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Abstract It was recently noticed that lemniscates do not survive Laplacian
growth [12] (2010). This raises the question: “Is there a growth process for
which polynomial lemniscates are solutions?” The answer is “yes”, and the
law governing the boundary velocity is reciprocal to that of Laplacian growth.

Viewing lemniscates as solutions to a moving-boundary problem gives a
new perspective on results from classical potential theory, and interesting prop-
erties emerge while comparing lemniscate growth to Laplacian growth.
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1 Introduction: Lemniscate growth is “reciprocal” to Laplacian
growth

In this work we heavily rely on concepts (like Green’s functions, harmonic
measure, equilibrium measure or balayage) and basic result from potential
theory. For these see [19], [14], [23] or [22].

Suppose {Lt} is a one-parameter family of domains in C ∼= R2, and let Lt
be the boundary curves. Recall that {Lt} is called a Laplacian growth process
with sink at z0 ∈ Lt if the normal component of the boundary velocity V (z) at
a point z ∈ Lt coincides with the normal derivative of Green’s function with
pole at z0 ∈ Lt:

V (z) = ∂ngLt(z, z0). (1)

We are especially interested in the case when the domains {Lt} are unbounded
and z0 =∞. We note that we are taking the convention that gLt(z, z0) has a
positive singularity at z0, so that (1) defines a shrinking domain.

It was observed in [12] that lemniscates are not preserved under Laplacian
growth, except in the trivial case of a circle. Namely, the authors proved the
following

Theorem. Suppose that a family of moving boundaries Lt, (where t > 0 is
time), produced by a Laplacian growth process, is a family of polynomial lem-
niscates |P (z, t)| = 1, where P (z, t) = a(t)

∏n
j=1[z − λj(t)], and all λj(t) are

assumed to be inside Lt. Then, Lt is a family of concentric circles.

This raises an obvious question.
Question: Is there a growth process that preserves lemniscates?

The answer is “yes” and it is precisely the reciprocal of the Laplacian
growth law described by Eq. (1). To be explicit, consider the problem of finding
a one-parameter family of domains Ωt so that the normal component V (z) of
the velocity of the boundary satisfies

V (z) =
1

∂ngΩt(z, z0)
. (2)

Then an evolution of polynomial lemniscates (different level sets of the modu-
lus of a single polynomial) gives an exact solution to this problem with z0 =∞.

Example 1 Let TN be a fixed polynomial of degree N , and consider the one-
parameter family of domains Σt = {z |TN (z)| > exp{Nt}}. Then the normal
velocity V (z) of the boundary satisfies (2) with z0 =∞ and with Ωt = Σt.

Indeed, the lemniscate Γt = {z |TN (z)| = exp{Nt}} is the boundary of Σt.
The Green’s function gΣt(·,∞) with pole at infinity of the domain Σt is

gΣt(z,∞) =
1

N
log |TN (z)| − t.

Notice that Γt is the zero set of gΣt(z,∞), but it is also the t-set of gΣ0(z,∞),
i.e., Γt = {z 1

N log |TN (z)| = t}.
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We recall a general principle. If Γt := {z F (z) = t} are the level sets of
a function F (z), then taking some point z on Γt and moving in the normal
direction by ∆z to obtain a point on some other level curve Γt+∆t, we have

F (z +∆z)− F (z)

|∆z|
=

∆t

|∆z|
.

Thus, ∂nF (z) is the reciprocal of the velocity of the level curves. In our case,
F (z) = 1

N log |TN (z)|, and we have

V (z) =
1

∂ngΣ0
(z,∞)

.

But since gΣt(z,∞) = gΣ0
(z,∞)− t, then ∂ngΣ0

(z,∞) = ∂ngΣt(z,∞) and (2)
holds for Ωt = Σt.

We propose to call any such process governed by (2) “lemniscate growth”
based on the many exact solutions provided by lemniscates. The purpose of
this survey is first to revisit some results from classical potential theory in
the setting of lemniscate growth, second, to make comparisons to Laplacian
growth, and third, to draw connections to some studies in disparate areas:
domain reconstruction [8], (mem)Brane theory [3], elliptic growth [11], and
non-Newtonian Hele-Shaw flows [5].

In Section 2, we explore basic properties following directly from classi-
cal potential theory. In Section 3, we discuss a conservation law resembling
Richardson’s theorem. In Section 4, we include a strength parameter ν(t) in
(2):

V (z) =
ν(t)

∂ngΩt(z, z0)
, (3)

and consider the reverse process, when ν is negative, so that the domain Ωt
is growing. The well-posedness is more delicate in this case and large time
existence relates to a potential theoretic question about so-called electrostatic
skeletons, see Section 4. In Section 5, instead of a single Green’s function we
take a superposition so that there are multiple fixed singularities. An appealing
aspect of Laplacian growth, recently connected to the Whitham hierarchy in
integrable systems [13], is that multiple singularities give rise to “commuting
flows”. We observe that this property fails for lemniscate growth, but holds
for a modified version of it. See the “zero-curvature” condition in Section 5
described by Equation (17). In Section 6, as an addendum to the result from
[12] stated above, we work out an example showing that certain cases of elliptic
growth (a generalization of Laplacian growth) admit lemniscate solutions.



4 Erik Lundberg, Vilmos Totik

2 Existence, uniqueness, and regularity

Let us take any simply connected domain Ω0 that is not all of C, and consider
the problem of finding Ωt so that (2) is satisfied. We will see that existence,
uniqueness, and regularity follow from considerations in classical potential
theory. The problem is not only well-posed, but also stable (approaching a
circle in the limit). The reverse-process, i.e. backward-time lemniscate growth,
is generally ill-posed and unstable. As with Laplacian growth, the unstable
direction is perhaps more interesting, and will be discussed in Section 4.

2.1 Existence:

Let z0 ∈ Ω0 be a fixed point. By the Riemann mapping theorem, there is
a conformal map f : Ω0 → C \ D, with f(z0) = ∞. The Green’s function
gΩ0(z, z0) of Ω0 with pole at z0 equals log |f(z)|. Let Ωt = {z log |f(z)| > t}.
Then the Green’s function gΩt(z, z0) is log |f(z)|− t, and we can argue exactly
as in Example 1 that the boundary of Ωt moves with velocity given by (2).

This proves existence, but let us give some additional detail. The curves
orthogonal to Γt := ∂Ωt are trajectories of an ordinary differential equation.
In what follows we write z = x + iy and ∂u/∂z = (ux,−uy) = ux − iuy. Let
g(z) = gΩ0

(z, z0). Consider the vector field

F (z) =
∇g
|∇g|2

=

(
gx

g2x + g2y
,

gy
g2x + g2y

)
=

1

∂g/∂z
. (4)

This is analytic since ∂g/∂z is analytic. Consider the trajectory γs(t) of a
point s ∈ Γ0 in this vector field. This means that the point moves at any z
with velocity F (z), i.e.

γs(t)
′ = F (γs(t)), t > 0; γs(0) = s, (5)

where (·)′ indicates differentiation with respect to t. ∂g/∂z is analytic in Ω0,
and its antiderivative H(z) is a (multivalued) analytic function with real part
equal to g. Now (5) gives

H ′(γs(t))γs(t)
′ = 1,

so by integration we get that (taking an appropriate branch of H) H(γs(t)) =
t + c, where the constant c is imaginary (since Re(H(γs(0)) = g(γs(0)) = 0).
Thus, g(γs(t)) = t, i.e. the points γs(t), s ∈ Γ0, lie on the level curve {z g(z) =
t}. The curves γs(t), t > 0, are called Green lines, and they are orthogonal
to the boundary curves Γt (this follows from the fact that γs(t) moves in the
direction of the gradient of g which is orthogonal to the level curves Γt). These
Green lines run from Γ0 to z0.
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Example 2 Consider the potential field

G(z) =

∫
log |z − ξ|dµ(ξ)

generated by a unit charge distribution µ lying exterior to Ω0 := {z G(z) >
v0}. Then z0 = ∞, g(z) = G(z) − v0, and the Green lines are the paths of
charged particles when placed in this potential field.

If the total charge of µ is not 1 but 1/λ, then g(z) = λ(G(z)− v0), and in
this case the level sets {z G(z) = t} move with velocity equal to λ times the
reciprocal of the normal derivative.

2.2 Uniqueness:

Suppose {Ω̃t} is another growth process where the boundary moves with ve-
locity equal to the reciprocal of the normal derivative of the Green’s function
gΩ̃t(·, z0) and Ω̃0 = Ω0. To show that Ω̃t = Ωt, consider the level domains of
the Green’s function gΩ̃t(·, z0):

Ω̃t,τ = {z gΩ̃t(z, z0) > τ}, τ > 0.

For this

gΩ̃t,τ (·, z0) = gΩ̃t(·, z0)− τ.

Since, in small time τ > 0 a boundary point z ∈ Γ̃t moves to a point z(τ)
where the value gΩ̃t(z(τ), z0) is about τ , we get that no matter how small
η > 0 is, for small τ > 0 we have

Ω̃t,(1+η)τ ⊂ Ω̃t+τ ⊂ Ω̃t,(1−η)τ ,

so at a point w ∈ Ω̃t we have for small τ the inequality

gΩ̃t(w, z0)− (1− η)τ ≥ gΩ̃t+τ (w, z0) ≥ gΩ̃t(·, z0)− (1 + η)τ.

Thus,
∂gΩ̃t(w, z0)

∂t
= −1,

and so

gΩ̃t(w, z0) = gΩ̃0
(w, z0)− t.

But the right-hand side is just gΩt(w, z0), so

gΩ̃t(w, z0) = gΩt(w, z0),

which shows (say upon letting w tending to the boundary of Ω̃t) that Ω̃t = Ωt
for all t.
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2.3 Regularity:

Since the boundaries ∂Ωt are images of circles under a conformal map, they
foliate Ω0 by analytic, non-singular curves shrinking to the point z0.

3 Conformal invariance and conserved quantities

Since Green’s functions are conformally invariant, it follows from the above
discussion that so is lemniscate growth: if ϕ is a conformal map of Ω0 onto
Ω̃0, then the process {Ω̃t} starting at ϕ(Ω0) with pole at ϕ(z0) is the same as
the image of the process {Ωt} starting at Ω0 with pole at z0: ϕ(Ωt) = Ω̃t.

Let σt = σt,z0 be the harmonic measure of the point z0 with respect to
the domain Ωt. This means that σt is a unit measure on Γt such that for any
function u which is harmonic in Ωt and continuous on the closure of Ωt we
have

u(z0) =

∫
Γt

udσt. (6)

Thus, the integrals of functions harmonic in Ω0 against the measures σt are
conserved during the process.

It is known (cf. [22, (I.4.8) and Theorem II.1.5]) that if dst is the arc
element of Γt, then

dσt,z0 =
1

2π

∂g(·, z0)

∂n
dst. (7)

The preceding formula shows that for t1 < t2 the measure σt2 is the balayage
of the measure σt1 onto Γt2 (out of C \Ωt2). The reverse, i.e. that for t1 < t2
the measure σt1 is the balayage of the measure σt2 onto Γt1 (out of Ωt1) is also
true, and follows from the next invariance. Also note that in the case z0 =∞
the measure σt is precisely the equilibrium measure of Γt.

If u is harmonic in C \ Ωt0 , then the integrals
∫
Γt
udσt are still preserved

for 0 < t < t0. Indeed, take two such t: 0 < t1 < t2 < t0, and write up Green’s
formula for the ring domain enclosed by Γt1 and Γt2 . We get∫

Γt1

u
∂g

∂n
dst1 −

∫
Γt2

u
∂g

∂n
dst2 =

∫
Γt1

g
∂u

∂n
dst1 −

∫
Γt2

g
∂u

∂n
dst2 .

In both integrals on the right g is constant (= t1 resp. t2), and, again by
Green’s formula, ∫

Γtj

∂u

∂n
dstj = 0, j = 1, 2.

So the left-hand side is zero for all t1 and t2, and we obtain that∫
Γt

udσt (8)
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is constant. In the case of Example 2 we get∫
Γt

udσt = λ

∫
udµ,

and in the case of lemniscates Γt = {z |TN (z)| = t} we have∫
Γt

udσt =
1

|Z|
∑
z∈Z

u(z),

where the summation is taken for the zero set Z of TN (counting multiplicities).

This formula can be summarized by saying that lemniscates are a type of
generalized quadrature domain, namely, they admit a quadrature formula for
integration of harmonic functions w.r.t. equilibrium measure.

When z0 =∞, then the convexity of the boundary curves Γt is preserved.
Indeed, let ϕ = ϕΩ0

be the conformal map from the exterior of the unit
disk onto Ω0. Then gΩ0

= log |ϕ−1|, and Γt = ϕ(Ct), where Ct is the circle
{z |z| = t}. The convexity of Γ0 is equivalent to the condition (see [18,
Theorem 2.9])

Re z
ϕ′(z)

ϕ(z)
> 0, |z| > 1. (9)

Now ϕΩt(z) = ϕΩ0
(tz), and then (9) implies

Re z
ϕ′Ωt(z)

ϕΩt(z)
= zt

ϕ′Ω0
(zt)

ϕΩ0(zt)
> 0, |z| > 1.

3.1 A minimality property

The curves Γt, 0 < t < T , are pairwise disjoint and they fill the region GT
lying in between Γ0 and ΓT . The same is true of the orthogonal family of Green
lines γs, s ∈ Γ0. Now there are many other smooth families Γ̃t connecting Γ0

and ΓT , and for them we can form the corresponding orthogonal family γ̃s(t)
parametrized so that γ̃s(t) ∈ Γ̃t, γ̃s(0) = s ∈ Γ0. Let s = s(τ), τ ∈ [0, 2π], be
a parametrization of Γ0. Then γ̃(τ, t) := γ̃s(τ)(t), τ ∈ [0, 2π], 0 < t < T , is a
parametrization of the points in the domain GT . Using the argument at the
beginning we get then that if the function u is defined on GT by u(γ̃(τ, t)) = t,
then Γ̃t are the level curves of u and

γ̃t =
∂γ̃

∂t
=
∇u
|∇u|2

=

(
ux

u2x + u2y
,

uy
u2x + u2y

)
.

Now

1

2π

∫
Γ̃t

1

|γ̃t|
ds̃t(τ) =

1

2π

∫ 2π

0

|γ̃τ |
|γ̃t|

dτ
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is the average reciprocal speed of the boundary on Γ̃t (sort of average resistance
when transferring charges, since 1/|γ̃t| is the time needed to transfer a fixed
but small amount of charge), and

Ṽ :=
1

2πT

∫ T

0

∫
Γ̃t

1

|γ̃t|
ds̃t(τ)dt =

1

2πT

∫ T

0

∫ 2π

0

|γ̃τ |
|γ̃t|

dτdt (10)

can be called the average reciprocal speed of the boundary of the motion {Γt}.
We always have Ṽ ≥ 1 with equality only for the lemniscate growth. Indeed,
|γ̃τ ||γ̃t|dτdt is the area element, and |γ̃t|−2 = |∇u|2. Hence Ṽ is nothing else
than the Dirichlet integral

1

2πT

∫
GT
|∇u|2,

and on the boundary of GT the function u coincides with g. By Dirichlet’s
principle ([23, Section I.5]) this integral is minimal when u is harmonic, i.e.
when it agrees with g. In this case γ̃ = γ, and on Γt we have (see (7))

1

2π

|γτ |
|γt|

dτ =
1

2π

1

|γt|
dst =

1

2π

∂g

∂n
dst = dσt,

so all the inner integrals in (10) are equal to 2π, from which Ṽ = 1 follows in
this case.

4 The reverse process, electrostatic skeletons

In general, if λ is a parameter and the boundary of Ωt moves with velocity
equal to λ times the reciprocal of the normal derivative, then the only difference
in the above construction is that, instead of (5), we have

γs(t)
′ = λF (γs(t)), t > 0; γs(0) = s,

the solution of which is g(γs(t)) = λt, so it is the same process, just speeded
up. In a similar manner, if λ is a negative parameter, then we still get the
same process, but going backward in time (i.e. in this case the domains Ωt are
growing, while in the λ > 0 case they are shrinking).

For definiteness consider the case when the pole z0 is at infinity. Starting
from a nice domain Ω0 (containing ∞) with an analytic Jordan curve as its
boundary, the process can run backwards so long as the boundary consists
of a single analytic curve. Further continuation may be possible by allowing
non-simply connected domains.

Let t0 be the smallest number for which the process can run backward for
all t > t0.

Suppose that, as in an ideal case, there is a compact set K of positive
capacity with connected complement and empty interior, and ∪t>t0Ωt = C \
K. Then, in Ω0, the equilibirum measure of the set K generates the same
logarithmic potential as the equilibrium measure of C \ Ω0 (which in turn is



Lemniscate Growth 9

the same as the equilibrium measures of Γ0 = ∂Ω0). This follows from the fact
that for z0 =∞ the measure σt in (6) is the equilibrium measure of Γt and, as
t→ t0, the equilibrium measures of Γt = ∂Ωt tend to the equilibrium measure
of K.

More generally, a measure µ supported on (but not necessarily the equilib-
rium measure of) a compact K ⊂ C \ Ω0 with empty interior and connected
complement is called an electrostatic skeleton of Ω0 if it generates the same
logarithmic potential as the equilibrium measure of C \Ω0.

The problem if an electrostatic skeleton exists is essentially an inverse
balayage problem. Indeed, if µ is supported on K and in Ω0 we have∫

log |z − t|dµ(t) =

∫
log |z − t|dσ0(t), z ∈ Ω0, (11)

where σ0 is the equilibrium measure of Γ0, then the balayage of µ onto Γ0 (out
of C\Ω0) must coincide with σ0. The converse is also true: if the balayage of µ
onto Γ0 coincides with σ0, then (11) holds. Thus, the problem of electrostatic
skeleton is to find an appropriate set K ⊂ C \Ω0 and a measure µ on K such
that the equilibrium measure of the boundary Γ0 is the balayage of µ onto Γ0.

Example 3 Let K be a compact subset of C with connected complement and
empty interior, and let µ be a unit measure on K. Set

M = max

∫
log |z − t|dµ(t),

and for a v0 > M consider

Ω0 =

{
z

∫
log |z − ξ|dµ(ξ) > v0

}
.

Then µ is an electrostatic skeleton of Ω0, and the growth process

Ωt =

{
z

∫
log |z − ξ|dµK(ξ) > v0 + t

}
, t ≥ 0,

can run backward to at least the time point M − v0.

Consider, for instance, a polynomial lemniscate Ω0 = {z |TN (z)| = 1}
with N poles as in the introduction. This corresponds to the case of Example
3 when K is the zero set of TN , and µ is the normalized counting measure
on the zeros. In this case M = −∞, so the process can run backward forever.
During the reverse process the boundary curve breaks into N components,
and in the long run these components shrink into single points.

Example 4 Let now K be a regular compact subset of C (regular with respect
to the Dirichlet problem in C \ K) with connected complement and empty
interior, and let µ be the equilibrium measure of K. In that case

M = max

∫
log |z − t|dµ(t) = log cap(K),
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where cap(K) denotes the logarithmic capacity of K, and the process in Ex-
ample 3 can run backward precisely to time t0 = log cap(K) − v0, and the
domains Ωt, t > t0 cover the whole complement of K.

A special case of this is when Ω0 is the complement of an ellipse: in that
case Ω0 has an electrostatic skeleton which is the equilibrium measure of the
focal segment.

Let us refer to µ as an equilibrium skeleton in the special case when it
is the equilibrium measure of its support, as in Example 4 above. Actually,
Example 4 describes all equilibrium skeletons with positive capacity for which
the domains Ωt fill the complement of K: if K is of positive capacity, then

gΩt(z,∞) = gC\K(z,∞) + t0 − t, t > t0, z ∈ Ωt.

Example 5 Let Ω0 be the infinite complement of a regular n-gon, and Γ0 =
∂Ω0. We show that in this case Ω0 has an electrostatic skeleton which is not
an equilibrium skeleton.

Let S be the star shaped union of the segments joining the center of Ω0 to
each vertex, and let ΓS be the boundary of the domain C\S. Note that, as we
circle around ΓS , we traverse each segment of S twice in opposite directions,
see Figure 4.

Let g be the Green’s function of Ω0 with pole at infinity. Since g is a
harmonic function vanishing on Γ0 = ∂Ω0, the reflection principle extends g
across each segment by odd reflection. Let w ∈ Ω0 and consider the function
u(z) = log |w − z|. If Γt, t > 0, is the boundary of the domain Ωt obtained
from Ω0 by lemniscate growth (with pole at infinity), then, for small t, u is
harmonic in the ring domain lying in between ΓS and Γt. By Green’s formula
for this ring domain,∫

Γt

u
∂g

∂n
ds−

∫
ΓS

u
∂g

∂n
ds =

∫
Γt

g
∂u

∂n
ds−

∫
ΓS

g
∂u

∂n
ds,
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from which we get for t→ 0∫
Γ0

u
∂g

∂n
ds−

∫
ΓS

u
∂g

∂n
ds =

∫
Γ0

g
∂u

∂n
ds−

∫
ΓS

g
∂u

∂n
ds.

In the first integral on the right g vanishes. In the second integral, each segment
of S is traced twice in opposite directions. By the symmetry of the domain Ω0,
and since g was extended by odd reflection, the value of g on the two sides of
any segment of S is the same. But the normal derivatives ∂u

∂n on the two sides
are each other’s negative, so the second integral on the right-hand side is also
zero. Therefore, both integrals on the right vanish, and we have∫

Γ0

log |w − ζ|∂g(ζ)

∂n
ds(ζ) =

∫
ΓS

log |w − ζ|∂g(ζ)

∂n
ds(ζ), w ∈ Ω0.

In view of (7) (with z0 =∞) this proves that the measure

1

π

∂g(ζ)

∂n
ds(ζ)

defined on S is an electrostatic skeleton of Ω0 with support K = S (here n is
either normal to S, and we wrote 1/π and not 1/2π as in (7) because the two
sides of every segment of S must be combined together).

The above example was worked out (but not published) by E. Miña-Diaz
and E. B. Saff [21]. Some examples of irregular polygons have also been dis-
cussed by Miña-Diaz, Saff, and N. Stylianopoulos [17].

It is an open problem, due to E. B. Saff [21], which sets have an electrostatic
skeleton. In particular, does the (infinite) complement of any convex polygon
have an electrostatic skeleton? In other words, if Γ is a convex polygon, is
there a µ with support K (having empty interior and connected complement)
lying inside Γ such that outside Γ the measure µ and the equilibrium measure
of Γ generate the same (logarithmic) potential field?

This problem is seemingly analogous to the skeleton problem solved in
[9] for area measures (which is to generate the same potential that the area
measure generates), but actually it is very different: while the latter one is
additive in many cases (the skeleton of a union is the union of skeletons), the
former one is never additive. As explained in [9], the “mother body” (inverse
balayage of area measure) for a convex polygon is supported on some union
of segments lying on the angle bisectors. For the regular n-gon (Example 5
above) the electrostatic skeleton (or “Madonna body”, cf. [8]) happens to
have support located on the angle bisectors, but for irregular polygons this
need not be the case, and the support typically includes nontrivial curves [17].
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4.1 The multiply connected case

If Ω is m-connected, then the Green’s function gΩ0
may have at most (m− 1)

critical points where the vector field F in (4) is not analytic (has poles), and
some of the Green lines may terminate at critical points. Still, the process
Ωt is continuous and the boundary curves Γt are analytic with finitely many
exceptions of the parameter t where the domain changes connectivity remi-
niscent of bubbles merging in Laplacian growth (see the example in Section 6
below). Conformal invariance, and the invariance of integrals against harmonic
measures still hold. For large t the domain Ωt becomes simply connected.

5 Multiple singularities and commuting flows

Following [24] and others, we consider the Laplacian growth process with mul-
tiple singularities by taking a superposition of Green’s functions in (1):

V (z) =

m∑
i=1

νi∂ngLt(z, zi), (12)

where zi are in Lt. Similarly, modify the condition (2) for lemniscate growth:

V (z) =
1∑m

i=1 νi∂ngΩt(z, zi)
, (13)

An interesting property of lemniscate growth emerges: the interior and ex-
terior domains of a single evolution of polynomial lemniscates {z |TN (z)| >
eNt} simultaneously solve separate problems. Namely, the exterior of the curve
Γt shrinks according to (2) with singularity at z0 =∞ (by Example 1), while
the interior of Γt grows according to (13) if we take the points zi to be at the
zeros of the polynomial TN (z) and νi = 1/N . Indeed, notice that the balayage
measure of δzi out of the interior domain Ωt is (∂ngΩt(z, zi)/2π)ds(z), so the
total balayage is their sum. If we divide this by N , then the so obtained mea-
sure has constant potential on the boundary, so it is the equilibrium measure,
and we can use (7).

Except for concentric circles, this is never the case for quadrature domain
solutions of Laplacian growth. Only one side of the curve (interior or exterior)
can be a Laplacian growth. To give some idea, suppose that a quadrature do-
main has a Schwarz function that extends meromorphically into the domain
with only simple poles and real residues. Then an evolution of such a quadra-
ture domain with poles at fixed positions solves the problem with the weights
νi determined by the rates of change of the residues. The exterior domain can-
not be interpreted as a Laplacian growth, because the Schwarz function has
time-dependent branch cut singularities (except in the case of a circle).

Intimately connected with Richardson’s theorem [20] is the fact that Lapla-
cian growth involving multiple singularities gives rise to commuting flows. For
instance, consider two separate sinks, positioned at a and b, and some initial
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domain Ω0. Imagine evolving the domain for some amount of time T (a) accord-
ing to (1) using the normal derivative of the Green’s function g(z, a). Then run
the process for some additional amount of time T (b) using the normal deriva-
tive of the Green’s function g(z, b). If we start over and do this in the other
order (but for the same amount of time at each sink), we will acheive the same
final domain at time T (a) +T (b). In other words, each sink generates a flow on
the space of domains containing it, and the flows generated by different sinks
commute. For a proof, see [24, Section 2.4]. The fact that the flows commute
is surprising, and it is not the case for lemniscate growth.

The infinitesimal version of the commuting flows can be seen as a con-
sequence of Hadamard’s variational formula. Consider a perturbation of the
boundary of a domain in the normal direction, by δn = εp(s) where p(s) is a
function of arc length s. We recall [6, Chapter 15] that the first variation of
the Green’s function is

δgΩ(z, b) = −
∫
∂Ω

∂ngΩ(ζ, b)∂ngΩ(ζ, z)δnds(ζ)

Let T (a) and T (b) denote the time parameters with respect to the two
flows generated by Laplacian growth with singularity at a and respectively b.
Consider the perturbation of Ω0 by the Laplacian growth with singularity at
a. So, p(s) = ∂ngΩ0

(ζ, a):

∂gΩ0
(z, b)

∂T (a)
= −

∫
∂Ω

∂ngΩ0(ζ, b)∂ngΩ0(ζ, z)∂ngΩ0(ζ, a)ds(ζ)

By virtue of the symmetry in a and b of the right-hand-side above, we have

∂gΩ0
(z, b)

∂T (a)
=
∂gΩ0

(z, a)

∂T (b)
. (14)

From this equation one can see that taking infinitesimal steps, the two flows
commute. This is often described as a “zero-curvature” condition.

Let us compare this to the case of lemniscate growth. With S(a) and S(b)

denoting the two time parameters for lemniscate growth with singularities at
a and b, we have

∂gΩ0
(z, b)

∂S(a)
= −

∫
∂Ω

∂ngΩ0
(ζ, z)

∂ngΩ0
(ζ, b)

∂ngΩ0
(ζ, a)

ds(ζ). (15)

The right-hand-side is not symmetric in a and b. Note however, that (15)
implies

1

2

(
∂gΩ0

(z, b)

∂S(a)
+
∂gΩ0

(z, a)

∂S(b)

)
≤ −

∫
∂Ω

∂ngΩ0
(ζ, z)ds(ζ) = −2π.

with equality only for a = b, which tells us that the combined change in gΩ0

is at least as large as in the case when the two poles a and b coincide.
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Thus, lemniscates growths with different poles do not commute, and this
leads us to ask if there is a process related to lemniscate growth which does
generate commuting flows.

For a one-parameter family of Jordan curves Γt, let gt(z, zE) be the Green’s
function of the exterior of Γt with zE a point in the exterior of Γt. Let z = zI
be a point in the interior. Suppose also that z = 0 is in the interior of Γt.
Consider the growth law

VzI (z) =
log |1− zI

z |
∂ngt(z, zE)

. (16)

Let R(a) and R(b) denote the time parameters with respect to the two flows
generated by two alternative choices zI = a and zI = b (but with zE fixed).
We will prove the following commutation result again using the Hadamard
variational formula.

∂Vb(z)

∂R(a)
=
∂Va(z)

∂R(b)
. (17)

First consider the variation of the Green’s function g(z, zE) with respect
to the flow generated by zI = a:

∂g(z, zE)

∂R(a)
= −

∫
∂Ω0

∂ng(ζ, zE)
∂ng(ζ, z) log |1− a

ζ |
∂ng(ζ, zE)

ds(ζ). (18)

Cancellation in the integrand above leads to a Poisson integral of a har-
monic function,∫

∂Ω0

∂ng(ζ, z) log

∣∣∣∣1− a

ζ

∣∣∣∣ ds(ζ) = 2π log
∣∣∣1− a

z

∣∣∣ .
Next we consider

∂Vb(z)

∂R(a)
= −

log |1− b
z |
∂g(z,zE)
∂R(a)

(∂ng(z, zE))2
= −2π

log |1− b
z | log |1− a

z |
(∂ng(z, zE))2

. (19)

We notice that this is symmetric in a and b so that we obtain the zero-
curvature condition (17).

Note that this also works if you exchange log |1− a/z| in Va for any ha(z)
where ha(z) is harmonic in Ω0. Perhaps in that generality it connects to some-
thing previously studied.
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6 Certain lemniscates do survive certain elliptic growths

In the first Section, we observed that a family of lemniscate domains such as

Ωt = {z ∈ C |z2 − 1| > exp(2t)}, (20)

has boundary velocity proportional to the reciprocal of harmonic measure
at infinity. Starting from a value of t > 0 and letting t decrease, as t passes
through t = 0 (Bernoulli’s lemniscate) the curve breaks into two curves forming
90-degree angles (we note that during bubble break-up in Laplacian growth,
instead of a 90-degree angle there are cusps).

Fig. 1 Elliptic growth with ρ = |z|2 and λ = 1/ρ and sinks located at z = ±1.

As observed in Section 5, the complementary domains also satisfy the lem-
niscate growth law, but with two singularities (positioned at ±1). We will
see that the same process can furthermore be viewed as a so-called “elliptic
growth”. Following [11], generalize the Laplacian growth process by introduc-
ing the functions λ(x, y) and ρ(x, y) as follows. Let the boundary velocity
satisfy v = λ∂np, where p satisfies div(ρλ∇p) = 0, and has prescribed singu-
larities.

Take ρ = |z|2, and λ = 1
ρ = 1

|z|2 . The case λ = 1
ρ reduces to a particularly

simple instance of elliptic growth which has been called “weighted Laplacian
growth”. The particular choice ρ = |z|2 (and λ = 1

|z|2 ), can be interpreted as

limiting equilibrium shapes of an electron cloud confined by a quartic external
field [10].

To see that (20) is an elliptic growth with the specified values of ρ and
λ, we rely on the “elliptic Schwarz potential” and the criterion given by [16,
Theorem 2.2].

First recall that the Schwarz function of a real-analytic curve is the unique,
complex-analytic function that coincides with z̄ on the curve [4]. An evolution
of domains is a Laplacian growth if the singularities of the Schwarz function
S(z, t) of the domain are independent of time except for simple poles located
at the sinks whose residues change with the rates νi appearing in (12).
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This can be generalized to higher dimensions and to the case of elliptic
growth by defining an elliptic Schwarz potential. It is defined to be the solution
of the following Cauchy problem.div (λρ∇u) = 0 near Γ

u|Γ = q
∇u|Γ = ∇q

, (21)

where the function q is required to satisfy the Poisson equation ∆q = ρ.

In the case we are considering ρ = |z|2, and so we take q = |z|4
12 . Since

λ = 1/ρ, the equation div (λρ∇u) = 0 is just ∆u = 0. Since u is harmonic,
uz = 1

2 (ux − iuy) is analytic. Also, the Cauchy data in (21) gives us uz =
1
12zz̄

2 on Γ . We can replace z̄ by S(z), the Schwarz function of Γ . Moreover,
since both sides of the equation

uz = 1
12zS(z)2

are complex analytic, the equation is valid not only on Γ but everywhere the
right-hand-side is defined.

The Schwarz function for the domain described by (20) is S(z) =
√

1 + a
z2−1 ,

a = exp(2t). So we have

uz = 1
12z

(
1 +

a

z2 − 1

)
.

Thus, even though the (complex analytic) Schwarz function has a branch
cut, the elliptic Schwarz potential has only logarithmic singularities (uz has
simple poles at z = ±1 with residue determined by a). This is exactly what is
required according to [16, Theorem 2.2] in order for the family of domains to
be an elliptic growth with “sinks” at z = ±1.

7 Remarks

1. In the above, we relied on electrostatics to provide a physical interpreta-
tion. However, to further pursue the comparison to Laplacian growth, we can
describe a loose connection to non-Newtonian fluids.

In a Hele-Shaw cell, for an interface between an inviscid fluid and a viscous,
non-Newtonian fluid, viscosity is allowed to depend on the gradient of pressure.
Then the Darcy law states that the boundary velocity v is the gradient of the
pressure divided by a function of the gradient of the pressure. Thus, v =
∇p

µ(|∇p|2) , where the viscosity µ depends on |∇p|2. If µ is monotone increasing,

the fluid is called “shear-thickening” (e.g., corn-starch and water). If it is
monotone decreasing, the fluid is called “shear-thinning” (e.g., ketchup). In
the case of (2), µ(|s|2) = |s|2, so it is shear-thickening, and this choice of µ
seems like a simple one to consider. In fluid dynamics literature [5], a more
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common choice for the viscosity is µ(|s|2) = 1+α|s|2
1+|s|2 , but some papers [15] do

consider a power-law viscosity like our case.
Unfortunately, in non-Newtonian Hele-Shaw flows, imposing a divergence-

free condition means that instead of being harmonic, the pressure now satisfies
the nonlinear equation div( ∇p

µ(|∇p|2) ) = 0. In some studies [2], though, the

pressure was still assumed harmonic in order to test separately the effects
of changing the PDE versus the effect of changing the Darcy’s law at the
boundary. In this way, lemniscate growth might be viewed as a simplified
model of a special case of a non-Newtonian Hele-Shaw flow involving a fluid
that is shear-thickening.

2. Let {Lt} be a Laplacian growth process with parameter ν and with
pole at ∞, and let Lt be the boundary curves. Is it possible that for infinitely
many t the Lt are the same as lemniscates of a Green’s function with pole at
∞, i.e. can there be tn → t0 and θn → θ0 such that Ωtn = Lθn where Ωt is
a lemniscate growth process with pole at ∞ and with parameter λ? By the
computation made in the beginning, the distance from a point z ∈ Γt0 to Γtn
is about (tn−t0)λ/Dn(z) where Dn(z) denotes the normal derivative, while in
Laplacian growth the distance from z ∈ Lθ0 to Lθn is about (θn − θ0)νDn(z).
Thus, if Γtn = Lθn , then Dn(z) = const on Γt0 . In the simply connected case
if ϕ−1 is the conformal map from Ωt0 onto the exterior of the unit disk, then
Dn(z) = |(ϕ−1)′(z)|, so we have |(ϕ−1)′(z)| = const, which implies |ϕ′(w)| =
const on the unit circle. But log |ϕ′(w)| is a harmonic function outside the unit
disk (also at∞), hence it follows that it is constant, since it is constant on the
boundary. Thus, ϕ(z) = cz + d, and Γt0 = Lτ0 is a circle (in which case then
all Γt, Lt are circles). Note that this is an alternative version of the theorem
mentioned in the Introduction to the effect that lemniscates are not preserved
under Laplacian growth.

3. In the higher-dimensional case, the condition (2) has appeared in a
more general setting relating to motion of hypersurfaces in Brane Theory.
The lemniscate growths we have considered give exact solutions to the two-
dimensional case if we assume in [3, Eq. (17) on p. 6] that τ is harmonic, which
was referred to as a “time-harmonic flow”.

It seems that the natural analogue of lemniscates in higher dimensions are
level sets of a function which is a superposition of fundamental solutions to
the Laplace equation, i.e., level sets of:

f(x) =

m∑
i=1

ci
|x− xi|n−2

,

where ci are constants, and xi ∈ Rn, or more generally, level sets of potentials

f(x) =

∫
1

|x− ξ|n−2
dµ(ξ).

4. Part of this paper has been a comparison of quadrature domains and
lemniscates. We note that each can be used to approximate any domain in the
plane having compact boundary. Approximation by lemniscates is established
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in Hilbert’s lemniscate Theorem [19], and for approximation by quadrature
domains, see [7] (cf. [1]).

It would be nice to find some natural interpolation between lemniscates
and quadrature domains. For instance, given n point masses find a smooth
one-parameter family of real-analytic domains {Ωt}t∈[0,1], so that Ω0 is the
quadrature domain whose exterior potential coincides with that of the n point
masses, and Ω1 is the lemniscate domain whose equilibrium measure generates
the same exterior potential as the n point masses. Can the homotopy be carried
out in a way that each intermediate domain also has some potential-theoretic
equivalence to the same n point masses?
Acknowledgement: We wish to thank Björn Gustafsson, Jens Hoppe, Dmitry
Khavinson, Ed Saff, and Razvan Teodorescu for discussions and helpful sug-
gestions.
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