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Abstract

A new, elementary proof is given for the fact that on a centrally sym-

metric convex curve on the plane every continuous even function can be

uniformly approximated by homogeneous polynomials. The theorem has

been proven before by Benko and Kroó, and independently by Varjú using

the theory of weighted potentials. In higher dimension the new method

recaptures a theorem of Kroó and Szabados, which is the strongest result

for homogeneous polynomial approximation on smooth convex surfaces.

1 Introduction

Let S = ∂K be the boundary of a centrally symmetric convex body K in Rd,
more precisely, K is symmetric with respect to the origin: z ∈ K ⇒ −z ∈
K. A. Kroó conjectured (see [1]) that every (real) continuous function f on
S can be uniformly approximated by sums Q1

m + Q2
m+1, m = 1, 2, . . ., where

Q1
m and Q2

m+1 are (real) homogeneous polynomials of degree m and m + 1,
respectively (note that a homogeneous polynomial is either even or odd, so in
general one needs two terms for approximation). The conjecture is equivalent
to the claim (see [7, Proposition 2.1]) that every even continuous function on S
can be uniformly approximated by homogeneous polynomials

P2m(x1, x2, . . . , xd) =
∑

j1+···+jd=2m

am,j1,...,jdx
j1
1 · · ·xjd

d

of degree 2m = 2, 4, . . . (a function f defined on S is even if f(z) = f(−z) for all
z ∈ S). This is a beautiful conjecture, it is the Weierstrass theorem for approx-
imation by homogeneous polynomials (it is easy to see that approximation in
this sense is possible by homogeneous P2m only on surfaces which are centrally
symmetric). See [7] for the connection to approximation of general surfaces by
level surfaces of homogeneous polynomials.

The conjecture has been proven in the following cases:
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(i) K is a polytope (P. Varjú [7]),

(ii) K has at every boundary point at most one supporting hyperplane (A.
Kroó and J. Szabados [4]),

(iii) d = 2 (D. Benko and A. Kroó [1] and P. Varjú [7]).

Thus, the complete solution has only been found in dimension 2 in the papers
[1] and [7], and both proofs are quite involved and are based on the theory of
weighted polynomial approximation with varying weights and on the theory of
weighted logarithmic potentials. In this note we give a new, more elementary
proof for the d = 2 case that does not use potential theory. In higher dimension
this approach yields the Kroó-Szabados result from (ii). Since (i) follows in a few
lines from (iii) via a marvellous trick of P. Varjú (see the proof of [7, Theorem
1.4,(c)]), in a sense the method gives a new proof for all (i)–(iii), i.e. it is as
strong as the methods applied so far. Actually, the proof is easy to modify so
as to give the claim for some other bodies K in Rd, but the exact geometric
conditions are not clear, so we do not elaborate on it, and definitely the general
case in Rd, d ≥ 3 remains open.

Thus, in this note we prove

Theorem 1 Let K be a centrally symmetric convex set with non-empty interior

in R2. Then every even continuous function on ∂K can be uniformly approxi-

mated by homogeneous polynomials P2n of degree 2n = 2, 4, . . ..

Let W be the set of functions f on S = ∂K for which there is a sequence P2m of
homogeneous polynomials of degree 2m = 2, 4, . . . such that P2m → f uniformly
on S. Suppose that the identically 1 function is in W , i.e. there is a sequence
P2m of homogeneous polynomials of degree 2m = 2, 4, . . . such that P2m → 1
uniformly on S. Then is easy to see (c.f. [7]) that W is a subalgebra of the set
of continuous functions on S which separates every non-symmetric point pair
on S, and then the proof is completed by the Stone-Weierstrass theorem (see
e.g. [6, Theorem 7.32]). Hence, all we need to do is to show that the identically
1 function is in W .

Let L = L(K) be the smallest number such that K contains the disk about
0 of radius 1/L and it is contained in the disk about 0 of radius L.

Call K ε-regular, if at any point on the boundary the angle of any two
supporting lines is at most ε. The theorem clearly follows from the following
two propositions.

Proposition 2 If K is as in Theorem 1, then for every ε > 0 there are centrally

symmetric ε-regular sets K1,K2,K3,K4 such that L(Ki) ≤ 2L(K) and K =
K1 ∩K2 ∩K3 ∩K4.

Here the constant 2 could be replaced by any constant bigger than 1.
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Proposition 3 For every η > 0 and L there is an ε > 0 such that if K =
K1 ∩ K2 ∩ K3 ∩ K4 is the intersection of four centrally symmetric ε-regular
sets K1,K2,K3,K4 with L(Ki) ≤ L, then for every m there are homogeneous

polynomials P2m of degree 2m such that for sufficiently large m

1− η ≤ P2m(x, y) ≤ 1 + η, (x, y) ∈ ∂K. (1)

We are going to prove these propositions in Section 3, but first we need
to shows that for an ε-regular set K the constant 1 can be approximated by
homogeneous polynomials with en error Cε1/3, which is the content of the next
section.

2 Approximating on ε-regular sets

In this section we prove

Proposition 4 If K is ε-regular, then for every m there are homogeneous poly-

nomials H2m of degree 2m such that for sufficiently large m

1−Aε1/3 ≤ H2m(x, y) ≤ 1 +Aε1/3, (x, y) ∈ ∂K (2)

where the constant A depends only on L.

This is the heart of the matter, and it is worth while to explain the main idea.
Basically, the proof is based on fast decreasing polynomials of a single variable
(see [3]), more precisely on their variant that approximate the signum function
well on [−1, 1] (with a transition interval around 0). By simple transformation
we get then polynomials of a single variable of some large degree m that ap-
proximate well the characteristic function of an interval [−M2/m,M2/m], with
some fixed M ≪ m, and from there we get for each point T ∈ ∂K a posi-
tive homogeneous polynomial RT

m of degree am with some fix a such that on
the boundary of K this RT

m is approximately 1 on an arc around T of central
opening M2/m, and is small outside that arc (with some transition intervals
around the endpoints of that arc). Now the sum of these RT

m, where T runs
through the 2m points on the boundary of K for which the argument is j2π/2m,
j = 0, 1 . . . , 2m−1, will be approximately 2M2 on the boundary, so by dividing
it trough by 2M2 we get a homogeneous polynomial that is approximately 1 on
∂K (depending how large M is).

Proof. It was proved in [3, Theorem 3] (see also example 2 on p. 5 of that
paper) that for every m = 1, 2, . . . there is an odd polynomial Um of degree at
most m such that −1 ≤ Um(t) ≤ 1 and

|Um(t)− sign(t)| ≤ C0e
−c0

√
m|t|, t ∈ [−1, 1],
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Figure 1: The supporting line ℓ and the points (x, y) and (X,Y )

with some absolute constants C0, c0. Choose and fix a large M and consider for
m > M2

S2m(t) =
1

4

[

1 + Um

(

t+M2/m

2L+ 1

)][

1− Um

(

t−M2/m

2L+ 1

)]

.

Then S2m is an even polynomial of degree at most 2m, 0 ≤ S2m(t) ≤ 1 for
t ∈ [−2L, 2L], and with Im = [−M2/m,M2/m] the inequalities

0 ≤ S2m(t) ≤ C0 exp
(

−c1
√

m · dist(t, Im)
)

, t ∈ [−2L, 2L], (3)

and
0 ≤ 1− S2m(t) ≤ C0 exp

(

−c1
√

m · dist(t,R \ Im)
)

, t ∈ Im, (4)

are satisfied, where c1 depends only on L. In particular,

0 ≤ 1− S2m(t) ≤ C0 exp
(

−c1
√
M
)

, t ∈
[−M2 +M

m
,
M2 −M

m

]

, (5)

and

0 ≤ S2m(t) ≤ C0 exp
(

−c1
√
M
)

, |t| ∈
[

M2 +M

m
,
2M2

m

]

. (6)

This latter inequality holds also for |t| ∈ [2M2/m, 2L], but in this range we shall
need better estimates, see (11).

Assume first that the point (1, 0) belongs to ∂K and the line ℓ defined by
x+ by = 1 is a supporting line to K at (1, 0). Then, by the symmetry of K, we
have −1 ≤ x+ by ≤ 1 for all (x, y) ∈ K.

Consider, with some fixed positive even integer a, the polynomial

Rm(x, y) = (x+ by)amS2m

(

y

x+ by

)

. (7)
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It is an even homogeneous polynomial of degree am. First we estimate Rm

on ∂K at some point (x, y), and we may assume y ≥ 0, x + by ≥ 0 (the case
y ≤ 0, x + by ≥ 0 is perfectly analogous, and the remaining cases follow by
symmetry). For the time being assume that the half-line emanating from 0
and going through (x, y) intersects ℓ in some point (X,Y ), see Figure 1. Then
X + bY = 1 and hence Y = Y/(X + bY ) = y/(x + by). The choice of L gives
y ≤ L, hence for x+ by ≥ 1/2 we have Y ≤ 2L, in which case we use

Rm(x, y) ≤ S2m

(

y

x+ by

)

= S2m(Y ),

and for the right-hand side we can use (3)–(4). This can actually be said for
all x, y for which Y ≤ 2L. On the other hand, if Y > 2L then necessarily
x+ by ≤ 1/2, and then, with ‖ · ‖[−1,1] denoting the supremum norm on [−1, 1],
we use the well-known inequality (see [2, Proposition 4.2.3])

|Pn(Y )| ≤ ‖Pn‖[−1,1]
1

2

{(

|Y |+
√

Y 2 − 1
)n

+
(

|Y | −
√

Y 2 − 1
)n}

≤ (2Y )n‖Pn‖[−1,1]

for n = 2m, Pn = S2m combined with ‖S2m‖[−1,1] ≤ 1 to conclude

|Rm(x, y)| ≤ (x+ by)am(2Y )2m = (x+ by)am
(

2y

x+ by

)2m

≤ (2L)2m(x+ by)(a−2)m ≤ (2L)2m
(

1

2

)(a−2)m

≤ 2−m (8)

if a is sufficiently large (depending only on L). Choose such an a.
It follows by continuity that if the the half-line emanating from 0 and going

through (x, y) does not intersect ℓ, then (8) is still true (approach such a point
with points for which (8) has been verified).

Next, we investigate more closely the behavior of Rm close to the point (1, 0),
and for that purpose now we drop the assumption y ≥ 0. Set z = x + iy ∈ C,
Z = X + iY ∈ C, and let ϕ be the common argument of z and Z. Note
that 1

2 |z| sin |ϕ| = |y|/2 is the area of the triangle {(0, 0), (1, 0), (x, y)} while
1
2 |Z| sin |ϕ| = |Y |/2 is the area of the triangle {(0, 0), (1, 0), (X,Y )}. Therefore,
for small ϕ we have Y ≈ ϕ, in fact Y −ϕ = O(ϕ2) (note that |Z| = 1+O(|ϕ|)),
and in general |Y | ≥ b1|ϕ| with some b1 > 0 (depending in this case on the
angle in between ℓ and the positive x-axis, but since the point (1, 0) should
be replaced by any point on the boundary of K, b1 depends eventually on the
geometry of K); see Figure 1. It follows from (5), (6), (8) and (3) (for large m)

0 ≤ 1− S2m (Y ) ≤ C0 exp
(

−c1
√
M
)

, ϕ ∈
[−M2 + 2M

m
,
M2 − 2M

m

]

, (9)
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Figure 2: The supporting line ℓ and the rotated half-lines

and

0 ≤ Rm(x, y) ≤ S2m (Y ) ≤ C0 exp
(

−c1
√
M
)

,

|ϕ| ∈
[

M2 + 2M

m
,
2M2

m

]

. (10)

Similarly for k = 1, 2, . . .

0 ≤ Rm(x, y) ≤ S2m(Y ) ≤ C0 exp
(

−c1
√

b1M22k−1
)

, |ϕ| ∈
[

2kM2

m
,
2k+1M2

m

]

,

(11)
provided in the last inequality |Y | ≤ 2L, and

|Rm(x, y)| ≤ 2−m (12)

if this is not the case, see (8).
These are the upper estimates we need. They do not cover the case when

|ϕ| ∈ [(M2 − 2M)/m, (M2 + 2M)/m], in which case we just use

0 ≤ Rn(x, y) ≤ S2m(Y ) ≤ 1, |ϕ| ∈
[

M2 − 2M

m
,
M2 + 2M

m

]

.

Our next aim is to get a lower estimate for Rm for points (x, y) ∈ ∂K lying
close to (1, 0). The point (1, 0) divides the line ℓ into the half-lines ℓ+ and
ℓ−, ℓ+ lying in the upper half-plane, see Figure 2. Rotate ℓ+ by angle 2ε in
counterclockwise direction to get ℓ+ε and rotate ℓ− in clockwise direction by
angle 2ε to get ℓ−ε . The half-lines ℓ±ε form a cone of opening angle π − 4ε,
and since K is ε-regular, there is a δ = δ(1,0) such that for |ϕ| ≤ δ the point
z ∈ ∂K (z 6= (1, 0)) lies outside this cone (recall that ϕ is the argument of the
points z = x + iy, Z = X + iY ). This gives, by comparing again the areas
of the triangles {(0, 0), (1, 0), (x, y)} and {(0, 0), (1, 0), (X,Y )}, that for some
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b2 > 0 the inequality |z|/|Z| ≥ exp(−b2ε|ϕ|) is true, where b2 depends only on
L. Hence, if we compare the values of a homogeneous polynomial R∗

s of degree
s at (x, y) and at (X,Y ), we can infer from the homogeneity

|R∗
s(x, y)| = (|z|/|Z|)s|R∗

s(X,Y )| ≥ exp(−b2ε|ϕ|)s.

Therefore, for large m and for ϕ ∈ [(−M2 + 2M)/m, (M2 − 2M)/m] we get
from (9)

Rm(x, y) ≥ Rm(X,Y )
(

exp(−b2εM
2/m)

)am ≥ exp(−b2aεM
2)
(

1− C0e
−c1

√
M
)

,

and for M = ε−1/3 this yields

Rm(x, y) ≥ e−c2ε
1/3

, ϕ ∈
[−M2 + 2M

m
,
M2 − 2M

m

]

(13)

with a c2 depending only on L (recall that the constant a in (7) depended only
on L).

All these were done for the point T = (1, 0) = 1 + i0, but it is clear
that the same construction can be carried out for any point T ∈ ∂K. Let
the corresponding Rm be denoted by RT

m. Simple compactness shows that
the δ = δT > 0 introduced above can be chosen independently of T ∈ ∂K.
Choose now T1, . . . , T2m ∈ ∂K so that for the corresponding arguments we have
ϕj = 2πj/2m, i.e. the points T1, . . . , T2m are equidistributed regarding their
arguments. Set

Ham(x, y) =
π

2M2

2m
∑

j=1

RTj
m (x, y). (14)

(13) shows that for (x, y) ∈ ∂K

Ham(x, y) ≥ π

2M2

2M2 − 4M − 2π

π
e−c2ε

1/3

,

while (9)–(12) give

Ham(x, y) ≤ π

2M2

[

2M2 + 4M + 2π

π
+ 2C0M

2e−c1
√
M

+ 2
∑

k

C0 · 2k+1M2e−c1
√

b1M22k−1

+ 2m2−m

]

.

Hence, for small ε, i.e. for large M = ε−1/3, and for all large m we have

e−c2ε
1/3 − 3

M
≤ Ham(x, y) ≤ 1 +

3

M
.
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Therefore,
1− (c2 + 3)ε1/3 ≤ Ham(x, y) ≤ 1 + 3ε1/3,

which shows the claim for the degree am.
It is also clear that these reasonings give for k = 1, 2, . . . , (a/2) − 1 that if

we define

H2k
am(x, y) =

π

2M2

2m
∑

j=1

1

x2k
j + y2kj

RTj
m (x, y); Tj =: (xj , yj) (15)

then
∣

∣

∣

∣

H2k
am(x, y)− 1

x2k + y2k

∣

∣

∣

∣

≤ C2ε
1/3,

and so

Ham+2k(x, y) = (x2k+y2k)H2k
2m(x, y), m = 1, 2, . . . , k = 1, 2, . . . , (a/2)m−1

together with the above Ham give a sequence of homogeneous polynomials with
the desired property for the full sequence of even integers.

3 Proof of Propositions 2 and 3

Proof of Proposition 2. Let P1, . . . , P2k be the points on the boundary of
K where there are two supporting lines with angle > ε. Their number is finite,
since the total rotation of supporting lines is 2π as we move around ∂K once.
Also, by symmetry, their number is even and the set {P1, . . . , P2k} is centrally
symmetric. First assume that k is even. Then all we have to do is to replace
the arcs P1, P2, P3, P4, . . . , P2j+1, P2j+2, . . ., j < k/2 on ∂K by some suitable
smooth arcs lying outside K, and these arcs, the arcs P2, P3, . . . , P2j , P2j+2, . . .,
j < k/2 together with their reflections on the origin form the boundary of K1. If
we exchange the roles of the arcs P2j+1, P2j+2 and P2j , P2j+2 then we obtain K2,
and the intersection of K1 and K2 is K. Indeed, Figure 3 explains everything.

Hence, when k is even we only need two sets K1 and K2 (and if we want to
have formally the 4-intersection in the proposition then just useK1,K1,K2,K2).
When k is odd, then in between P1 and P2 (and symmetrically in between Pk+1

and Pk+2) we add a vertex P3/2 (and Pk+3/2) that we count among the Pi’s as
is shown in Figure 4 to get the set K ′. Similarly, in between P2 and P3 (and
symmetrically in between Pk+2 and Pk+3) we add a vertex P5/2 (and Pk+5/2)
that now we count among the Pi’s to get the set K ′′. Now K = K ′ ∩K ′′, and
the number k (which is now actually k + 1 with the original k) for the sets K ′
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Figure 3: K and the associated K1 and K2

and K ′′ is even. Hence, according to what we have just seen, K ′ = K ′
1 ∩ K ′

2

and K ′′ = K ′′
1 ∩ K ′′

2 with some ε-regular sets K ′
1,K

′
2,K

′′
1 ,K

′′
2 , so these 4 sets

are suitable in the proposition.

Proof of Proposition 3. We repeat an argument of [7, Theorem 1.4,(c)].
Select homogeneous polynomials Vs(X1, X2, X3, X4), Vs+1(X1, X2, X3, X4) of
four variables and of some degrees s, s+ 1, respectively, such that

|Vs(X1, X2, X3, X4)− 1|+ |Vs+1(X1, X2, X3, X4)− 1| < η/4 (16)

provided max(X1, X2, X3, X4) = 1, Xj ∈ [0, 1] (see Proposition 5 below). Then
there is a δ > 0 (depending also on s) such that (16) is true also for all

|max(X1, X2, X3, X4) − 1| ≤ δ, Xj ∈ [0, 2]. Now let H
(j)
2m, be the polynomi-

als from Proposition 4 for the sets Kj , j = 1, 2, 3, 4, and for them we may
assume that the A is the same in (2) (recall that A depended only on L). If
Aε1/3 < δ, then for

R2(m+k)s+2k(x, y) = Vs

(

H
(1)
2m(x, y), H

(2)
2m(x, y), H

(3)
2m(x, y), H

(4)
2m(x, y)

)

×
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Figure 4: K and the construction of K ′ and K ′′

× Vs+1

(

H
(1)
2k (x, y), H

(2)
2k (x, y), H

(3)
2k (x, y), H

(4)
2k (x, y)

)

we will have for (x, y) ∈ ∂K

(1− η/4)2 ≤ R2(m+k)s+2k(x, y) ≤ (1 + η/4)2,

because (x, y) ∈ ∂K means that the point (x, y) lies on the boundary of some
of the Kj ’s (at least for one of them), and it lies in the interior of the others.
Since for any m0 all large even integers are of the form 2(m + k)s + 2k with
m ≥ m0, m0 < k ≤ m0 + s, the proof is complete.

To have a complete proof we need to show

Proposition 5 Let r ≥ 2 be an integer. For every m ≥ 1 there are homo-

geneous polynomials Vr,m(X1, . . . , Xr) of degree m in the variables X1, . . . , Xr

such that Vm(X1, . . . , Xr) uniformly tends to 1 on the set

E := {(X1, . . . , Xr) max{X1, . . . , Xr} = 1, Xj ∈ [0, 1]}.
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Proof. First we deal with the r = 2 case. Once it is done, the claim is obtained
for all r by an induction similar to the one from the preceding proof.

We note first of all that for every ε > 0 there is a k such that for sufficiently
large m

1

(1 + u)m

∣

∣

∣

∣

∣

∣

(1− u)m −
k−1
∑

j=0

(

m

j

)

(−1)juj

∣

∣

∣

∣

∣

∣

≤ ε, u ∈ [0, 1]. (17)

Indeed, by the remainder formula for Taylor expansions the left-hand side equals
(with some ξ ∈ (0, u))

1

(1 + u)m

(

m

k

)

(1− ξ)m−kuk ≤ mkuk

k!(1 + u)m
,

and here the right-hand side takes its maximum on [0, 1] at u = k/(m− k), the
maximum being

mk

k!

kk

(m− k)k
(m− k)m

mm
→ kk

k!ek
∼ 1√

2πk
,

as m → ∞, where we also used Stirling’s formula.
Next we invoke the solution to Bernstein’s approximation problem according

to which all continuous functions g with g(x)/e|x|/2 → 0 as |x| → ∞ can be
uniformly approximated on the whole real line by polynomials with the weight
e−|x|/2 (see e.g. [5, Theorem 1.3]). Thus, there is a polynomial H such that

e−|x|/2

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

(−1)j
|x|j
j!

−H(x)

∣

∣

∣

∣

∣

∣

≤ ε,

which, with the substitution x = mu gives

e−m|u|/2

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

(−1)j
mj |u|j

j!
−H(mu)

∣

∣

∣

∣

∣

∣

≤ ε. (18)

Finally, for each fixed j the expression

e−m|u|/2
∣

∣

∣

∣

(

m

j

)

|u|j − mj

j!
|u|j
∣

∣

∣

∣

= e−m|u|/2 (m|u|)j
j!

∣

∣

∣

∣

m(m− 1) · · · (m− j + 1)

mj
− 1

∣

∣

∣

∣

tends uniformly to 0 as m → ∞, so for sufficiently large m

e−m|u|/2

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

(

m

j

)

(−1)j |u|j −
k−1
∑

j=0

mj

j!
(−1)j |u|j

∣

∣

∣

∣

∣

∣

≤ ε, u ∈ R (19)
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Now noting that 1 + |u| ≥ e|u|/2 for |u| ≤ 1, formulae (17), (18) and (19)
give

∣

∣

∣
(1− |u|)m −H(mu)

∣

∣

∣

(1 + |u|)m ≤ 3ε, |u| ≤ 1. (20)

Here we may assume H to be even (just replace it by (H(x)+H(−x))/2 if not),
so Q(u) = H(m

√
u) is a polynomial, and with it

∣

∣

∣
(1−√

u)m −Q(u)
∣

∣

∣

(1 +
√
u)m

≤ 3ε, u ∈ [0, 1].

Setting here u = 1− 1/z2 and multiplying through both the numerator and de-
nominator by zm we obtain with Q∗

m(z) = zmQ(1−1/z2), which is a polynomial
of degree m for large m,

∣

∣

∣
(z −

√
z2 − 1)m −Q∗

m(u)
∣

∣

∣

(z +
√
z2 − 1)m

≤ 3ε, z ≥ 1.

This gives for Sm(z) = −Q∗
m(z) + 2Tm(z), where

Tm(z) =
1

2

[

(z +
√

z2 − 1)m + (z −
√

z2 − 1)m
]

are the Chebyshev polynomials, the estimate
∣

∣

∣

∣

Sm(z)

(z +
√
z2 − 1)m

− 1

∣

∣

∣

∣

≤ 3ε, z ≥ 1. (21)

Finally, apply the Zhoukovskii transformation

x =
1

z +
√
z2 − 1

, z =
1

2

(

x+
1

x

)

,

and write

xmSm

(

1

2

(

x+
1

x

))

:= amxm +

m
∑

j=1

am−j(x
m+j + xm−j).

If we set

V2,2m(x, y) = amxmym +

m
∑

j=1

am−j(x
m+jym−j + xm−jym+j),

then V2,2m is a homogeneous polynomial of two variables of degree 2m, and we
have by (21)

|V2,2m(x, 1)− 1| ≤ 3ε, x ∈ [0, 1].
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and
|V2,2m(1, y)− 1| ≤ 3ε, y ∈ [0, 1].

This is the claim for even degrees.
Standard Stone–Weierstrass-type argument gives that then every continuous

function on the set E can be uniformly approximated by such V2,2m’s (i.e.
homogeneous polynomials of degree 2m = 2, 4, . . .). Hence for some V ∗

2,2m we

have V ∗
2,2m(x, y) → 1

x+y uniformly on E, and then (x+y)V ∗
2,2m(x, y) are suitable

for odd degrees. This proves Proposition 5 for r = 2.

For r > 2 we use induction. Suppose that the existence of Vr−1,m has already
been verified. We repeat the argument from the proof of Theorem 3, see [7, The-
orem 1.4,(c)]. For some small η > 0 select homogeneous polynomials V2,s(X,Y ),
V2,s+1(X,Y ) of two variables and of some degrees s, s + 1, respectively, such
that

|V2,s(X,Y )− 1|+ |V2,s+1(X,Y )− 1| < η (22)

provided max(X,Y ) = 1, X,Y ∈ [0, 1] (this is the just verified r = 2 case).
Then there is a δ > 0 (depending also on s) such that (22) is true also for all
|max(X,Y )− 1| ≤ δ, X,Y ∈ [0, 2]. Now consider

Rr,(m+k)s+k(X1, . . . , Xr) = V2,s

(

Vr−1,m(X1, . . . , Xr−1), Vr−1,m(X2, . . . , Xr)
)

×

× V2,s+1

(

Vr−1,k(X1, . . . , Xr−1), Vr−1,k(X2, . . . , Xr)
)

.

For large m we have uniformly in max1≤j≤r Xj = 1, Xj ∈ [0, 1] the relations

0 ≤ Vr−1,m(X1, . . . , Xr−1), Vr−1,m(X2, . . . , Xr) < 1 + δ.

Indeed, for example with 0 < M := max{X1, . . . , Xr−1} ≤ 1 we have for large
m

|Vr−1,m(X1/M, . . . ,Xr−1/M)− 1| < δ

and
Vr−1,m(X1, . . . , Xr−1) = MmVr−1,m(X1/M, . . . ,Xr−1/M).

Therefore, for an r-tuple (X1, . . . , Xr) with max{X1, . . . , Xr} = 1, Xj ∈ [0, 1]
the inequality

∣

∣

∣
V2,s

(

Vr−1,m(X1, . . . , Xr−1), Vr−1,m(X2, . . . , Xr)
)

− 1
∣

∣

∣
≥ η (23)

can only happen if

max{Vr−1,m(X1, . . . , Xr−1), Vr−1,m(X2, . . . , Xr)} ≤ 1− δ.

This in turn, for large m, would mean that

max{X1, . . . , Xr−1} < 1, max{X2, . . . , Xr} < 1,
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i.e.
max{X1, . . . , Xr} < 1,

which is not the case.
Hence, (23) cannot happen for large m, and we can deduce

1− η < V2,s

(

Vr−1,m(X1, . . . , Xr−1), Vr−1,m(X2, . . . , Xr)
)

< 1 + η.

A similar bound can be given for the second factor in Rr,(m+k)s+k(X1, . . . , Xr)
for large k, and we obtain

(1− η)2 ≤ Rr,(m+k)s+k(X1, . . . , Xr) ≤ (1 + η)2. (24)

Since for any m0 all large integers are of the form (m+ k)s+ k with m ≥ m0,
m0 < k ≤ m0+s, we get that Rr,(m+k)s+k(X1, . . . , Xr) has the desired property
if in its definition we let s → ∞ very slowly.

To be absolutely clear, the selection of the indices (m+k)s+k in R(m+k)s+k

is as follows. We set η = 1/l, l = 1, 2, . . .. Then (22) holds with some s = sl. To
this sl choose δ = δl so that (22) is true for |max(X,Y )− 1| < δl, X,Y ∈ [0, 2].
Then for m ≥ ml (23) is impossible, so we get (24) for all (m + k)s + k with
m ≥ ml, ml < k ≤ ml + s. These integers cover all integers n ≥ nl with some
number nl. Now we keep these Rr,(m+k)s+k =: R2,n for all n = (m+ k)s+ k for
which nl < n ≤ nl+1 (and then move to the same construction with l replaced
by l + 1 etc.). Hence, for nl < n ≤ nl+1 we have

(

1− 1

l

)2

≤ Rr,n(X1, . . . , Xr) ≤
(

1 +
1

l

)2

provided maxXj = 1, Xj ∈ [0, 1].

4 The Kroó-Szabados theorem

We have already mentioned that Kroó’s conjecture is true in any dimension
for convex sets K which have only one supporting hyperplane at any boundary
point. This was proved in [4]. Now this theorem actually follows from the proof
in Proposition 4 in the ε = 0 case. Indeed, if the point (1, 0, . . . , 0) belongs to
∂K and the hyperplane ℓ defined by x1+b2x2+ · · ·+bnxd = 1 is the supporting
hyperplane to K at (1, 0, . . . , 0), then the only change needed in the proof of
Proposition 4 is to consider instead of the Rm in (7) the polynomial

Rm(x1, · · · , xn) = (x1 + b2x2 + · · ·+ bdxd)
amS2m

(

√

x2
2 + · · ·+ x2

d

x1 + b2x2 + · · ·+ bdxd

)

(25)
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(note that S2m is even, so this is a polynomial; here
√

x2
2 + · · ·+ x2

d plays the
role of |Y | from the proof of Proposition 4), and then do the analogue of (14)
for some fairly uniformly chosen rays.

Since this latter requirement is not as straightforward in Rd as in R2, we
sketch it. A “ray” from the origin is given by a point P on the (d − 1)-sphere
Sd−1. One can get “fairly uniformly chosen rays” of “density ∼ 1/m” (that
could replace eij2π/2m, j = 1, . . . , 2m that were used in (14)) as follows. Let us
put as many points as possible on Sd−1 such that the distance in between any
two is at least 1/m. Let Xm ⊂ Sd−1 be a point system with this (admissibility)
property for which |Xm|, the cardinality of Xm, is maximal. It is easy to see
that |Xm| ∼ md−1 (see the proof of (A) below).

Let P0 = (1, 0, . . . , 0) ∈ Sd−1 be the point considered above, and define the
spherical cap around P0 of radius r as

S(P0, r) := {(x1, . . . , xd) x1 > 0, x2
2 + x2

3 + · · ·+ x2
d ≤ r2}.

We define similarly S(P, r) around any point P ∈ Sd−1. Set Nm = |Xm ∩
S(P0,M

2/m)|. What we need when we want to copy (14) is the following:

(A) Nm ∼ M2(d−1)

(B) For any P ∈ Sd−1

(a) |Xm ∩ S(P, 2kM2/m)| ≤ C(2kM2)d−1

(b) |Xm ∩ S(P, (M2 − 2M)/m)| ≥ (1− c/M)Nm

(c) |Xm ∩ S(P, (M2 + 2M)/m)| ≤ (1 + c/M)Nm

(on the right (1 ± c/M) is not really necessary—it could be replaced by (1 +
o(1))—, but that is what was used before).

Indeed, once this is established, we can proceed as in the proof of Proposition
4: let RT

m(x1, · · · , xn) be the analogue of (25) for a point T ∈ ∂K, and set, in
analogy with (14),

Ham(x1, . . . , xd) =
1

Nm

∑

T/‖T‖∈Xm

RT
m(x1, . . . , xd), (26)

where the summation is taken for the point set on ∂K that corresponds to the
rays in Xm. In this case we have the analogues of (10)–(13), e.g.

RT
m(x1, . . . , xd) ≥ e−c2ε

1/3

if (x1, . . . , xd) belongs to the region of ∂K determined by the spherical cap
S
(

T/‖T‖, (M2 − 2M)/m
)

(this corresponds to ϕ ∈ [(−M2 + 2M)/m, (M2 −
2M)/m] in (13)). Now using the properties (A) and (B) the proof given in
Proposition 4 shows that

e−c2ε
1/3 − C

M
≤ Ham(x, y) ≤ 1 +

C

M
,
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and that completes the proof.
To prove (A) note first of all that one can put cM2(d−1) points into the

cap S(P0, (M
2 − 4)/m) with mutual distances ≥ 1/m: consider for example,

with some small c1, points around P0 with their spherical coordinates forming a
rectangular grid of size c1M

2×· · ·×c1M
2 and of mesh size 4/m. This combined

with the replacement argument below shows that Nm ≥ cM2(d−1). On the other
hand, the spherical caps of radii 1/4m about the points of Xm ∩ S(P0,M

2/m)
are all disjoint, so the total (d− 1)-dimensional volume of those caps is at least
Nmc(1/4m)d−1, and that must be smaller than the volume of S(P0, (M

2+1)/m),
which is ∼ (M2/m)d−1. This gives Nm ≤ CM2(d−1).

The proof of (B)(a) is the same. By looking again at the volume of spherical
caps of radius 1/4m with center in the set Xm ∩

(

S(P0,M
2/m) \ S(P0, (M

2 −
4M)/m)

)

we get that

|Xm ∩ S(P0,M
2/m)| ≤ |Xm ∩ S(P0, (M

2 − 4M)/m)|+ CM2d−3

(since the (d− 1)-dimensional volume of the spherical ring S(P0, (M
2+1)/m) \

S(P0, (M
2 − 4M − 1)/m) is at most CM2d−3/md−1 and this ring contains the

disjoint spherical caps of radii 1/4m with center in the set Xm∩
(

S(P,M2/m)\
S(P, (M2 − 4M)/m)

)

). Now if we remove all points from Xm that lie in
S(P, (M2 − 2M)/m) and replace them by a rotated copy of Xm ∩ S(P0, (M

2 −
4M)/m) (by a rotation that takes P0 into P ), then we get an admissible point
system, hence

|Xm ∩ S(P, (M2 − 2M)/m)| ≥ |Xm ∩ S(P0, (M
2 − 4M)/m)|

≥ |Xm ∩ S(P0,M
2/m)| − CM2d−3,

which proves (B)(b) in view of (A). The proof of (B)(c) is similar.

The author is thankful to the referees whose remarks have corrected mistakes
and improved the presentation.
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[4] A. Kroó and J. Szabados, On the density of homogeneous polynomials on
regular convex surfaces, Acta Sci. Math., 75(2009), 143-159.

[5] D. S. Lubinsky, A Survey of Weighted Polynomial Approximation with Ex-
ponential Weights, Surveys in Approximation Theory, 3(2007), 1–105.

[6] W. Rudin, Principles of mathematical analysis (3rd. ed.), McGraw-Hill,
1976.
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