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ON POLYNOMIALS AND RATIONAL FUNCTIONS NORMALIZED ON CIRCULAR
ARCS

S. I. Kalmykov∗ UDC 517.54

Applications of geometric function theory to some inequalities for algebraic polynomials and rational functions nor-
malized on circular arcs are considered. In particular, coefficients estimates and also covering and distortion theorems
are proved. The latter theorems supplement recent results of the author and V. N. Dubinin. Bibliography: 18 titles.

Introduction

Inequalities for polynomials and rational functions are studied in many publications (e.g., see the references
in [1, 2]). Lately, considerable attention has been paid to polynomials with constraints on arcs of the unit
circle [3–10]. In particular, in [9] it was demonstrated how new covering and distortion theorems, as well as
estimates on the absolute value of the product of the leading coefficient and constant term of an algebraic
polynomial with constraints on circular arcs, can be derived from the majorization principles for meromorphic
functions [11–13].

The aim of the present paper is to refine and generalize the results in [9]. The paper consists of two parts. The
first one presents theorems for rational functions that are immediately obtained by applying the majorization
principle (see [11–14]) to a suitable meromorphic function. These theorems depend on the Green’s function and
inner radius of domains complementary to circular arcs. In the second part, inequalities for polynomials with
constraints on a circular arc are established. The latter inequalities supplement the corresponding results in [9].
In this part, the proofs are based on the approach suggested by V. N. Dubinin in [15], which can be outlined
as follows: Given a polynomial, an analytic function is constructed; then, to this function methods of geometric
function theory are applied. The technical details of the proofs are borrowed from Olesov’s paper [3].

Everywhere below, Γ denotes a union of a finite number of disjoint closed nondegenerate arcs of the unit circle
|z| = 1; D = Cz \ Γ; gB(z, ζ) is the Green’s function of a domain B; r(B, z) is the inner radius of the domain B
with respect to a point z [14];

Γα = {z = eix : −α ≤ x ≤ α}, 0 < α < π.

We consider polynomials with complex coefficients of the form

P (z) = cnz
n + · · ·+ ckz

k, n > k, cnck �= 0, (1)

and also rational functions of the form

R(z) =
P (z)

zp0

p∏

j=1

(z − aj)
, p0 ≥ 0, aj ∈ Cz \ (Γ ∪ {0}), (2)

where P is a polynomial of the form (1). In what follows, we use the notation

x+ = max{0, x},
m = m(F ; Γ) = min

z∈Γ
|F (z)|, M = M(F ; Γ) = max

z∈Γ
|F (z)|,

where, depending on the context, F is either a polynomial or a rational function. The degree of a rational
function is understood as the number of preimages of ∞ lying on the Riemann sphere Cz with account for their
multiplicities;

Ψ(z) =
1
2

(

z +
1
z

)

is Zhukovsky’s function. The regular branch of the function

Φ̃(ω) = ω +
√
ω2 − 1,
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inverse to Zhukovsky’s function, is defined on the exterior of the circular arc connecting the points ±1 and
passing through the point i tan(α/2) by the condition Φ̃(∞) = ∞, and the function

Φ(ω) = ω +
√
ω2 − 1

is defined on the exterior of the interval [−1, 1] by the condition Φ(∞) = ∞. Finally, we set

δ(ξ) =
2

1− cosα
Ψ(ξ)− 1 + cosα

1− cosα
.

1. Inequalities for rational functions

Theorem 1. Let R be an irreducible rational function of the form (2) and let h(z) = R(z)R(1/z), M = M(h,Γ),
m = m(h,Γ). Then, for an arbitrary point z, the following inequality holds:

∣
∣
∣2h(z)−M2 −m2 + 2

√
(h(z)−M2)(h(z)−m2)

∣
∣
∣

≤ (M2 −m2) exp((n− k − p)+(gD(z, 0) + gD(1/z, 0)) +
p′
∑

j=1

(gD(z, a′j) + gD(1/z, a′j)))

(for any choice of the value of the root), where a′j are those points aj which are poles of the function h, whereas
p′ is their number with account for the multiplicities. The equality at a point z �= 0,∞ and z /∈ Γ for a certain
value of the root is attained if and only if the function h satisfies the condition h(D) = Cw \ [m2,M2] and h is
a complete N -fold covering of the domain Cw \ [m2,M2] by the domain D, where N is the degree of h.

Proof. The domains D and G = Cw \ [m2,M2] have classical Green’s functions. The function h is meromorphic
in D, and in D it has poles at the points a′j and 1/a′j , j = 1 . . . p′, and also poles of order (n − k − p)+ at the
points z = 0 and z = ∞. In addition, as z tends to the set Γ, all the limit boundary values of h lie on the interval
[m2,M2]. By Theorem 1 in [13], at points of the domain D it holds that

gG(f(z),∞) ≤ (n− k − p)+(gD(z, 0) + gD(1/z, 0)) +
p′
∑

j=1

(gD(z, a′j) + gD(z, 1/a′j)),

and the equality at a point z �= 0, ∞ occurs if and only if G = h(D) and the function h is a complete N -fold
covering of the domain Cw \ [m2,M2] by the domain D. In view of the symmetry of the domain D with respect
to the circle |z| = 1, we have

gD(z, ζ) = gD(1/z, 1/ζ), z, ζ ∈ D.

It remains to observe that

gG(w,∞) = log

∣
∣
∣
∣
∣
∣

2w −M2 −m2

M2 −m2
+

√(
2w −M2 −m2

M2 −m2

)2

− 1

∣
∣
∣
∣
∣
∣
.

This completes the proof. �

Remark. The extremal rational function is defined up to multiplication by an integer power of z and by the
Blaschke product.

Theorem 2. In the notation of Theorem 1, the coefficients of an irreducible rational function R of the form (2)
for n− k > p satisfy the inequality

|cnck|
p∏

j=1

|aj |
≤ 1

4
(M2 −m2)r2(n−k−p)(D, 0)× exp

⎛

⎝
p′
∑

j=1

(gD(∞, a′j) + gD(∞, 1/a′j))

⎞

⎠ . (3)

Equality in (3) is attained if and only if for the function h(z) = R(z)R(1/z) we have h(D) = Cw \ [m2,M2]
and h is a complete N -fold covering of the domain Cw \ [m2,M2] by the domain D, where N is the degree of h.
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Proof. From Mityuk’s inequality [14] (also see [11, Corollary 1]) it follows that

|cnck|
p∏

j=1

|aj |
≤ r(n−k−p)(D,∞)

r(G,∞)
exp

{

(n− k − p)gD(0,∞) +
( p′
∑

j=1

(gD(∞, a′j) + gD(∞, 1/a′j))
)}

,

and equality occurs if and only if the corresponding conditions of the theorem are fulfilled. As is readily seen,

log |z|+ gD(z, 0) ≡ gD(z,∞).

Consequently,
log r(D, 0) = gD(0,∞).

Finally, straightforward computations yield

r(Cw \ [m2,M2],∞)
1

cap([m2,M2])
=

4
M2 −m2

,

which completes the proof. �
By ω(z,E,Ω) denote the harmonic measure of a set E ⊂ ∂Ω at a point z relative to a domain Ω. In the case

where Ω = D, the density of the harmonic measure is defined as follows:

	(ζ, eix) =
∂

∂x
ω
(
ζ,Γ ∩ {eiθ : 0 ≤ θ ≤ x},D)

, ζ ∈ D, eix ∈ Γ.

Theorem 3. In the notation of Theorem 1, for an irreducible rational function of the form (2) it holds that

|(|R(z)|2)′x| ≤ 2π((n− k − p)+	(∞, z) +
p′
∑

j=1

	(a′j , z))
√

(M2 − |R(z)|2)(|R(z)|2 −m2), (4)

where z = eix ∈ Γ.
Equality in (4) occurs if and only if for the function h(z) = R(z)R(1/z) we have h(D) = Cw \ [m2,M2] and

h is a complete N -fold covering of the domain Cw \ [m2,M2] by the domain D, where N is the degree of h.

Proof. The function h, defined in the domain D, satisfies the assumptions of Corollary 2 in [12], provided that
as G one takes the domain Cw \ [m2,M2]. Therefore,

|R′(z)R(1/z) +R(z)R′(1/z)(−1/z2)|
√

(M2 − |R(z)|2)(|R(z)|2 −m2)
=

|zR′(z)R(z)− zR′(z)R(z)|
√

(M2 − |R(z)|2)(|R(z)|2 −m2)
=

2|�zR′(z)R(z)|
√

(M2 − |R(z)|2)(|R(z)|2 −m2)

≤ (n− k − p)+

(
∂gD(z,∞)

∂n± +
∂gD(z, 0)

∂n±

)

+
p′
∑

j=1

(
∂gD(z, a′j)

∂n±
∂gD(z, 1/a′j)

∂n±

)

,

where z ∈ Γ, ∂
∂n+ denotes differentiation along the outward normal to Γ, and ∂

∂n− denotes differentiation in the
opposite direction. From the relation

	(a, z) =
1
2π

[
∂gD(z, a)

∂n+
+

∂gD(z, a)
∂n−

]

, z ∈ int Γ,

it follows that

2|�zR′(z)R(z)| ≤ π((n−k−p)+(	(∞, z)+	(0, z))+
p′
∑

j=1

(	(a′j , z)+	(1/a′j , z)))
√

(M2 − |R(z)|2)(|R(z)|2 −m2).

Here, int Γ means the set Γ from which the endpoints of the arcs composing it are excluded. In view of the
symmetry of D, we have

	(a, z) = 	(1/a, z), a ∈ Cz \ Γ, z ∈ int Γ.
Now, in order to complete the proof of the inequality, it only remains to note that

∣
∣
∣�zR′(z)R(z)

∣
∣
∣ =

∣
∣
∣
∣�

zR′(z)
R(z)

R(z)R(z)
∣
∣
∣
∣ =

1
2

∣
∣
∣
(|R(z)|2)′

x

∣
∣
∣.

The assertion concerning the equality case stems from the respective assertion of Theorem 2 in [12] or from
Corollary 1 in [13].

579



This completes the proof. �

Consider a method for finding the extremal rational function in the case of a unique arc Γ = Γα. To this end,
use the arguments from [9] and [16, pp. 106–107]. Assume that M = 1 and m = 0. Equalities in Theorems 1–3
occur if and only if for the function h(z) = R(z)R(1/z) we have h(D) = Cw \ [0, 1] and h is an N -fold covering of
the domain Cz \ [0, 1] by the domain D, where N is the degree of h. Construct the function h as the superposition
of the elementary functions

u(z) = Φ
[

i
z − 1
z + 1

cotan
α

2

]

and ũ(z) = Φ (δ(z)) , z ∈ C \ Γα,

which define a one-sheeted and a two-sheeted mappings, respectively, of the exterior of the arc Γα onto the
exterior of the unit disk. Let

B(u) =
p∏

j=1
aj=−1

u2

p∏

j=1
aj �=−1

(1− u(aj)u)(1− u(1/aj)u)
(u− u(aj))(u− u(1/aj))

.

The functions u(z) and ũ(z) take pairwise conjugate values at points symmetric about the unit circle. This fact
and the symmetry of the points aj and 1/aj imply that the function B(u) is real. In addition, B(|u| > 1) =
{|u| > 1}.

Consider the function

Ω(z) = ũ(n−p)+(z)B[u(z)].

From the symmetry principle it follows that the function Ψ[Ω(z)] is regular on the entire sphere Cz, except for
the poles aj and 1/aj , j = 1 . . . p, and also the poles of order (n− p)+ at the points 0 and ∞. Therefore,

Ψ[Ω(z)] =
P̃ (z)

z(n−p)+
p∏

j=1

(z − aj)(1− ajz)
,

where P̃ is an algebraic polynomial of degree 2p+ 2(n− p)+. Then

h(z) =
1
2
(Ψ[Ω(z)] + 1).

On the arc Γα, we have h(z) ≡ |R(z)|2, and the zeros of the rational function can be found from the equation
Ψ[Ω(z)] = −1.

In the case of a polynomial, the above argument reduces to that in [9]. As a result, up to a constant multiplier,
we arrive at the Vidensky polynomial

Pα(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n/2∏

k=1

(z2 − 2akz + 1) for n even,

(z − 1)
(n−1)/2∏

k=1

(z2 − 2akz + 1) for n odd,

where ak = cos2 α
2 − sin2 α

2 cos π(2k−1)
n .

Earlier, Maergoiz and Rybakova [5] proved that Pα is the polynomial least deviating from zero on the circular
arc among all unital polynomials having zeros in this arc (also see [6]).

Remark. The extremal polynomial can also be represented in the form

Pα(z) = 2ε sinn(α/2)
√
znTn

(√
z − 1/

√
z

2i sin(α/2)

)

,

where Tn(z) is the Chebyshev polynomial of the first kind of degree n, and ε is an arbitrary number such that
|ε| = 1 (see [7, 9]).

580



2. Inequalities for polynomials

The function

z = ϕ(w) = w
1 + w sin(α/2)
w + sin(α/2)

maps the domain |w| > 1 conformally and univalently onto the exterior of the arc Γα, and, in addition, the point
at infinity is taken into the point at infinity [3]. The function w = ψ(z) inverse to the function z = ϕ(w) can be
represented as

ψ(z) = −i cos
(α

2

)
Φ̃
(

i
z − cosα
sinα

)

− sin
(α

2

)
, z ∈ Cz \ Γα.

Given a polynomial P of the form (1), consider the associated function

ρ(z) =
2P (z)P (1/z)−M2 −m2

M2 −m2
.

On the set G = {w : |w| > 1, ρ(ϕ(w)) /∈ [−1, 1]}, define the meromorphic function ζ = F (w) by setting

F (w) = w
Φ[ρ(ϕ(w))]

Φn−k[δ(ϕ(w))]

at the points w at which ϕ(w) �= 0.
Let D be the collection of domains composing the set G \ {w : |F (w)| = 1}. By the maximum modulus

principle for a regular function, we have
∣
∣
∣
∣

w

Φ[δ(ϕ(w))]

∣
∣
∣
∣ < 1, |w| > 1.

This fact, along with the boundary properties of the functions Φ[ρ(ϕ(w))] and Φ[δ(ϕ(w))], implies that as the
point w approaches the boundary of each of the domains in D, all the limit values of |F (w)| become less than
or equal to unity. Moreover, 0 < |F ′(∞)| < ∞. Repeating the proof of Lemma 2.2 in [15] for the function
1/F (1/w), we see that for any domain D ∈ D, either F (D) ∩ {ζ : |ζ| > 1} = ∅ or F (D) = {ζ : |ζ| > 1}. In the
latter case, there exists a function w = f(ζ) inverse to F (w), which univalently maps the domain |ζ| > 1 onto D.

Theorem 4. Let P be a polynomial of the form (1) and let h(z) = P (z)P (1/z). Then, for all points z, the
following inequality holds:
∣
∣
∣2h(z)−M2 −m2 + 2

√
(h(z)−M2)(h(z)−m2)

∣
∣
∣≤(M2−m2)

βλ,r(z)

r(z)

∣
∣
∣
∣Φ

[
2

1− cosα
Ψ(z)− 1 + cosα

1− cosα

]∣
∣
∣
∣

n−k

. (5)

Furthermore, if |ψ(z)| > rλ, then
∣
∣
∣2h(z)−M2 −m2 + 2

√
(h(z)−M2)(h(z)−m2)

∣
∣
∣≥(M2−m2)

αλ,r(z)

r(z)

∣
∣
∣
∣Φ

[
2

1− cosα
Ψ(z)− 1 + cosα

1− cosα

]∣
∣
∣
∣

n−k

, (6)

where

λ =
4|cnck| sin2(n−k)(α/2)

M2 −m2
, r(z) = |ψ(z)|,

whereas αλ,r(z) and βλ,r(z) are the roots of the equations

λ(r(z) + 1)2x = r(z)(x+ 1)2 and λ(r(z)− 1)2x = r(z)(x− 1)2,

respectively, lying in the interval (1, r(z)];

rλ = 2λ−1 − 1 + 2
√

λ−1(λ−1 − 1).

For a suitable choice of the root, equalities in (5) and (6) occur, for instance, for the polynomial Pα.

Proof. Let w = f(ζ) be the function defined above. Straightforward computations yield

1
f ′(∞)

= lim
w→∞

F (w)
w

=
4cnck sin2(n−k)(α/2)

M2 −m2
,

and, by Schwarz’s lemma, we have λ = |f ′(∞)|−1 ≤ 1 (also see [9]).
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The function f1(ζ) = f ′(∞)/f(1/ζ) is univalent in the disk |ζ| < 1, smaller than λ−1 in the absolute value,
and can be represented as the power series

f1(ζ) = ζ + α2ζ
2 + α3ζ

3 + · · · .

In the class of such functions, the following sharp two-sided estimates hold:
(
1 + |λf1(ζ)|

1 + |ζ|
)2

≤
∣
∣
∣
∣
f1(ζ)
ζ

∣
∣
∣
∣ ≤

(
1− |λf1(ζ)|

1− |ζ|
)2

, 0 < |ζ| < 1. (7)

An equality on the left-hand or right-hand side of (7) is attained at at least one point if and only if

f1(ζ)
(1 + eiβλf1(ζ))2

≡ ζ

(1 + eiβζ)2
,

where β is a real number (e.g., see [15,17]).
Let w, with |w| = r and ϕ(w) �= 0, be a point of the set f(|ζ| > 1). The right-hand-side inequality in (7)

yields
(|F (w)| − 1)2

|F (w)| ≤ λ
(r − 1)2

r
.

Since the function y = (x − 1)2/x is strictly increasing on the ray x > 1, there exists a unique root βλ,r of the
equation λ(r − 1)2x = r(x− 1)2 that is located in the interval (1, r]. This also implies that |F (w)| ≤ βλ,r, i.e.,

∣
∣Φ[ρ(ϕ(w))]

∣
∣ ≤ βλ,r

r

∣
∣Φn−k[δ(ϕ(w))]

∣
∣. (8)

If w /∈ f(|ζ| > 1), then the inequality |F (w)| ≤ 1 holds, i.e.,

|Φ[ρ(ϕ(w))]| ≤ 1
r

∣
∣
∣Φn−k[δ(ϕ(w))]

∣
∣
∣ <

βλ,r

r

∣
∣Φn−k[δ(ϕ(w))]

∣
∣.

Thus, (8) holds for any w such that |w| > 1 and ϕ(w) �= 0. Using the change of variable ϕ(w) = z and the
explicit representation of the function δ(ξ), we arrive at inequality (5).

Now prove inequality (6). Let w, |w| = r > rλ, ϕ(w) �= 0, be a point of the set f(|ζ| > 1). The left-hand-side
inequality in (7) and the fact that the function y = (x+ 1)2/x is strictly increasing on the ray x > 1 imply that

(|F (w)|+ 1)2

|F (w)| ≥ λ
(r + 1)2

r
> λ

(rλ + 1)2

rλ
= 4.

Therefore, there exists a unique root αλ,r of the equation λ(r + 1)2x = r(x+ 1)2 lying in the interval (1, r], and

|F (w)| ≥ αλ,r. (9)

It follows that
∣
∣Φ[ρ(ϕ(w))]

∣
∣ ≥ αλ,r

r

∣
∣Φn−k[δ(ϕ(w))]

∣
∣. (10)

Now we demonstrate that any point w, |w| > rλ, belongs to the image f(|ζ| > 1). Suppose the contrary, i.e., let

rλ < r∗ = inf
{
r : r > 1,

∣
∣F (w)

∣
∣ > 1 for all w, |w| = r

}
.

On the circle |w| = r∗ there is a point w∗ such that

|F (w∗)| = 1. (11)

On the other hand, for any sequence wk, |wk| > r∗, k = 1, 2, . . ., converging to w∗ from (9) we obtain

|F (wk)| ≥ αλ,r∗ , k = 1, 2, . . . ,

which contradicts (11). Thus, inequality (10) holds for all w, |w| = r > rλ, ϕ(w) �= 0. Performing the change of
variable ϕ(w) = z, we see that (6) holds whenever r(z) = |w|.

The assertion concerning the equality case stems from the identity F (w) ≡ w, which holds for the polynomial
indicated.

This completes the proof of the theorem. �
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Theorem 5. For a polynomial P of the form (1) it holds that

|(|P (z)|2)′x| ≤
cos(x/2)

√
(M2 − |P (z)|2)(|P (z)|2 −m2)

√
sin2(α/2)− sin2(x/2)

×
[

n− k − Λ(α, z) cos(α/2)(1− 2 sinn−k(α/2)
√|cnck|/(M2 −m2))

2 cos(x/2)

]

, (12)

where z = eix ∈ Γα and

Λ(α, z) =
∣
∣
∣
∣Φ

(

i
z − cosα
sinα

)∣
∣
∣
∣ .

Equality in (12) is attained, for instance, for the polynomial Pα.

Proof. Let w = f(ζ) be the function defined above. If a point ζ, |ζ| = 1, is a regular point of the function f(ζ)
and if |f(ζ)| = 1, then (see [15, p. 21])

|f ′(ζ)| ≥ 1
2 sinn−k(α/2)

√
M2 −m2

|cnck| . (13)

If a point w, |w| = 1, is a regular point of the function |F (w)| and if, simultaneously, it lies on the boundary of
a domain D ∈ D such that F (D) ∩ {ζ : |ζ| > 1} = ∅, then, at this point,

∂|F |
∂|w| ≤ 0.

If F (D) = {ζ : |ζ| > 1}, then, at this point, by applying inequality (13), we obtain

∂|F |
∂|w| = |f ′(ζ)|−1 ≤ 2 sinn−k(α/2)

√
|cnck|

M2 −m2
. (14)

Thus, inequality (14) holds at all points of the unit circle except, possibly, for a finite number of such points.
Below, by the values of the function w = ψ(z) at points of an arc Γα we understand the values obtained as

a result of a regular extension of this function from the domain |z| > 1. At the points w ∈ ψ(Γα) at which the
values of the functions Φ[ρ(ϕ(w))] and Φ[δ(ϕ(w))] are defined as described above we have

∂|F |
∂|w| = 1 +

∣
∣
∣
∣
∂

∂w
Φ[ρ(ϕ(w))]

∣
∣
∣
∣−

∣
∣
∣
∣
∂

∂w
Φn−k[δ(ϕ(w))]

∣
∣
∣
∣ .

Setting ϕ(w) = z = eix and taking into account (14), we arrive at the inequality

|Φ′[ρ(z)]ρ′(z)ϕ′(ψ(z))| ≤ (n− k)|Φ′[δ(z)]δ′(z)ϕ′(ψ(z))| −
[
1− 2 sinn−k(α/2)

√
|cnck|/(M2 −m2)

]
,

implying that

|ρ′(z)|
√

1− ρ2(z)
| ≤ (n− k)

cos(x/2)
√

sin2(α/2)− sin2(x/2)
− 1− 2 sinn−k(α/2)

√|cnck|/(M2 −m2)
|ϕ′(ψ(z))| . (15)

Since

ϕ′(ψ(z)) = sin
(α

2

)[

1− Φ̃−2

(

i
z − cosα
sinα

)]

,

we have

|ϕ′(ψ(z))| = 2
∣
∣
∣
∣Φ̃

(

i
z − cosα
sinα

)∣
∣
∣
∣

−1

√
sin2(α/2)− sin2(x/2)

cos(α/2)
.

Now, in order to prove inequality (12), it remains to observe that for points w on the circle |w| = 1 chosen in
this way it holds that

∣
∣
∣
∣Φ̃

(

i
z − cosα
sinα

)∣
∣
∣
∣ = Λ(α, z),
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and, in addition (see the proof of Theorem 3),

|ρ′(z)| = |P ′(z)P (1/z) + P (z)P ′(1/z)(−1/z2)| = |zP ′(z)P (z)− zP ′(z)P (z)| = 2|�zP ′(z)P (z)|

= 2
∣
∣
∣
∣�

zP ′(z)
P (z)

P (z)P (z)
∣
∣
∣
∣ = |(|P (z)|2)′x|.

The assertion concerning the equality case stems from the identity F (w) ≡ w, which holds for the polynomial
in question. �

Letting α tend to π for k = 0, we arrive at the inequality first obtained by Dubinin, see [18, Theorem 2].

Theorem 6. For n− k ≥ 3, the coefficients of a polynomial P of the form (1) satisfy the inequality

4|cnck| sin2(n−k)(α/2)
M2 −m2

(

1 +
1

sin(α/2)

∣
∣
∣
∣

(
cn−1

2cn
+

ck+1

2ck

)

+ (n− k) cos2(α/2)
∣
∣
∣
∣

)

≤ 1. (16)

Equality in (16) is attained, for instance, for the polynomial Pα.

Proof. Following Olesov’s paper [3], at a punctured neighborhood of the point w=0, consider the function

F̃ (w) :=
1

F (1/w)
≡ w

Φn−k[δ(ϕ(1/w))]
Φ[ρ(ϕ(1/w))]

.

Set Δ(w) = wF̃ ′(w)/F̃ (w). For the latter function we have

Δ(w) = 1 +
ϕ′(1/w)

w

[
Φ′[ρ(ξ)]ρ′(ξ)

Φ[ρ(ξ)]
− (n− k)

Φ′[δ(ξ)]δ′(ξ)
Φ[δ(ξ)]

]

, ξ = ϕ(1/w).

Observe that wϕ(1/w) → ϕ′(∞) = sin(α/2) as w → 0. Therefore,

lim
w→0

Δ(w)− 1
w

= lim
ξ→∞

ξ2

sin(α/2)

[
ρ′(ξ)

√
ρ2(ξ)− 1

− (n− k)
δ′(ξ)

√
δ2(ξ)− 1

]

= lim
ξ→∞

(M2 −m2) sin(α/2)
cnckξn−k

[
2

M2 −m2

(

P ′(ξ)P (1/ξ)ξ − P (ξ)P ′(1/ξ)
ξ

)

δ(ξ)− (n− k)(ξ − 1/ξ)ρ(ξ)
2 sin2(α/2)

]

= lim
ξ→∞

1
cnck sin(α/2)ξn−k

[(

(ncnξn + (n− 1)cn−1ξ
n−1 + · · ·+ kckξ

k)

(
cn
ξn

+ · · ·+ ck+1

ξk+1
+

ck
ξk

)

× (cnξn + cn−1ξ
n−1 + · · ·+ ckξ

k)
(
ncn
ξn

+ · · ·+ (k + 1)ck+1

ξk+1
+

kck
ξk

))

× (
ξ − 2 cos2(α/2)

)− (n− k)(cnξn+1 + cn−1ξ
n + · · ·+ ckξ

k)

(
cn
ξn

+ · · ·+ ck+1

ξk+1
+

ck
ξk

)]

=
−cnck+1 − cn−1ck − 2(n− k)cnck cos2(α/2)

cnck sin(α/2)
.

On the other hand, by l’Hôpital’s rule, we find

lim
w→0

Δ(w)− 1
w

=
F̃ ′′(0)

2F̃ ′(0)
,

implying that

F̃ ′′(0) = 2F̃ ′(0)
−cnck+1 − cn−1ck − 2(n− k)cnck cos2(α/2)

cnck sin(α/2)
.

By f̃(ζ) denote the function univalent in the unit disk |ζ| < 1 that is inverse to F̃ (w). For this function, we have

f̃ ′′(0) = −F̃ ′′(0)(f̃ ′(0))32
cnck+1 + cn−1ck + 2(n− k)cnck cos2(α/2))cnck sin4(n−k)−1(α/2)

(M2 −m2)2
.
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Then, for λ =
4|cnck| sin2(n−k)(α/2)

M2 −m2
, the function f∗(0) = f̃(ζ)/f̃ ′(0) in the unit disk |ζ| < 1 is univalent,

smaller than λ−1 in the absolute value, and it can be represented by the power series

f∗(ζ) = ζ + α2ζ
2 + α3ζ

3 + · · · ,
where

α2 = 4
(cnck+1 + cn−1ck + 2(n− k)cnck cos2(α/2)) sin2(n−k)−1(α/2)

(M2 −m2)
.

In this case, in accordance with [17, p. 94],
|α2| ≤ 2(1− λ), (17)

which implies (16). The assertion concerning the equality case follows from the identity F (w) ≡ w, valid for the
polynomial in question.

This completes the proof. �
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