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Abstract

An asymptotically sharp Bernstein-type inequality is proven for

trigonometric polynomials in integral metric. This extends Zygmund’s

classical inequality on the L
p norm of the derivatives of trigonometric

polynomials to the case when the set consists of several intervals. The

result also contains a recent theorem of Nagy and Toókos, who proved

a similar statement for algebraic polynomials.

1 Introduction

In a recent paper B. Nagy and F. Toókos [7] proved an asymptotically sharp
form of Bernstein’s inequality for algebraic polynomials in integral metric on
sets consisting of finitely many intervals. In the present paper we propose an
analogue of their inequality for trigonometric polynomials, which, using the
standard x = cos t substitution, gives back the Nagy-Toókos inequality.

S. N. Bernstein’s famous inequality

‖T ′

n‖sup ≤ n‖Tn‖sup
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for trigonometric polynomials Tn of degree at most n = 1, 2, . . . was proved
in 1912. It was extended by Videnskii [15] in 1960 to intervals less than a
whole period: if 0 < β < π then

|T ′

n(θ)| ≤ n
cos θ/2

√

sin2 β/2− sin2 θ/2
‖Tn‖[−β,β], θ ∈ (−β, β). (1)

Here, and in what follows, ‖ · ‖E denotes the supremum norm on the set E.
The general form of Videnskii’s inequality for an arbitrary system of in-

tervals is due to A. Lukashov [4]. For a set E ⊂ (−π, π] let

ΓE = {eit t ∈ E}

be the set that corresponds to E when we identify (−π, π] with the unit circle
C1, and let ωΓE

denote the density of the equilibrium measure of ΓE, where
the density is taken with respect to arc measure on C1. See [1], [3], [9] or [10]
for the potential theoretical concepts (such as equilibrium measure, balayage
etc.) used in this work. With this notation A. Lukashov’s result [4] can be
stated as follows. Let E ⊂ (−π, π] consist of finitely many intervals. If eiθ is
an inner point of ΓE, then for any trigonometric polynomial Tn of degree at
most n = 1, 2, . . . we have

|T ′

n(θ)| ≤ n2πωΓE
(eiθ)‖Tn‖E. (2)

The Lp, 1 ≤ p < ∞, extension of Bernstein’s inequality in the form

‖T ′

n‖Lp ≤ n‖Tn‖Lp (3)

was given in [14, Ch. X, (3 ◦16)Theorem] by A. Zygmund (here the Lp norm
is taken on the whole period, i.e. ‖ · ‖Lp ≡ ‖ · ‖Lp[−π,π]). The main purpose of
this paper is to find a form of this inequality on a finite system of intervals
(mod 2π). We state

Theorem 1.1 Let 1 ≤ p < ∞, and assume that E ⊂ (0, 2π] consists of
finitely many intervals. Then for trigonometric polynomials Tn of degree at
most n we have

∫

E

∣

∣

∣

∣

T ′

n(t)

n2πωΓE
(eit)

∣

∣

∣

∣

p

ωΓE
(eit) dt ≤ (1 + o(1))

∫

E

|Tn(t)|pωΓE
(eit) dt, (4)

where o(1) tends to zero uniformly in Tn as n tends to ∞.
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If E = (0, 2π] then ωΓE
(eit) ≡ 1/2π, so we get back Zygmund’s inequality

(with the factor (1 + o(1))).
We also mention that the result is sharp: there are trigonometric poly-

nomials Tn 6≡ 0 of degree n = 1, 2, . . . for which

∫

E

∣

∣

∣

∣

T ′

n(t)

n2πωΓE
(eit)

∣

∣

∣

∣

p

ωΓE
(eit) dt ≥ (1− o(1))

∫

E

|Tn(t)|pωΓE
(eit) dt. (5)

This follows from the use of T -sets below in the same fashion as Theorem 4
follows in [7, Sec. 7] from the use of polynomial inverse images. We do not
give details.

Let now K ⊂ R be a set consisting of finitely many intervals, which we
may assume to lie in [−1, 1]. Let ωK denote the density of the equilibrium
measure of K with respect to linear Lebesgue-measure.

Set E = {t ∈ (−π, π] cos t ∈ K}, and for an algebraic polynomial Pn

of degree at most n consider the trigonometric polynomial Tn(t) = Pn(cos t).
In this case it is known [11, (4.12)] that

ωΓE
(eit) =

1

2
ωK(cos t)| sin t|. (6)

If we substitute this into (4) applied to Tn(t) = Pn(cos t), then we obtain the
inequality

∫

K

∣

∣

∣

∣

P ′

n(x)

nπωK(x)

∣

∣

∣

∣

p

ωK(x) dx ≤ (1 + o(1))

∫

K

|Pn(x)|pωK(x) dx, (7)

which is the Nagy–Toókos result from [7] mentioned before. As far as we
know this latter inequality is the only Bernstein-type inequality with an
asymptotically sharp factor that is known on general sets. Although, as we
have just shown, (7) is a special case of Theorem 1.1, the present paper was
motivated by the inequality of Nagy and Toókos, and the resemblance of (4)
with (7) is obvious. Besides that, we shall closely follow the proof of (7) from
[7], which was based on the polynomial inverse image method. We shall
replace here polynomial inverse images of intervals by their trigonometric
analogues, the so called T -sets of F. Peherstorfer and R. Steinbauer [8] and
S. Khruschev [5],[6]. We shall be rather brief, for we are not going to repeat
the technical steps that are identical with those in [7].
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2 Proof of Theorem 1.1

When E = (−π, π], then the statement in Theorem 1.1 is included in Zyg-
mund’s inequality (3), hence we may assume that E 6= (−π, π], and then, by
the periodicity of trigonometric polynomials, that −π, π 6∈ E, i.e. that E is
a closed subset of (−π, π).

After Peherstorfer and Steinbauer [8] we call a closed set E ⊂ (−π, π)
a T -set of order N if there is a real trigonometric polynomial UN of degree
N such that UN(t) runs through [−1, 1] 2N -times as t runs through E. In
this case we shall say that E is associated with UN . Note that the definition
implies that if U ′

N(t0) = 0 then |UN(t0)| ≥ 1. An interval [ζ1, ζ2] is a “branch”
of E if |UN(ζ1)| = |UN(ζ2)| = 1 and UN runs through [−1, 1] precisely once as
t runs through [ζ1, ζ2]. This implies that UN(ζ1) = −UN(ζ2). If, furthermore,
U ′

N(ζ1) = 0, then we say that ζ1 is an inner extremal point since in this case
ζ1 is necessarily in the interior of E.

The proof of Theorem 1.1 consists of the following steps.

(a) Verify the statement when E is a T -set associated with the trigonometric
polynomial UN and Tn is a polynomial of UN .

(b) Verify the statement when E is a T -set, and the trigonometric polyno-
mial Tn is arbitrary.

(c) Verify the statement when E ⊂ (−π, π) is an arbitrary set consisting of
finitely many closed intervals.

These are precisely the steps Nagy and Toókos used, but they used instead
of T -sets polynomial inverse images of intervals under a suitable algebraic
polynomial mapping.

First we verify (a). Thus, let E be a T -set of degree N associated with
the trigonometric polynomial UN , and assume that Tn = Pm(UN), where
Pm is an algebraic polynomial of degree m. Then n = Nm and T ′

n(t) =
P ′

m(UN(t))U
′

N(t). It is also known (see [5, (25)], [12, Lemma 3.1]) that

ωΓE
(eit) =

1

2πN

|U ′

N(t)|
√

1− UN(t)2
, t ∈ E. (8)

Therefore,

∫

E

∣

∣

∣

∣

T ′

n(t)

n2πωΓE
(eit)

∣

∣

∣

∣

p

ωΓE
(eit) dt =

∫

E

∣

∣

∣

∣

∣

P ′

m(UN(t))
√

1− UN(t)2

m

∣

∣

∣

∣

∣

p
|U ′

N(t)|
2πN

√

1− UN(t)2
dt.

4



In the last integral while t runs through a “branch” [ζ1, ζ2], the trigonometric
polynomial UN(t) runs through [−1, 1] exactly once, and there are 2N such
“branches”. So with Vm(t) = Pm(cos t) the last integral is equal to

1

π

∫ 1

−1

∣

∣

∣

∣

P ′

m(x)
√
1− x2

m

∣

∣

∣

∣

p
1√

1− x2
dx =

1

2π

∫ π

−π

∣

∣

∣

∣

V ′

m(t)

m

∣

∣

∣

∣

p

dt.

By Zygmund’s result (3) this last expression is at most

1

2π

∫ π

−π

|Vm(t)|p dt,

which is equal to
∫

E

|Tn(t)|pωΓE
(eit) dt

by doing the above substitutions backwards. This proves the case (a) of
Theorem 1.1. Note that in this case the (1 + o(1)) in (4) is actually 1.

In (b) the set E is still a T -set but Tn is an arbitrary trigonometric poly-
nomial. This case will be discussed in the next section in more details because
our proof differs in some points from [7, Sec. 5]. This is the technically most
involved part of the proof.

Finally, in proving (c) one can follow the proof of [7, Sec. 6], if the
subsequent lemmas are used.

Lemma 2.1 ([12, Lemma 3.4]) Let

E =
m
⋃

l=1

[v2l−1, v2l]

be finite interval-system in (−π, π) (vi < vi+1). Then for every ǫ > 0 there
exist 0 < x1, y1, x2, y2, . . . , xm, ym < ǫ such that both

E− :=
m
⋃

l=1

[v2l−1, v2l − xl]

and

E+ :=
m
⋃

l=1

[v2l−1, v2l + yl]

are T -sets.
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In other words, every finite interval-system can be approximated by T -
sets. Note that the lemma tells nothing about the order of the approximating
T -set, generally it converges to ∞.

Denote by ωΓE
, ωΓ

E+ and ωΓ
E−

the equilibrium measure of ΓE, ΓE+ and
ΓE− respectively.

Lemma 2.2 Both ωΓ
E+ (e

it) and ωΓ
E−

(eit) converge to ωΓE
(eit) pointwise on

E as ǫ → 0, moreover ωΓ
E+ (e

it)/ωΓE
(eit) (ωΓ

E−
(eit)/ωΓE

(eit)) uniformly con-
verges to 1 on sets of the form [v2l−1, v2l − δl] where δl > 0 are arbitrarily
fixed.

We will indicate in Remark 3.10 below how to prove this lemma.

3 Proof of (b)

We shall follow the relevant arguments from [7], but we make some modifi-
cations.

First a general remark: whenever in [7] the authors write ωK , in the
trigonometric case one should write ωΓE

. Also, [7] used frequently the in-
equality

|P ′

n(x)| ≤ nπωK(x)‖Pn‖K , x ∈ Int(K), (9)

valid for algebraic polynomials Pn of degree at most n, and in the trigono-
metric case this should be replaced everywhere by the inequality (2).

Splitting the set E

This part is the same as [7, Sec. 4], but we shall need it for our discussion,
therefore we give details. Suppose that the T -set E ⊂ (−π, π) is the union
of m disjoint intervals [v2l−1, v2l], l = 1, 2, . . . ,m, that is:

E =
m
⋃

l=1

[v2l−1, v2l],

where −π < v2l−1 < v2l < v2l+1 < π. Denote the inner extremal points in
[v2l−1, v2l] by ζl,1 < ζl,2 < · · · < ζl,rl−1 and use the notation ζl,0 and ζl,rl for
v2l−1 and v2l respectively, where rl refers to the number of the “branches”
covering [v2l−1, v2l].

6



Fix a number κ ∈ (0, 1/8).
Split E into closed intervals Ij of length at least 1/2nκ but at most 1/nκ

in such a way that each inner extremal point ζl,i is a division point, i.e.
each “branch” [ζl,i, ζl,i+1] of E is split up into the union of some of the Ij’s
separately. Let Jn be the set of indices for these intervals Ij. We assume
that this enumeration is monotone, i.e. if j < j′ then Ij lies to the left of Ij′ .

If J ⊂ Jn is a subset of Jn then set

H(J) :=
⋃

j∈J

Ij.

We shall consider these sets only for the case when H = H(J) is an interval,
in which case the “boundary” Hb of H be the union of the two intervals Ij
attached to H. If, say, there is no Ij attached to H from the left (i.e. if
H contains one of the left-endpoints v2l−1), then as Hb we take the union of
[v2l−1 − 1/nκ, v2l−1] with the interval Ij attached to H from the right, and
we use a similar procedure if H has no Ij attached to it from the right.

Now we enlist some properties, labelled by roman numbers, which H =
H(J) can possess and which will be important for us: H is strictly inside a
“branch”, that is

H ∪ (Hb ∩ E) ⊂ [ζl,i, ζl,i+1] (I)

for some l ∈ {1, 2, . . . ,m} and i ∈ {0, 1, . . . , rl − 1} (recall that ζl,0 = v2l−1

and ζl,rl = v2l).
Before defining further properties we set up some notations:

A(Tn, X) :=

∫

X

∣

∣

∣

∣

T ′

n(t)

n2πωΓE
(eit)

∣

∣

∣

∣

p

ωΓE
(eit) dt, (10)

B(Tn, X) :=

∫

X

|Tn(t)|pωΓE
(eit) dt,

a(Tn, X) :=
A(Tn, X)

A(Tn, E)
,

and

b(Tn, X) :=
B(Tn, X)

B(Tn, E)
. (11)

With these quantities we need to prove that

A(Tn, E) ≤ (1 + o(1))B(Tn, E).
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Fix a
0 < γ <

κ

2
. (12)

The next properties are
a(T,Hb) ≤ n−γ , (II-a)

and
b(T,Hb) ≤ n−γ . (II-b)

Note that, since
∑

j∈Jn

a(Tn, Ij) =
∑

j∈Jn

b(Tn, Ij) = 1,

there are at most 2⌈nγ⌉ indices j ∈ Jn such that a(Tn, Ij) ≥ n−γ or b(Tn, Ij) ≥
n−γ . This number is small if we compare it to the number of the rest of the
indices which is ∼ nκ. Therefore, if

J ′

n :=
{

j ∈ Jn max
(

a(Tn, Ij), b(Tn, Ij)
)

< n−γ
}

, (13)

then
|Jn \ J ′

n|≤4nγ .

This implies that for large n every interval [ζl,i−1, ζl,i] contains at least two
intervals Ij with j ∈ J ′

n. Furthermore, if J ⊂ (Jn \ J ′

n), then

|H(J)| ≤ 4nγ−κ = o(1), (III)

where |H(J)| is the Lebesgue measure of the set H(J).

We emphasize that E, vl, ζl,j are fixed, they are independent of n and Tn.
The collection of the intervals Ij that E (and each of its “branch”) is divided
into, and hence also the index set Jn, depends on n (the degree of Tn), but
it is independent of Tn itself. Finally, the set J ′

n depends on the polynomial
Tn in question.

Let χH denote the characteristic function of H. For its approximation by
trigonometric polynomials we need the following analogue of [7, Lemma 6].

Lemma 3.1 Assume that H = H(J) (J ⊂ Jn) is an interval with char-
acteristic function χH(t). Fix 1/2 > θ > 4κ. Then there is a constant C
(independent of H and E) and a trigonometric polynomial q = q(H,n; t) of
degree O

(

n2θ
)

which satisfies

0 ≤ q(t) ≤ 1 (14)
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on [−π, π], furthermore,

|q(t)− χH(t)| ≤ O
(

e−Cnθ
)

, (15)

|q′(t)| ≤ O
(

e−Cnθ
)

, (16)

whenever t ∈ [−π, π] \Hb.

Proof. The lemma follows from [7, Lemma 6]. Let t0 be the midpoint of H
and take the sets Ĥ := {cos(t−t0+π) t ∈ H} and Ĥb := {cos(t−t0+π) t ∈
Hb}. Ĥ is an interval in [−1, 1) with left-endpoint −1. [7, Lemma 6] implies
the existence of a constant Ĉ and an algebraic polynomial p(x) = p(Ĥ, n; x)
of degree at most n2θ such that 0 ≤ p(x) ≤ 1 on [−2, 2] as well as

|p(x)− χĤ(x)| ≤ O
(

e−Ĉnθ
)

|p′(x)| ≤ O
(

e−Ĉnθ
)

whenever x ∈ [−2, 2] \
(

Ĥb ∪ [−1− |Ĥb|,−1]
)

. (We should be cautious a bit

because if |H| is small (∼ n−κ), then Ĥb has a length of about |Hb|2 = n−2κ,
therefore we have to apply [7, Lemma 6] as if we ought to apply it after a
split (similar to the one discussed above) but of magnitude n−2κ.) Then, as
it can easily be checked, q(t) := p(cos(t− t0 + π)) is a suitable trigonometric
polynomial, that is q(t) ∈ [0, 1] (t ∈ [−π, π]) and satisfies both (15) and (16)
with C = Ĉ.

Three types of subintervals

In order to estimate the analogue of A(Tn, E) from (10) Nagy and Toókos
divided K from (7) into special intervals which were the unions of some
Ij’s, then they separately gave estimates on these intervals, and finally they
summed up the estimates obtained. We are also going to do so. Recall that
E is a T -set associated with the trigonometric polynomial UN(t), thus E has
the following form:

E =
m
⋃

l=1

rl
⋃

i=1

[ζl,i−1, ζl,i],
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where [ζl,i−1, ζl,i], l = 1, 2, . . . ,m, i = il = 1, 2, . . . , rl, are the “branches” of
E, i.e. UN(t) runs through [−1, 1] precisely once as t runs through [ζl,i−1, ζl,i].
Note that we have 2N =

∑m
l=1 rl. As we have already remarked, if n is large

enough then, for every l and i, there are at least two j ∈ J ′

n (for the definition
of J ′

n see (13)) such that Ij ⊂ [ζl,i−1, ζl,i].
Let

kleft
l,i := min{j ∈ J ′

n Ij ⊂ [ζl,i−1, ζl,i]},
and

kright
l,i := max{j ∈ J ′

n Ij ⊂ [ζl,i−1, ζl,i]}.
We say that H = H(J) (J ⊂ J ′

n) is an interval

• of the first type if J = [kleft
l,i + 1, kright

l,i − 1] ∩N, that is

H =

kright
l,i

−1
⋃

j=kleft
l,i

+1

Ij

for some l ∈ {1, 2, . . . ,m} and i = il ∈ {1, 2, . . . , rl}.

• of the second type if J = [kright
l,i + 1, kleft

l,i+1 − 1] ∩N, that is

H =

kleft
l,i+1−1
⋃

j=kright
l,i

+1

Ij

for some l ∈ {1, 2, . . . ,m} and i = il ∈ {1, 2, . . . , rl − 1} (i 6= rl!).

• of the third type if H contains a v2l−1 and all the subsequent Ij with

j < kleft
l,1 or H contains a v2l and all preceding Ij with j > kright

l,rl
.

See Figure 1.
We treat the intervals of the first and third type together. The case of

the intervals of the second type is more complicated and we are going to deal
with it in more details. Note that the union of these intervals covers the
T -set E except for the 4N intervals Ikleft

l,i
and Ikright

l,i
.
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first type

third type

second type

Figure 1: One component of E and the various types of intervals H. The
dots represent the points where |UN | = 1, in between two such points there is
a “branch”, and the thicker-drawn intervals are the intervals Ikleft

l,i
and Ikright

l,i

in each “branch”.

Intervals of the first and third types

From the definition of the intervals H of the first and third type it easily
follows that such intervals possess the properties (I), (II-a) and (II-b).

We claim that, if the interval H = H(J) has these properties, in partic-
ular, if it is of the first or third type then (see the definitions (10)–(11))

A(Tn, H) ≤ B(Tn, H) + o(1)A(Tn, E) + o(1)B(Tn, E), (17)

where o(1) → 0 as n → ∞ uniformly in Tn. The verification follows [7,
Sec. 5.1 and 5.3] almost word for word, one only has to use the following
trigonometric analogues of the lemmas there.

Lemma 3.2 ([12, Lemma 3.2]) Let E be a T -set associated with the trigono-
metric polynomial UN of degree N , and for a t ∈ E with UN(t) ∈ (−1, 1) let
t1, t2, . . . , t2N be those points in E which satisfy UN(tk) = UN(t). Then, if
Vn is a trigonometric polynomial of degree at most n, there is an algebraic
polynomial Sn/N of degree at most n/N such that

2N
∑

k=1

Vn(tk) = S[n/N ](UN(t)).
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With this lemma at hand we can take the trigonometric analogue of [7,
(19)]. If H ⊂ E is an interval with property (I), and q(t) = q(H,n; t) is the
polynomial by Lemma 3.1, then, by Lemma 3.2,

T ∗

n(t) :=
2N
∑

k=1

Tn(tk)q(tk)

is a polynomial of the trigonometric polynomial UN , so we can apply part
(a) from Section 2 to this T ∗

n . This leads to the following lemma which is
the analogue of [7, Lemma 7 and 8] and which is verified exactly as Lemmas
7 and 8 were proved in [7] .

Lemma 3.3 Let E, UN , Tn be the same as in Lemma 3.2 and let H = H(J)
be an interval with property (I). Then, if n∗ = n+ deg q(= (1 + o(1))n), we
have

∣

∣

∣

∣

(

n∗

n

)p

A(T ∗

n , E)− (2N)A(Tn, H)

∣

∣

∣

∣

≤
(

o(1) + c1 a(Tn, Hb)
)

A(Tn, E) + o(1)B(Tn, E),

and

|B(T ∗

n , E)− (2N)B(Tn, H)| ≤
(

o(1) + c2 b(Tn, Hb)
)

B(Tn, E),

where o(1) → 0 as n → ∞. Furthermore, the o(1) and the constants c1, c2
are independent of Tn.

Remark 3.4: Note that ifH has the property (II-a) then a(Tn, Hb) = o(1) →
0 as n → ∞ and, similarly, if it has the property (II-b) then b(Tn, Hb) =
o(1) → 0 as n → ∞.

As we have already mentioned, the proof is the same as those of [7, Lemma
7 and 8], one should only replace “ωK(t)” by “ωΓE

(eit)” and “P ′(t)/π(degP )”
by “T ′

n(t)/(2πn)” there.
From Lemma 3.3 one can easily deduce (17) as was done in [7, Sec. 5.3].

Intervals of the second type

In this caseH = H(J) is an interval of the second type, so it has the following
properties:
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• H contains an inner extremal point ζl0,i0 ;

• max
(

a(Tn, Hb), b(Tn, Hb)
)

< 1/nγ .

Our aim is to reduce this case to the case of the intervals of the first or third
types, and to prove that

A(Tn, H) ≤ B(Tn, H) + o(1)A(Tn, E) + o(1)B(Tn, E). (18)

The idea is the following: We approximate the set E by a sequence {Ek} of
T -sets of order N (which is the order of E) from the inside: Ek ⊂ E. Every
one of these T -sets Ek has an inner extremal point corresponding to ζl0,i0
and these extremal points form a strictly increasing sequence converging to
ζl0,i0 . We take an appropriate T -set from the sequence for which the point
corresponding to ζl0,i0 is outside of H, so with respect to this T -set H behaves
as if it was of the first or third type. Then we only have to show that the
estimates on H with regard to E hardly differ from those with regard to the
chosen T -set. In this process we use potential theoretic tools. The subsequent
proposition replaces [7, Propositon 9 and 10].

Proposition 3.5 Let E be the union of the disjoint intervals [v2l−1, v2l] ⊂
(−π, π), where l = 1, 2, . . . ,m and v2l−1 < v2l < v2l+1. If E is a T -set of
order N then there is a sequence Ek of T -sets of order N such that

(i)

Ek =
m
⋃

l=1

[v2l−1, v2l(k)],

where each v2l(k) strictly increases in k and converges to v2l for every
l ∈ {1, 2, . . . ,m};

(ii) if E has the inner extremal points ζl,1 < ζl,2 < · · · < ζl,rl−1 in its l-
th component [v2l−1, v2l] then Ek also has rl − 1 inner extremal points
ζl,1(k) < ζl,2(k) < · · · < ζl,rl−1(k) in [v2l−1, v2l(k)] such that each ζl,i(k)
strictly increases in k and converges to ζl,i (i ∈ {1, 2, . . . , rl − 1});

(iii) if ωΓE
, ωΓEk

denote the corresponding equilibrium densities of ΓE and
ΓEk

then there is a sequence Dk = D(Ek) → 1 for which the estimates

1 ≤
ωΓEk

(eit)

ωΓE
(eit)

≤ Dk (19)
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are valid for every

t ∈
m
⋃

l=1

[

v2l−1 + ζl,1
2

,
ζl,rl−1 + v2l

2

]

.

and for sufficiently large k ∈ N.

We need some lemmas for the proof of this proposition. The first is a standard
characterization of T -sets. Denote by [eiξ1 , eiξ2 ] the arc {eit | t ∈ [ξ1, ξ2]},
where −π < ξ1 < ξ2 < π.

Lemma 3.6 ([12, Lemma 3.2]) Let E be the union of the disjoint inter-
vals [v2l−1, v2l]⊂ (−π, π), where l = 1, 2, . . . ,m and v2l−1 < v2l < v2l+1. Then
the followings are equivalent:

(a) E is a T -set of order N .

(b) For every l = 1, 2, . . . ,m the measure µΓE

(

[eiv2l−1 , eiv2l ]
)

is of the form
rl/2N with some integer rl.

Furthermore, in this case each subinterval [v2l−1, v2l] contains precisely rl− 1
inner extremal points for the trigonometric polynomial UN which E is asso-
ciated with. If [a, b] is a “branch” of E, then µΓE

([eia, eib]) = 1/2N .

The second lemma describes how the equilibrium measure of a subset can be
derived from the equilibrium measure of the full set.

Lemma 3.7 ([10, Ch. IV. Theorem 1.6 (e)]) Let K be a compact sub-
set of the complex plane and let S ⊂ K be a closed set of positive capacity.
Let µK and µS denote the equilibrium measures of K and S respectively.
Then

µS = Bal(µK) = µK
S
+ Bal

(

µK
K \ S

)

.

where Bal(.) denotes the balayage onto S.

For the concept of balayage see [10].
Next, we state

Lemma 3.8 ([13, Theorem 9]) Let g1, g2, . . . , gm be functions with the fol-
lowing properties:

14



(A) each gj is a continuous function on the cube [0, a]m, where a is some
positive number,

(B) each gj = gj(x1, x2, . . . , xm) is strictly monotone increasing in xj and
strictly monotone decreasing in every xi with i 6= j, and

(C)
∑m

j=1 gj(x1, x2, . . . , xm) = 1.

Then there is an α > 0 with property that for every xm ∈ (0, α) there exist
x1 = x1(xm), x2 = x2(xm), . . . , xm−1 = xm−1(xm) ∈ (0, a) such that each
gj(x1, x2, . . . , xm) equals gj(0, 0, . . . , 0). Furthermore, these xj = xj(xm) are
monotone increasing functions of xm and xj(xm) → 0 as xm → 0.

The last lemma describes the equilibrium density of an arc-system on the
unit circle, it is due to Peherstorfer and Steinbauer.

Lemma 3.9 ([8, Lemma 4.1]) Let E = ∪m
l=1[v2l−1, v2l] ⊂ (−π, π). There

are points eiβj , j = 1, 2, . . . ,m, on the complementary arcs (with respect to
the unit circle) to ΓE with which

ωΓE
(eit) =

1

2π

∏m−1
j=0 |eit − eiβj |

√

∏2m
j=1 |eit − eivj |

, t ∈ E. (20)

The eiβj are the unique points on the unit circle for which

∫ v2k+1

v2k

∏m
j=0(e

it − eiβj)
√

∏2m
j=1(e

it − eivj)
dt = 0, k = 0, 1, . . . ,m− 1, v0 = v2m (21)

holds, with appropriate definition of the square root in the denominator.

Proof of Proposition 3.5.
The proof consists of some observations resting on the previous lemmas.

Observation 1 By the assumption E is a T -set of order N , so by Lemma
3.6 µΓE

(

[eiv2l−1 , eiv2l ]
)

= rl/2N for every l where rl is a positive integer.

Observation 2 Let

E(x1, x2, . . . , xm) :=
m
⋃

l=1

[v2l−1, v2l − xl].

15



Then, as can be easily verified (cf. [13, (2)]),

gl(x1, x2, . . . , xm) :=
1 + 1

m
− µΓE(x1,x2,...,xm)

(

[eiv2l−1 , ei(v2l−xl)]
)

m

have the properties (A), (B) and (C) in Lemma 3.8. From this the existence
of the sequence Ek in (i) is immediate, since gl(x1, . . . , xm) = gl(0, . . . , 0) for
all l means that µΓE(x1,x2,...,xm)

([eiv2l−1 , ei(v2l−xl)]) = rl/2N for all l = 1, . . . ,m,
and apply Lemma 3.6.

Observation 3 Accordingly, by Lemma 3.6, Ek is a T -set of order N , associ-
ated with some trigonometric polynomial UN,k, and UN,k has precisely rl − 1
inner extremal points on the intervals [v2l−1, v2l(k)], l = 1, 2, . . . ,m. In other
formulation, each [v2l−1, v2l(k)] consists of rl “branches” of Ek.

Observation 4 Recall that ζl,1(k) < ζl,2(k) < · · · < ζl,rl−1(k) (ζl,1 < ζl,2 <
· · · < ζl,rl−1) denote the inner extremal points of the l-th component [v2l−1, v2l(k)]
([v2l−1, v2l]) of Ek (E). Set also ζl,0(k) = v2l−1, ζl,rl(k) = v2l(k). By Lemma
3.7 we have µΓEk

> µΓEk+1
> µΓE

on Ek. Also, by Lemma 3.6 we have

µΓEk

([

eiv2l−1 , eiζl,j(k)
])

=
j

2N
,

from which it can be easily inferred that each ζl,i(k) strictly increases in k,
as well as ζl,i(k) → ζl,i (i ∈ {1, 2, . . . , rl}) since µΓEk

→ µΓE
in weak*-sense.

Observation 5 Apply Lemma 3.9 to E and Ek and denote by βl(E) and
βl(Ek) the points with which we get ωΓE

and ωΓEk
, respectively in the form

(20). It can be easily shown (see e.g. the proof of Lemma 3.5 in [12]) that
βl(Ek) → βl(E) as k → ∞. This and the form of ωΓE

in Lemma 3.9 shows
that ωΓEk

(eit) → ωΓE
(eit) pointwise on E and also uniformly on

m
⋃

l=1

[

v2l−1 + ζl,1
2

,
ζl,rl−1 + v2l

2

]

.

This verifies (iii) since ωΓEk
(eit) > ωΓE

(eit) on ΓEk
by Lemma 3.7.

Remark 3.10: A similar argument as in Observation 5 also shows that both
ωΓ

E+ (e
it) and ωΓ

E−
(eit) in Lemma 2.1 converge to ωΓE

(eit) as ǫ → 0 point-
wise on E, moreover, by Lemma 3.9, ωΓ

E+ (e
it)/ωΓE

(eit) (ωΓ
E−

(eit)/ωΓE
(eit))
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uniformly converges to 1 on a set of the form [v2l−1, v2l − δl] where δl > 0 is
arbitrarily fixed.

Now, by Proposition 3.5, we have a sequence {Ek} of T -sets of order N
approximating the T -set E. Fix one of the Ek’s. According to the property
(III) for intervals H of the second type the length of H ∪ Hb is at most
4nγ−κ + 2n−κ ≤ 6nγ−κ, where γ is the number fixed in (12). For large fixed
k and for large n (how large depending on k) we have

min
(l,i)

(

ζl,i − ζl,i(k)
)

> 12nγ−κ

and

min
(l,i)

(

ζl,i+1(k)− ζl,i
)

> min
(l,i)

ζl,i+1 − ζl,i
2

> 12nγ−κ,

where the minimums are taken for every l ∈ {1, 2, . . . ,m} and i = il ∈
{1, 2, . . . , rl − 1}. Note that then for each interval H of the second type that
contains, say, the inner extremal point ζl0,i0 , the set H∪Hb lies strictly inside
the “branch” [ζl0,i0(k), ζl0,i0+1(k)] of Ek.

The next lemma compares integrals on H with regard to E with those
with regard to Ek. It is the analogue of [7, Lemma 11]. Following the defini-
tion of A(Tn, X) and B(Tn, X) from (10)–(11) let us introduce the notations
Ak(Tn, X) and Bk(Tn, X) for

∫

X

∣

∣

∣

∣

∣

T ′

n(t)

n2πωΓEk
(eit)

∣

∣

∣

∣

∣

p

ωΓEk
(eit) dt,

and
∫

X

|Tn(t)|pωΓEk
(eit) dt

respectively.

Lemma 3.11 Let q = q(H,n, t) be the polynomial from Lemma 3.1 and let
X be an arbitrary subset of E. Then the following five estimates hold:

•
|A(Tnq,H)− A(Tn, H)| ≤ o(1)A(Tn, E) + o(1)B(Tn, E), (22)

•
A(Tnq,X) ≤ A(Tn, X) + o(1)A(Tn, E) + o(1)B(Tn, E), (22’)
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•
B(Tnq,X) ≤ B(Tn, X). (23)

•

|Ak(Tnq, Ek)− Ak(Tnq,H)| ≤ o(1)A(Tn, E) + o(1)B(Tn, E), (24)

•
|Bk(Tnq, Ek)−Bk(Tnq,H)| ≤ o(1)B(Tn, E). (25)

(23) is an immediate consequence of (14) while (22) is verified as follows (cf.
the proof of [7, Lemma 11 (43)]):

A(Tnq,X)
1
α =

(

∫

X

∣

∣

∣

∣

∣

(

Tn(t)q(t)
)

′

deg(Tnq)2πωΓE
(eit)

∣

∣

∣

∣

∣

α

ωΓE
(eit) dt

)
1
α

≤
(
∫

X

∣

∣

∣

∣

T ′

n(t)q(t)

deg(Tnq)2πωΓE
(eit)

∣

∣

∣

∣

α

ωΓE
(eit) dt

)
1
α

(26)

+

(
∫

X

∣

∣

∣

∣

Tn(t)q
′(t)

deg(Tnq)2πωΓE
(eit)

∣

∣

∣

∣

α

ωΓE
(eit) dt

)
1
α

.

To the first integral on the right-hand side we apply (14) and get that

(
∫

X

∣

∣

∣

∣

T ′

n(t)q(t)

deg(Tnq)2πωΓE
(eit)

∣

∣

∣

∣

α

ωΓE
(eit) dt

)
1
α

≤ deg(Tn)

deg(Tnq)
A(Tn, X)

1
α . (27)

For the second integral on the right-hand side of (26) the inequality (2) gives
that
(
∫

X

∣

∣

∣

∣

Tn(t)q
′(t)

deg(Tnq)2πωΓE
(eit)

∣

∣

∣

∣

α

ωΓE
(eit) dt

)
1
α

≤ deg(q)

deg(Tnq)
B(Tn, X)

1
α . (28)

(26), (27) and (28) show that

A(Tnq,X)
1
α ≤

(

1− o(1)
)

A(Tn, X)
1
α + o(1)B(Tn, X)

1
α .

From this inequality, by the generalized weighted mean inequality, we infer
that

A(Tnq,X) ≤
(

1− o(1) + o(1)
)α

(

(

1− o(1)
)

A(Tn, X)
1
α + o(1)B(Tn, X)

1
α

1− o(1) + o(1)

)α
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≤
(

1− o(1) + o(1)
)α−1

(

(

1− o(1)
)

A(Tn, X) + o(1)B(Tn, X)
)

(29)

≤ A(Tn, X) + o(1)A(Tn, E) + o(1)B(Tn, E).

As regards (22), (24) and (25), their proof is much the same as the proof
of [7, Lemma 11 (43), (45) and (46)]. We remark only one thing, namely,
during the verification of (24) and (25) one needs the following lemma:

Lemma 3.12 Let I be a fixed subinterval of E and let τ be an arbitrary
trigonometric polynomial with the property supt∈I |τ(t)| = 1. Then there
exits a constant c independent of τ such that

∫

I

|τ(t)|pωΓE
(eit) dt ≥ c

(deg τ)2
.

Nagy and Toókos derived the algebraic analogue of this from Nikolskii’s in-
equality, but we have no knowledge of a Nikolskii-type inequality for trigono-
metric polynomial on a proper subinterval of (−π, π).

Proof. The lemma is a simple consequence of a Markov-type inequality by
Videnskii (see e.g [2, Sec. 5.1 E/13c] or [15]), which says that if α ≤ π and
Qm is a trigonometric polynomial of degree at most m, then

||Q′

m||[−α,α] ≤
(

1 + o(1)
)

2m2cotan
(α

2

)

||Qm||[−α,α], (30)

where o(1) → 0 as m → ∞. A simple transformation shows that it can be
assumed that the center of I is 0. Let t0 ∈ I such that |τ(t0)| = 1 and e.g.
[t0, t0 + 1/(2d(deg τ)2)] ⊂ I with d := 4cotan(|I|/4) (at least one of the two
sides of t0 belongs to I for large degrees). Hence, in view of (30), for all
t ∈ [t0, t0 + 1/(2d(deg τ)2)] we have

|τ(t)| ≥ 1− d(deg τ)2
1

2d(deg τ)2
≥ 1

2
.

Thus, if ρ denotes the minimum of ωΓE
(eit) on E, then we get

∫

I

|τ(t)|pωΓE
(eit) dt ≥

∫ t0+
1

2d(deg τ)2

t0

(

1

2

)p

ρ dt =
ρ

2p
1

2d(deg τ)2
,

which proves the Lemma 3.12 with c := ρ/(2p+1d).
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Using (22) and (19) we obtain

A(Tn, H) ≤ A(Tnq,H) + o(1)A(Tn, E) + o(1)B(Tn, E) (31)

≤ (Dk)
p−1Ak(Tnq,H) + o(1)A(Tn, E) + o(1)B(Tn, E)

For large n the interval H possesses the property (I) with respect to Ek, thus
we can apply Lemma 3.3 to H with respect to Ek and this yields, similarly
to (17), that

Ak(Tnq,H) ≤ Bk(Tnq,H) + o(1)Ak(Tnq, Ek) + o(1)Bk(Tnq, Ek) (32)

+c1ak(Tnq,Hb)Ak(Tnq, Ek) + c2bk(Tnq,Hb)Bk(Tnq, Ek).

We have deliberately written the error terms in the form that include ak(Tnq,Hb)
and bk(Tnq,Hb) separately, because we do not know wether H possesses the
properties (II-a) and (II-b) with respect to Ek. Recall that ||q||[−π,π] ≤ 1.
For Ak(Tnq, Ek) we get by (24), (19) and (22’) that

Ak(Tnq, Ek) ≤ Ak(Tnq,H) + o(1)A(Tn, E) + o(1)B(Tn, E) (33)

≤ A(Tnq,H) + o(1)A(Tn, E) + o(1)B(Tn, E)

≤ A(Tn, H) + o(1)A(Tn, E) + o(1)B(Tn, E).

For B(Tnq, Ek) we use (25), (19) and (23) to conclude

Bk(Tnq, Ek) ≤ Bk(Tnq,H) + o(1)B(Tn, E) (34)

≤ Dk B(Tnq,H) + o(1)B(Tn, E)

≤ Dk B(Tn, H) + o(1)B(Tn, E).

As regards ak(Tnq,Hb)Ak(Tnq, Ek), we apply (19) and (22’) which give

ak(Tnq,Hb)Ak(Tnq, Ek) = Ak(Tnq,Hb) ≤ A(Tnq,Hb) (35)

≤ a(Tn, Hb)A(Tn, E) + o(1)A(Tn, E) + o(1)B(Tn, E),

and for bk(Tnq,Hb)Bk(Tnq, Ek) by (19) and (23) we similarly get

bk(Tnq,Hb)Bk(Tnq, Ek) = Bk(Tnq,Hb) ≤ Dk B(Tn, Hb) (36)

= Dk b(Tn, Hb)B(Tn, E).
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By the assumption that H has the property (II-a) and (II-b) with respect to
E we know that both a(Tn, Hb) and b(Tn, Hb) are < n−γ = o(1). Hence, by
(33), (34), (35) and (36), we can continue the estimate (32) for Ak(Tnq,H)
as follows

Ak(Tnq,H) ≤ Bk(Tnq,H) + o(1)A(Tn, E) + o(1)B(Tn, E).

First employing the previous equation then (19) and (23) we can now continue
(31) as

(Dk)
p−1Ak(Tnq,H) + o(1)A(Tn, E) + o(1)B(Tn, E)

≤ (Dk)
p−1Bk(Tnq,H)+

(

(Dk)
p−1+1

)

o(1)A(Tn, E)+
(

(Dk)
p−1+1

)

o(1)B(Tn, E)

≤ (Dk)
pB(Tn, H) +

(

(Dk)
p−1 + 1

)

o(1)A(Tn, E)

+
(

(Dk)
p−1 + 1

)

o(1)B(Tn, E).

Since Dk → 1 as k → ∞ we can finally conclude (by selecting a large k and
then a large n)

A(Tn, H) ≤ (1 + o(1))B(Tn, H) + o(1)A(Tn, E) + o(1)B(Tn, E),

which is just (18) considering that B(Tn, H) ≤ B(Tn, E).

Synthesis of the case when E is a T -set and Tn is an
arbitrary trigonometric polynomial

Recall that E is a T -set associated with a trigonometric polynomial UN and
it is the union of the m disjoint intervals [v2l−1, v2l] (l ∈ {1, 2, . . . ,m}), the
l-th one of which consists of rl “branches”. Denote by Sj the union of all
intervals which are of the j-th type (j = 1, 2, 3). Then each Sj is the union
of at most 4N intervals H of the same type. Let S4 be the union of the
remaining intervals Ij, that is

S4 :=
m
⋃

l=1

rl
⋃

i=1

(

Ikleft
l,i

∪ Ikright
l,i

)

.

From (17), (18) and from the fact that kleft
l,i , k

right
l,i ∈ J ′

n we obtain:

A(Tn, E) =
(

A(Tn, S1) + A(Tn, S2) + A(Tn, S3)
)

+ A(Tn, S4) ≤
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B(Tn, S1∪S2∪S3)+3 ·4N
(

o(1)A(Tn, E)+o(1)B(Tn, E)
)

+4N
1

nγ
A(Tn, E) ≤

B(Tn, E) + o(1)A(Tn, E) + o(1)B(Tn, E)

Comparing the leftmost side to the rightmost one we conclude

A(Tn, E) ≤ 1 + o(1)

1− o(1)
B(Tn, E) =

(

1 + o(1)
)

B(Tn, E).

This verifies Theorem 1.1 for the case when E is a T -set and Tn is an arbitrary
trigonometric polynomial, i.e. (b) from Section 2 has been proven.
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