S(x) =
N
∑

i=1

P ∗
n(T

−1
N,i(TN (x))),

then S(x) is a polynomial of degree at most deg(P ∗
n)/N ≤ (n+

√
n)/N of TN (x),

see [14, Section 5]. Thus, the degree of S is at most [(n+
√
n)/N ]N ≤ n+

√
n.

Let x ∈ [aj − η, aj ]. When i = s0 then

P ∗
n(T

−1
N,i(TN (x))) = P ∗

n(x),
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and for all i 6= s0 the points T−1
N,i(TN (x)) belong to the set E′ \ E′

s0 . We shall
prove in the next subsection that for all sufficiently large n

∣

∣

∣
S(k)(x)− (P ∗

n)
(k)(x)

∣

∣

∣
≤ C2(

√

β)
√
n‖Pn‖E′ , x ∈ [aj − η, aj ], (20)

with a constant C2 independent of x ∈ [aj − η, aj ] and n.
By the properties of P ∗

n (see (17)) and also by the fact that out of T−1
N,i(TN (x)),

1 ≤ i ≤ N , only one can belong to E′
s0 = [α′

s0 , β
′
s0 ], we have

‖S‖E′ ≤ (1 +O(β
√
n))‖Pn‖E′ ≤ (1 +O(β

√
n))‖Pn‖E (21)

(recall that E′ ⊆ E). Therefore, we get from (20) and (18)

‖P (k)
n ‖[aj−η,aj ] ≤ ‖S(k)‖[aj−η,aj ] +O((

√

β)
√
n + n2k−1)‖Pn‖E′

≤ (1 + o(1))
(M ′

aj
)k

(2k − 1)!!
(deg(S))2k‖S‖E′ +O((

√

β)
√
n + n2k−1)‖Pn‖E′

≤ (1 + o(1))
(M ′

aj
)k

(2k − 1)!!
n2k‖S‖E′

≤ (1 + o(1))(1 + ε)k
Mk

aj

(2k − 1)!!
n2k‖Pn‖E ,

where in the second inequality we used the special case of the theorem (applied
to E′ and to S) that we proved in the first part of this section, in the third
inequality that deg(S) ≤ [(n+

√
n)/N ]N ≤ n+

√
n, and in the last inequality

we used that E′ ⊂ E and M ′
j ≤ (1 + ε)Maj

. Since ε > 0 is arbitrary, we obtain
(12) (with δ replaced by η which is permitted by (8)).

In order to prove (13), we select a polynomial inverse image set E′ =
T−1
N [−1, 1], E ⊆ E′, consisting of l intervals that lies close to E for which

aj is an endpoint, and for which M ′
aj

is close to Maj
, say M ′

aj
≥ Maj

(1 − ε)
for some given ε > 0. Let Tm = cos(m arccosx) be the classical Chebyshev

polynomials and set Pn := Tm(TN ). Since |T (k)
m (±1)| = Cm,k (see (5)) and

|T ′
N (aj)| = M ′

aj
N2, we get for n = mN as before

|P (k)
n (aj)| = |(Tm(TN ))(k)(aj)| = (1 + o(1))Cm,kN

2k(M ′
j)

k,

and here

Cm,kN
2k(M ′

j)
k ≥ (1 + o(1))

m2k

(2k − 1)!!
N2kMk

aj
(1− ε)k.

Since E ⊂ E′ we have

‖Pn‖E ≤ ‖Pn‖E′ = ‖Tm‖[−1,1] = 1,

and so from n = mN we get

|P (k)
n (aj)| ≥ (1 + o(1))(1− ε)k

n2k

(2k − 1)!!
Mk

aj
‖Pn‖E .
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This is only for integers n of the form n = mN . For others just use PN [n/N ]

as Pn, where [·] denotes integral part. Since here ε = εN > 0 is arbitrary, (13)
follows if we let N tend to ∞ slowly (and at the same time T−1

N [−1, 1] close to
E) as n → ∞ (in which case we have εN → 0).

Proof of (20)

The preceding proof used (20), and now we proceed with its proof. We keep the
notations used before.

Let x ∈ (aj − η, aj), and for an i 6= s0 let T−1
N,i(TN (aj)) = γs (it is one

of the endpoints of a subinterval of E′
s, s 6= s0). Since aj is an endpoint of a

subinterval of E′, we have T ′
N (aj) 6= 0, hence close to aj

|TN (x)− TN (aj)| ∼ |x− aj |,
where TN (aj) = ±1 and A ∼ B means that the ratio A/B remains in between
two positive constants. In a similar manner, if γs is an endpoint of a subinterval
of E′ then

|TN (y)− TN (γs)| ∼ |y − γs|,
for y lying close to γs. However, if γs is an interior point of E′, then T ′

N has a
simple zero at γs, therefore

|TN (y)− TN (γs)| ∼ |y − γs|2,
for y lying close to γs. These imply that in [aj − η, aj ]

|T−1
N,i(TN (x))−γs| ∼

{

|x− aj |1/2 if γs = T−1
N,i(TN (aj)) is not an endpoint of E′

|x− aj | otherwise
(22)

Note also that T ′
N has a simple zero or no zero at γs depending on if γs is not

an endpoint of E′ or it is.
Differentiation gives

d

dx

(

T−1
N,i(TN (x))

)

=
T ′
N (x)

T ′
N (T−1

N,i(TN (x)))
,

d2

dx2

(

T−1
N,i(TN (x))

)

=
−(T ′

N (x))2

(T ′
N (T−1

N,i(TN (x))))3
+

T ′′
N (x)

T ′
N (T−1

N,i(TN (x)))
,

and in general we obtain that

dm

dxm

(

T−1
N,i(TN (x))

)

=
QN,m(x)

(T ′
N (T−1

N,i(TN (x))))2ν−1

with some QN,m built up from T
(ν)
N (x) and T

(ν)
N (T−1

N,i(TN (x))), 1 ≤ ν ≤ m using
multiplication and addition. Hence, in view of (22) and of what we said about
the derivative of T ′

N at the point γs = T−1
N,i(TN (aj)), it follows that

∣

∣

∣

∣

dm

dxm

(

T−1
N,i(TN (x))

)

∣

∣

∣

∣

≤ C

|x− aj |(2m−1)/2
≤ C

|x− aj |m
(23)
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with a C (that may depend on TN and m). By the Faà di Bruno formula (15)
the k-th derivative of P ∗

n(T
−1
N,i(TN (x))) is a combination of terms of the form

(P ∗
n)

(m1+···+mk)(T−1
N,i(TN (x)))

k
∏

ν=1

dmν

dxmν

(

T−1
N,i(TN (x))

)

with m1 + 2m2 + · · · + kmk ≤ k. Therefore, we obtain from (19) (apply it not
just for the k-th, but also to lower order derivatives of P ∗

n) and (23) that for
i 6= s0

∣

∣

∣

∣

dk

dxk
P ∗
n(T

−1
N,i(TN (x)))

∣

∣

∣

∣

≤ C1n
2kβ

√
n

|x− aj |k
‖Pn‖E′ .

Let now θ < 1 be such that θk >
√
β. The preceding estimate gives for

x ∈ [aj − η, aj − θn] (provided θn < η)

∣

∣

∣

∣

dk

dxk
P ∗
n(T

−1
N,i(TN (x)))

∣

∣

∣

∣

≤ C1n
2kβ

√
nθ−kn‖Pn‖E′ ≤ C1(

√

β)
√
n‖Pn‖E′ .

What we have obtained is that

|S(k)
n (x)− (P ∗

n)
(k)(x)| =

∣

∣

∣

∣

∣

∣

∑

i6=s0

dk

dxk
P ∗
n(T

−1
N,i(TN (x)))

∣

∣

∣

∣

∣

∣

≤ NC1(
√

β)
√
n‖Pn‖E′

(24)
on the interval [aj − η, aj − θn], where C1 may depend on TN and k. We want
to conclude that

‖S(k)
n − (P ∗

n)
(k)‖[aj−η,aj ] ≤ 2NC1(

√

β)
√
n‖Pn‖E′ . (25)

To do that we recall Remez’ inequality (see [5, Lemma 7.3]): if Rn is a polyno-
mial of degree at most n and m(Rn) is the measure of those x ∈ [−1, 1] where
|Rn(x)| ≤ 1, then

‖Rn‖[−1,1] ≤ Tn
(

4

m(Rn)
− 1

)

, (26)

where Tn(t) = cos(n arccos t) are the classical Chebyshev polynomials. In view
of

Tn (y) =
1

2

(

(y +
√

y2 − 1)n + (y −
√

y2 − 1)n
)

,

a transformation of (26) yields that there is a c0 > 0 such that for any polynomial
Rn of degree at most n and for any interval I the inequality

‖Rn‖I ≤ 2‖Rn‖I\J

is true provided the linear measure of J ⊆ I is ≤ c0|I|/n2. Thus, for large n
the inequality (25) is, indeed, a consequence of (24) (which is true uniformly in
n on [aj − η, aj − θn]), and (25) is nothing else than (20).
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3 General compact sets on R

In this section, we will consider a compact set E ⊂ R. We say that a ∈ E is a
right endpoint of E if there is a ρ such that [a−2ρ, a] ⊂ E, but (a, a+2ρ)∩E = ∅.

As before, for a given k ≥ 1 the asymptotic Markov factor of order k for E
at such an endpoint a is the smallest number Ma,k such that

‖P (k)
n ‖[a−ρ,a] ≤ Ma,kn

2kn2k‖Pn‖E (27)

is satisfied for all Pn ∈ Pn. In this section we determine this Ma,k. To do that
recall that the equilibrium measure of E is absolutely continuous on [a− 2ρ, a]
and its density ωE is defined there. This ωE has a 1/

√
t type behavior at a, and

we define
Ma = Ma(E) := 2π2 lim

t→a−0
ω2
E(t)|t− a|.

This quantity exists (see [6, Lemma 2.1]), and has already been used in the
paper [6]. It is immediate from (10) that if E consists of finitely many intervals
[a2j−1, a2j ] and a = a2j , then this Ma is the Ma2j

defined in (11). Therefore,
the following theorem is an extension of Theorem 1.

Theorem 3. If E is a compact subset of R and a is a right endpoint of E, then

for fixed k ≥ 1 and Pn ∈ Pn, we have (for any small fixed ρ > 0)

‖P (k)
n ‖[a−ρ,a] ≤ (1 + o(1))

Mk
an

2k

(2k − 1)!!
‖Pn‖E , (28)

where o(1) tends to 0 as n → ∞. Furthermore, this is asymptotically the best

estimate, for there is a sequence {Pn ∈ Pn}∞n=1 of nonzero polynomials such

that

|P (k)
n (a)| ≥ (1 + o(1))

Mk
an

2k

(2k − 1)!!
‖Pn‖E . (29)

Thus, for the best asymptotic Markov factor Ma,k in (27) we have

Ma,k =
M2k

a

(2k − 1)!!
.

Proof. First we prove (28), and in doing so first we assume that E is regular
with respect to the Dirichlet problem in C \ E.

Fix ε > 0, and let J := [minE,maxE] be the smallest interval that contains
E. There exist a 0 < τ < 1 and for each large n polynomials Qnε of degree not
larger than [nε] such that

a) 1− e−nτ ≤ Qnε ≤ 1 if x ∈ [a− ρ, a+ ρ],

b) 0 ≤ Qnε(x) ≤ 1 if x ∈ [a− 3ρ/2, a− ρ] ∪ [a+ ρ, a+ 3ρ/2],

c) 0 ≤ Qnε(x) ≤ e−nτ if x ∈ J \ [a− 3ρ/2, a+ 3ρ/2]

11



(see for example, [12, Corollary VI.3.6]). We may assume that E is not a finite
union of intervals, for in that case we can apply Theorem 1. Since R \ E is an
open set, we have R \ E = ∪∞

j=1Ij , where Ij are disjoint open intervals. We
assume that I0 and I1 are the unbounded subintervals of R \ E. For m > 0
consider the set

Em := R \ (∪m
j=0Ij). (30)

This set contains E and is of the form

Em = ∪m
j=1[aj,m, bj,m]

with a1,m < b1,m < a2,m < · · · < am,m < bm,m. For sufficiently large m the
point a is a right endpoint of Em, and by Proposition 2.3 of [6] we have

lim
m→∞

Ma(Em) = Ma(E). (31)

Let gE denote the Green’s function of C \ E with pole at infinity. The
regularity of E guarantees that gE is continuous and vanishes on E. Therefore,
there exists 0 < θ < 1, θ = θ(τ), such that

if x ∈ R, dist(x,E) ≤ θ, then gE(x) ≤ τ2.

Choose m sufficient large such that dist(x,E) < θ for all x ∈ Em. Let Pn

be an arbitrary polynomial of degree at most n. We apply Theorem 1 for the
polynomial PnQnε on Em. If x ∈ E, then, by the properties of Qnε, we have
|Pn(x)Qnε(x)| ≤ ‖Pn‖E . On the other hand, if x ∈ Em \ E, then, by the
Bernstein-Walsh lemma ([16, p. 77]) and by property c) of Qnε,

|Pn(x)Qnε(x)| ≤ ‖Pn‖E exp(ngE(x)) exp(−nτ)

≤ ‖Pn‖E exp(nτ2) exp(−nτ) < ‖Pn‖E .

Therefore
‖PnQnε‖Em

≤ ‖Pn‖E . (32)

For x ∈ [a− ρ, a]

|(PnQnε)
(k)(x)| ≥ |P (k)

n (x)Qnε(x)| −
k

∑

j=1

(

k

j

)

|P (k−j)
n (x)Q(j)

nε (x)|.

Here 1− e−nτ ≤ Qnε(x)| ≤ 1, and by (6)

‖Q(j)
nε ‖E ≤ C(nε)2j , ‖P (j)

n ‖E ≤ Cn2j‖Pn‖E

with some constant C for all j = 1, 2, · · · , k. Hence, when x ∈ [a− ρ, a], we get

12



from Theorem 1 when applied to the polynomial PnQεn and to the set Em

|P (k)
n (x)|(1− e−nτ ) ≤ |(PnQnε)

(k)(x)|+
k

∑

j=1

(

k

j

)

C2‖Pn‖En2(k−j)(nε)
2j

≤ (1 + o(1))
((1 + ε)n)2k

(2k − 1)!!
Ma(Em)k‖PnQnε‖Em

+‖Pn‖EC1ε
2n2k

≤ n2k

(2k − 1)!!
‖Pn‖E

(

(1 + o(1))(1 + ε)2Ma(Em)k + C1ε
2
)

Since ε > 0 and m are arbitrary, the inequality (28) follows if we apply (31).

The preceding proof used the regularity of E. In order to remove that, we
use a theorem of Ancona [1]. Let E ⊂ R be a compact set of positive logarithmic
capacity. For each l, there exists a regular compact set E−

l ⊂ E such that

cap(E) ≤ cap(E−
l ) +

1

l
.

Because the union of two regular compact sets is regular, we may assume that
[a− 2ρ, a] ⊆ E−

m.
According to what we have proven,

‖P (k)
n ‖[a−ρ,a] ≤ (1 + o(1))n2kMa(E

−
l )k

(2k − 1)!!
‖Pn‖E−

l

≤ (1 + o(1))n2kMa(E
−
l )k

(2k − 1)!!
‖Pn‖E ,

Since Ma(E
−
l ) can be made arbitrarily close to Ma(E) by choosing l large

enough (see [6, Proposition 2.3] and its proof), the inequality (28) follows.

Finally, we prove (29). We are going to select a sequence of polynomials
{Pn}∞n=1 with deg(Pn) = n, such that

lim
n→∞

|P (k)
n (a)|(2k − 1)!!

n2k‖Pn‖E
= Ma(E)k. (33)

Consider the set Em from (30) for such a large m, for which a is already a right
endpoint of Em. This Em is the union of finitely many closed intervals some of
them may be a singleton. Replace each such point in Em by an interval of length
less than 1/m, and denote the resulting set again by Em, which consists of non-
degenerated intervals. We can use the result in the previous section for this Em:
there exists a sequence {Pm,n}∞n=1, deg(Pm,n) ≤ n, of nonzero polynomials such
that

|P (k)
m,n(a)| ≥ (1− oEm

(1))Ma(Em)k
n2k

(2k − 1)!!
‖Pm,n‖Em

,

13



where oEm
(1) depends on Em and it tends 0 as n → ∞ for any fixed m. Since

E ⊂ Em, we have ‖Pm,n‖Em
≥ ‖Pm,n‖E , and hence

|P (k)
m,n(a)| ≥ (1− oEm

(1))Ma(Em)k
n2k

(2k − 1)!!
‖Pm,n‖E .

By choosing m sufficiently large, Ma(Em) can be made arbitrarily close to
Ma(E) (see Proposition 2.3 and its proof in [6]), and then (33) follows for
Pn := Pmn,n if mn goes slowly to infinity as n → ∞.
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