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Abstract The precise asymptotics for the error of best rational approximation of
meromorphic functions in integral norm is shown to be a consequence of a result of
Gonchar and Rakhmanov. This reproves and extends a recent result of Baratchart,
Stahl and Yattselev.

Keywords Rational approximation · Jordan curves · Meromorphic functions ·
Condenser capacity

Mathematics Subject Classification (2012) 41A20

Let T be a rectifiable Jordan curve, G and O the interior and exterior domains of T ,
respectively, with respect to C. Let A(G) denote the set of functions f such that

• f vanishes at infinity and admits holomorphic and single-valued continuation from
infinity to an open neighborhood of O ,

• f admits meromorphic, possibly multi-valued, continuation along any arc in G\E f

starting from T , where E f is a finite set of points in G,
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426 V. Totik

• E f is non-empty, the meromorphic continuation of f from infinity has a branch
point at each element of E f .

Examples of such functions are algebraic functions with branch points. See the
paper [1] for other examples, motivation and history.

In the recent landmark paper Baratchart et al. [1] have developed the theory of
rational approximation of functions f ∈ A(G) in the L2(sT ) norm on T , where sT is
the arc measure on T , and where the approximation is done from the set Rn(G) of
rational functions pn−1/qn of degree ((n − 1), n) which have all their poles in G. Let
the error of best approximation in L p(sT ) be denoted by ρn,p( f, O). The theory in
[1] gave, besides a lot of information on the best approximants, the p = 2 case of the
asymptotic formula

lim
n→∞ ρ

1/2n
n,p ( f, O) = exp

(
− 1

cap(KT , T )

)
(1)

[see below for the definition of the minimal condenser capacity cap(KT , T )]. For
p = ∞ the same formula follows from a result of Gonchar and Rakhmanov
[2, Theorem 1’]. As a consequence, (1) has been established for all 2 ≤ p ≤ ∞.

In this note we derive (1) for all 1 ≤ p < ∞ directly from the p = ∞ case proven
in [2, Theorem 1’].

To have a basis of discussion, let gG(z, ζ ) denote the Green’s function of G with
pole at ζ ∈ G, and if K ⊂ G is a compact set, then consider the minimal energy

IG(K ) := inf
ω

IG(ω) := inf
ω

∫ ∫
gG(z, t)dω(z)dω(t),

where the infimum is taken for all unit Borel-measures on K . In the case when K is not
polar (has positive logarithmic capacity) there is a unique minimizing measure ωK ,T ,
called the Green equilibrium measure of K (with respect to�). cap(K , T ) := 1/IG(K )

is called the condenser capacity of the condenser (K , T ).
Next, we need the notion of a set of minimal condenser capacity. We say that a

compact K ⊂ G is admissible for f ∈ A(G) if C \ K is connected, and f has a
meromorphic and single-valued extension there. The collection of all admissible sets
for f is denoted by K f (G). A compact KT ∈ K f (G) is said to be a set of minimal
condenser capacity for f if

• cap(KT , T ) ≤ cap(K , T ) for any K ∈ K f (G),
• KT ⊆ K for any K ∈ K f (G) for which cap(K , T ) = cap(KT , T ).

See [1] for the existence and unicity of such a KT . The set KT of minimal condenser
capacity is the complement of the “largest” (regarding capacity) domain containing O
on which f is single-valued and meromorphic. It turns out (see [1, Theorem S]) that
KT = E0 ∪ E1 ∪ (∪ jγ j

)
, where ∪γ j is a finite union of open analytic arcs, E0 ⊂ E f ,

each point in E0 is the endpoint of exactly one γ j , while E1 consists of those finitely
many points where at least three arcs γ j meet.

These definitions explain the notation in (1), and with these we claim

Theorem 1 (1) holds for all 1 ≤ p ≤ ∞.
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Rational L p Approximation on Jordan Curves 427

Proof The p = ∞ case is covered by the Gonchar–Rakhmanov theorem from [2], so
it is left to show

lim inf
n→∞ ρ

1/2n
n,1 ( f, O) ≥ exp

(
− 1

cap(KT , T )

)
. (2)

Let G1 ⊃ G2 ⊃ · · · be a nested sequence of Jordan domains with boundaries
T1, T2, . . . such that Tj+1 ⊂ G j , each Tj lies outside G, the maximal distance from
a point of Tj to T is less than 1/j and length(Tj ) → length(T ) (say some level line
of the conformal mapping of O onto the exterior of the unit disk suffices as Tj ). Then
there is a compact set K ⊂ G and a j0 such that KTj ⊂ K for j ≥ j0 (see Lemma 2
below), and for z, t ∈ K we have gG j (z, t) ≤ gG(z, t) + η j where η j → 0 (see
Lemma 3 below). If r ∈ Rn(G) is any rational function from Rn(G) and if we apply
Cauchy’s formula for ( f − rn)(z), z ∈ Tj , in O using integration on T , we obtain

sup
z∈Tj

| f (z) − rn(z)| ≤ ‖ f − rn‖L1(sT )

1

dist(Tj , T )
,

so

lim inf
n→∞ ρ

1/2n
n,1 ( f, O) ≥ lim inf

n→∞ ρ
1/2n
n,∞ ( f, O j ) = exp

(
−IG j

(
ωKT j ,Tj

))
,

where the equality follows by the aforementioned Gonchar–Rakhmanov theorem.
Here for j ≥ j0 we have

IG j

(
ωKT j ,Tj

)
≤ IG j

(
ωKT j ,T

)

by the definition of the Green equilibrium measure ωKT j ,Tj , and clearly gG j (z, t) ≤
gG(z, t) + η j , t ∈ K and KTj ⊆ K imply

IG j

(
ωKT j ,T

)
≤ IG

(
ωKT j ,T

)
+ η j .

Finally, since KT is the set of minimal condenser capacity for G, it maximizes the
energies IG(ωKS ,T ) for all S ⊂ G. Hence it follows that

IG

(
ωKT j ,T

)
≤ IG

(
ωKT ,T

)
.

Putting all these together we get

lim inf
n→∞ ρ

1/2n
n,1 ( f, O) ≥ exp

(−IG
(
ωKT ,T

))
e−η j = exp

(
− 1

cap(KT , T )

)
e−η j ,

which proves (2) if we let j → ∞. �

The proof above used the following two facts.
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428 V. Totik

Lemma 2 There is a compact set K ⊂ G and a j0 such that KTj ⊂ K for j ≥ j0.

Lemma 3 For z, t ∈ K we have gG j (z, t) ≤ gG(z, t) + η j where η j → 0.

Proof of Lemma 2 Let Ha = {z | �z > a}, and fix a neighborhood S around T to
which f has a single-valued analytic continuation.

Assume to the contrary that there is a sequence of points Pj ∈ KTj , j = 1, 2, . . . ,

such that

lim inf
j→∞ dist(Pj , C \ G) = 0.

We may assume that here the lim inf is actually a limit and Pj → P ∈ T (select a
subsequence). Select a P̃j ∈ Tj with dist(Pj , P̃j ) → 0. Fix a z0 ∈ G and let ϕ∗, ϕ∗

j be
the conformal maps that map the unit disk onto G, G j such that ϕ∗(0) = ϕ∗

j (0) = z0

and (ϕ∗)′(0) > 0, (ϕ∗
j )

′(0) > 0. It is known (see e.g. [3, Theorem 6.12 and Exercise

6.3/4]) that ϕ∗
j → ϕ∗ uniformly on the closed unit disk, therefore (ϕ∗

j )
−1(Pj ) →

(ϕ∗)−1(P), (ϕ∗
j )

−1(P̃j ) → (ϕ∗)−1(P). Combine these with some fixed mapping of
the unit disk onto the right-half plane H0 to deduce the following: if ϕ j , ϕ are conformal
maps of G j , G onto H0 such that ϕ j (z0) = ϕ(z0) = 1, ϕ j (P̃j ) = 0, ϕ(P) = 0, then
ϕ j → ϕ uniformly on compact subsets of G and ϕ j (Pj ) → ϕ(P) = 0. Therefore,
there is an a > 0 such that ϕ j (E f ) ⊂ Ha for all large j and at the same time
ϕ j (Pj ) �∈ Ha . Hence, if B j := ϕ j (KTj ), then

B j = ϕ j (KTj ) �⊆ Ha for j ≥ j0 (3)

with some j0. We may also assume a > 0 to be so small and j0 so large that ϕ j (G\S) ⊂
Ha for j ≥ j0 (note that ϕ(G \ S) is a compact subset of H0). Fix a j ≥ j0, and with
this j we get a contradiction as follows.

Consider the mapping

z = x + iy → z′ = max(x, a) + iy

(the projection onto Ha) and set B ′
j = {z′|z ∈ B j }. Then

gH0(z, w) = log

∣∣∣∣ z + w

z − w

∣∣∣∣ ≤ log

∣∣∣∣∣
z′ + w′
z′ − w′

∣∣∣∣∣ = gH0(z
′, w′) (4)

(just note that the imaginary parts are the same, while the real parts increase resp.
decrease when we go from z + w resp. z − w to z′ + w′ resp. z′ − w′). �


We need

Lemma 4 There is a Borel-mapping 	 : B ′
j → B j such that 	(x)′ = x for all

x ∈ B ′
j . For every Borel-measure μ on B ′

j this generates a Borel-measure ν on B j via

ν(E) = μ(	−1[E]) for all Borel-sets E ⊂ B j (here 	−1[E] is the complete inverse
image of E) such that
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Rational L p Approximation on Jordan Curves 429

∫
log

∣∣∣∣ z + w

z − w

∣∣∣∣ dν(z)dν(w) =
∫

log

∣∣∣∣∣
	(u) + 	(v)

	(u) − 	(v)

∣∣∣∣∣ dμ(u)dμ(v).

Proof With this lemma at hand we continue the proof of Lemma 2. We have

IH0(ν) =
∫

log

∣∣∣∣ z + w

z − w

∣∣∣∣ dν(z)dν(w) =
∫

log

∣∣∣∣∣
	(u) + 	(v)

	(u) − 	(v)

∣∣∣∣∣ dμ(u)dμ(v)

≤
∫

log

∣∣∣∣u + v

u − v

∣∣∣∣ dμ(u)dμ(v) = IH0(μ),

where, at the second inequality, we used (4).
Let � j be the unbounded component of C \ B ′

j and Pc(B ′
j ) : C \ � j be the so

called polynomial convex hull of B ′
j . Next we show that Pc(B ′

j ) is an admissible set

for the function F := f (ϕ−1
j ) in H0. To see this let � be a polygonal curve in � j ∩ H0

starting and ending at the origin, i.e. � is a closed curve that lies in the right-half
plane H0 except for the point 0 ∈ �, and � doe not intersect Pc(B ′

j ). Let F∗ be the
continuation of F along (a neighborhood of) � as we traverse � once from 0 to 0. We
need to show that after traversing � we get back to the same function element, i.e.
F∗ = F in a neighborhood of the origin.

By assumption, F has a continuation to the strip H0 \ Ha which we denote by
F0. Also, by the assumption on KTj , F has a single-valued continuation F1 to the set

C \ B j . Note that necessarily F1 = F0 on the set (H0 \ Ha) \ B j . We may assume
that � does not contain a vertical segment, and for some small ε > 0 let Q1, . . . , Qm

be the points of � (in the order of the traverse) that lie on the line �z = a − ε. Let
here ε > 0 be so small that Ha−ε ∩ � ∩ B j = ∅ (there is such an ε > 0 since the
preceding relation is true with ε = 0). Then the points Q1, . . . , Qm lie outside B j ,
and let Dk ⊂ H0 \ Ha be a small disk around Qk not intersecting B j . Note that, as we
have just remarked, F1 ≡ F0 on all these disks. Now we can easily prove by induction
that F∗ ≡ F0 ≡ F1 on each Dk . Indeed, for k = 1 the equality F∗ ≡ F0 is true by
the monodromy theorem in H0 \ Ha . Now assume that we already know the claim for
Dk . The portion �k of � in between the points Qk and Qk+1 either lies in Ha−ε or in
H0 \ Ha−ε. In the former case the continuation of F∗ ≡ F1 along �k is the same as
F1 (note that �k does not intersect B j ), hence on Dk+1 we have F∗ ≡ F1 ≡ F0. On
the other hand, if �k lies in H0 \ Ha−ε, then the continuation F∗ ≡ F0 along �k is the
same as F0 by the monodromy theorem in H0 \ Ha , hence in this case we have again
F∗ ≡ F0 ≡ F1 on Dk+1, which completes the induction. Another application of the
monodromy theorem along the portion of � from Qm to 0 shows that, indeed, as we
get back at the origin, with F∗ we arrive back to the same function element F0 that
we started with.

We have thus shown that Pc(B ′
j ) is an admissible set for f (ϕ−1

j ) in H0, hence

K ∗
j := ϕ−1

j (Pc(B ′
j )) is an admissible set for f in G j , and K ∗

j lies in ϕ−1
j (Ha). If we

define the measure μ on B ′
j by stipulating μ(E) = ωK ∗

j ,Tj (ϕ
−1
j (E)) for all Borel-sets

E ⊂ B ′
j , ν is the associated measure via Lemma 4, and finally ω is the measure defined
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430 V. Totik

by ω(E) = ν(ϕ j (E)), then ω is supported on KTj , and has total mass 1 because ωK ∗
j ,Tj

is supported on the outer boundary of K ∗
j (see [1, Sec. 7.1.3]), and hence the interior

of Pc(B ′
j ) has zero μ-measure. Now we obtain from Lemma 4 and from the conformal

invariance of the Green’s function

IG j (ω) = IH0(ν) ≤ IH0(μ) = IG j

(
ωK ∗

j ,Tj

)
,

which implies

IG j

(
KTj

) ≤ IG j (ω) ≤ IG j

(
ωK ∗

j ,Tj

)
= IG j

(
K ∗

j

)
.

Therefore, by the extremality of KTj for G j , we must have equality here, and then,
by the definition of the set KTj of minimal condenser capacity, we must have KTj ⊆
K ∗

j ⊆ ϕ−1
j (Ha), which contradicts (3).

This contradiction proves the claim in Lemma 3. �

Proof of Lemma 4 In this proof we use the special structure of the sets KTj described
just before the statement of Theorem 1.

For z ∈ Ha ∩ B ′
j = Ha ∩ B j set 	(z) = z, and for z = a + iy ∈ B ′

j ∩ {x = a}
let 	(z) = x(z) + iy ∈ B j be the point in B j with the smallest possible x-coordinate
x(z). In the latter case 	(z) ∈ H0 \ Ha , and clearly 	(z)′ = z for all z ∈ B ′

j , so it
is left to verify that 	 is a Borel-map. To obtain this it is sufficient to show that for a
dense set of B < C and for a dense set of A ∈ [0, a) the inverse image 	−1[R] is a
Borel-set, where R = [0, A] × [B, C]. In order to show this, note that if the boundary
of R does not contain either endpoints of an open analytic arc γ ⊂ B j which is not a
vertical or horizontal segment, then ∂ R ∩γ is a finite set. Therefore, in this case R ∩γ

consists of a finite number of analytic arcs, and hence (R ∩ γ )′ is the union of finitely
many closed segments on ∂ Ha . Since B j is the union of finitely many points and
finitely many open analytic arcs, it follows that (R ∩ B j )

′ consists of a finite number
of closed segments on ∂ Ha provided ∂ R does not contain any of the endpoints of these
arcs. Since 	−1[R] = (R ∩ B j )

′, we are done. �

Proof of Lemma 3 Let ε > 0 and select a Jordan curve σ separating K and T so that
gG(z, τ ) ≤ ε for all z ∈ σ , τ ∈ K (there is such a σ : if σ1 separates T and K then
gG(z, t) ≤ M for all z ∈ σ1, t ∈ K with some constant M). Map now the strip in
between T and σ1 into a ring R = {1 ≤ |z| ≤ r} by a conformal map ϕ. Then the
three-circle-theorem gives

gG(z, t) ≤ M
log |ϕ(z)|

log r
,

so

σ =
{

z

∣∣∣∣ |ϕ(z)| = exp

(
ε

log r

M

)}

123

Author's personal copy



Rational L p Approximation on Jordan Curves 431

suffices for small ε.) Now gG j (z, τ ) ↘ gG(z, τ ) for all z ∈ σ and τ ∈ K , so, by Dini’s
theorem, this convergence is uniform in z ∈ σ for all fixed τ ∈ K , i.e. gG j (ζ, τ ) < 2ε

for j ≥ jτ and all ζ ∈ σ , τ ∈ K . Then gG jτ
(z, t) < 2ε is true for all z ∈ σ and t ∈ K

lying sufficiently close to some ζ ∈ σ and τ ∈ K , and by compactness of σ we get
gG jτ

(z, t) < 2ε for all z ∈ σ and t lying sufficiently close to τ . Then for the same
values gG j (z, t) < 2ε automatically holds for j ≥ jτ because the Green’s function
gG j decrease. Finally, by the compactness of K there is a j0 such that this inequality
holds for all z ∈ σ , t ∈ K and j ≥ j0.

As a consequence, gG j (z, t)−gG(z, t) ≤ 2ε for z ∈ σ , t ∈ K and j ≥ j0, and then,
by the maximum theorem, this inequality persists for all t ∈ K and z lying inside σ .

�
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