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Abstract

According to the Gauss-Lucas theorem, if all zeros of a polynomial lie
in a convex set K, then all zeros of its derivative also lie in K. In this
paper it is shown that if almost all zeros of polynomials lie in a convex set
K, then almost all zeros of their derivatives lie in any fixed neighborhood
of K.

1 Introduction

The Gauss-Lucas theorem [1] says that the zeros of the derivative of a polynomial
lie in the convex hull of the zeros of the polynomial itself. In particular, if all
zeros of a polynomial pn lie in a convex set K, then all zeros of p′n also lie in
K. This is no longer true if one zero may lie outside K, for then K may not
contain any zero of the derivative. Indeed, if z1, . . . , zn−1 are distinct points in
[0, 1], then the polynomial qn(z) = (z − i)

∏n−1
1 (z − zi) have all of its zeros in

[0, 1] with one exception, but q′n have all its zeros outside [0, 1]. Strict convexity
of the boundary would not help, either, for example, if K is the closed unit disk
and T is a linear transformation that maps 1 to 1 and 0 to eai with some small
a > 0, then the polynomial pn(z) = qn(T

−1(z)) with the previous qn have all its
zeros on the segment connecting the points 1 and eia, but for sufficiently small
a > 0 the zeros of p′n lie outside the unit disk.

In this note we prove that, contrary to such counterexamples, the Gauss-
Lucas theorem holds in an asymptotic sense even if some of the zeros of the
polynomial lie outside K. This may be convenient in applications, when one
does not know that every single zero of pn lies in K.

Let {pn} be polynomials of degree n = 1, 2, . . .. We say that pn have almost
all of their zeros on K if pn have o(n) zeros outside K. Equivalently, if µn

denotes the counting measure on the zeros of pn, then µn(K)/n → 1 as n → ∞.
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Theorem 1 If pn, n = 1, 2, . . ., have almost all of their zeros on the compact
convex set K, then for every ε > 0 the derivatives p′n have almost all of their
zeros on Kε, where Kε is the ε-neighborhood of K.

The examples discussed before show that in the claim it is necessary to
consider Kε, i.e. a slightly larger set then the original one.

The proof of the Gauss-Lucas theorem is very simple: if z1, . . . , zn are the
zeros of the polynomial and z lies outside the convex hull of them, then there is a
line ℓ that separates z from all zj , and without loss of generality we may assume
this line ℓ to be the imaginary axis and, say, ℜz > 0. But then it immediately
follows that

p′n(z)

pn(z)
=

n∑
j=1

1

z − zj

cannot be zero, for all terms on the right have positive real part. Based on this
elementary argument one would expect that Theorem 1 has an equally simple
proof, but a more careful examination of the problem reveals that such a simple
argument may not be available. The proof we give uses potential theory. At the
end of the paper we sketch a short proof, based on a theorem of Malamud and
Pereira, which works in the special case when all zeros lie in a fixed compact
set.

Let us also mention that one cannot hope for an extension of Theorem 1 in
the sense that if K contains at least αn of the zeros of pn, then Kε contains at
least αn (or any fixed portion) of the zeros of p′n. Indeed, pn(z) = zn − 1 has
at least one third of its zeros in the rectangle K = [1/4, 1]× [−1, 1], but p′n has
no zero in K1/8 whatsoever.

Acknowledgement. The author thanks Boris Shapiro for stimulating dis-
cussions. In particular, he brought the problem to the author’s attention, and
he formulated Theorem 1 as a conjecture.

2 Proof of Theorem 1

We shall use some basic facts from logarithmic potential theory, see for example
the books [4] or [5] for the general theory.

Without loss of generality we may assume that pn has leading coefficient 1,
and that K ⊂ B1/4, where Br is the open disk about the origin of radius r. Let
S be the ring B1/2 \K.

Let µn be the zero counting measure of pn, and νn the zero counting measure
of p′n. Suppose to the contrary that the claim is not true, and there is an
ε > 0 and an α < 1 such that for infinitely many n, say for n ∈ N , we have
νn(Kε)/n < α. We shall get a contradiction.

Let N1 ⊂ N be a subsequence along which µn/n → µ, νn/n → ν in the
weak∗ topology on the closed Riemannian sphere. Then µ is supported on K,
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µ(K) = 1, and ν(K) ≤ α. Below we show that, on the other hand, ν(K) = 1,
and that will constitute the required contradiction.

In what follows we shall denote bym2 the two dimensional Lebesgue-measure
on the complex plane.

I. Claim: There is a subsequence N2 ⊂ N1 such that for m2-almost all z ∈ S
we have

lim
n→∞, n∈N2

p′n(z)

npn(z)
=

∫
1

z − t
dµ(t). (1)

Indeed, µn = µn
K

+µn
C \K

, and since µn
C \K

(C) = o(n) by assumption,

we have µn
C \K

/n → 0, in the weak∗ topology. Since µn/n → µ also in

the weak∗ topology, we can conclude that µn
K
/n → µ in the weak∗ topology.

Therefore, for any z ∈ S we have

lim
n→∞, n∈N1

1

n

∫
1

z − t
dµn

K
(t) =

∫
1

z − t
dµ(t). (2)

Since
1

n

∫
1

z − t
dµn(t) =

p′n(z)

npn(z)
,

it is left to prove that along some subsequence N2 ⊂ N1 we have

lim
n→∞, n∈N2

1

n

∫
1

z − t
dµn

C \K
(t) = 0 (3)

for m2-almost all z ∈ S. But that is clear: since∫
S

1

|z − t|
dm2(t) ≤ C, z ∈ C,

with some constant C that depends only on S, we have∫
S

(
1

n

∫
1

|z − t|
dµn

C \K
(t)

)
dm2(z) ≤ C

µn(C \K)

n
→ 0,

which implies that a subsequence of the function in the brackets in the integrand
on the left tends to 0 for m2-almost all z ∈ S, and this is stronger than (3).

II. Claim: The integral on the right of (1) is non-zero in S. Indeed, let
z ∈ S. Then z and K can be separated by a line, and without loss of generality
we may assume that this line is the ℜz = a line with some a ∈ R. Then ℜz > a,
while for all t ∈ K we have ℜt < a (or vice versa), so ℜ(z− t) > 0 for all t ∈ K,
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which implies ℜ(1/(z − t)) > 0 for all such t. Since µ is supported on K, we
can conclude that

ℜ
∫

1

z − t
dµ(t) =

∫ (
ℜ 1

z − t

)
dµ(t) > 0,

which proves the claim.

III. Claim: For m2-almost all z ∈ S we have

lim
n→∞, n∈N2

1

n
log

|p′n(z)|
|pn(z)|

= 0.

This is an immediate consequence of Claims I and II because log n/n → 0.

Let

Uρ(z) =

∫
log

1

|z − t|
dρ(t)

denote the logarithmic potential of a measure ρ with compact support.
Since

1

n
log

|p′n(z)|
|pn(z)|

=
1

n
Uµn(z)− 1

n
Uνn(z),

we get that along the subsequence N2

1

n
Uµn(z)− 1

n
Uνn(z) → 0 (4)

for m2-almost all z ∈ S.

IV. Claim. There is a subsequence N3 ⊂ N2 and a sequence {an} of constants
such that for m2-almost all z ∈ S

lim
n→∞, n∈N3

(
1

n
Uµn(z)− an

)
= Uµ(z). (5)

We write µn = µ1
n + µ2

n, where µ2
n is the restriction of µn to the exterior of

B1/2 (and hence µ1
n is the restriction of µn to B1/2). Let µ3

n be the balayage

of µ2
n out of C \ B1/2 (see e.g. section II.3 in [5] for the concept of balayage).

Then µ3
n is a measure on ∂B1/2 such that it has the same total mass as µ2

n, and
with some constant cn we have

Uµ2
n(z) = Uµ3

n(z) + cn, z ∈ B1/2.
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Since the total mass of µ3
n/n (which is the same as the total mass of µ2

n/n)
tends to 0, and this measure lies on the circle |z| = 1/2, it follows that

1

n
Uµ2

n(z)− cn
n

=
1

n
Uµ3

n(z) → 0, z ∈ B1/2.

On the other hand, in the proof of claim I we have seen that with µ0
n := µn

K
we have 1

nµ
0
n → µ in the weak∗ topology, which implies that

1

n
Uµ0

n(z) → Uµ(z), z ∈ S.

Since µn = µ0
n +(µ1

n −µ0
n)+µ2

n, it is left to prove that along some subsequence
of N3 of N2 we have

1

n
Uµ1

n−µ0
n(z) → 0 (6)

for m2-almost all z ∈ S.
The measure µ1

n−µ0
n is the restriction of µn to the set B1/2\K, say µ1

n−µ0
n =∑mn

k=1 δzn
k
, where, by assumption, mn/n → 0. Note that

hn(z) :=
1

n
Uµ1

n−µ0
n(z) =

1

n

∫
log

1

|z − t|
d(µ1

n − µ0
n)(t) =

1

n

mn∑
k=1

log
1

|z − zk|
≥ 0

on S because z, znk ∈ B1/2, and hence |z − znk | < 1. Now with some εn > 0
consider the set

Hn(εn) := {z ∈ S hn(z) ≥ εn}.

If

Qmn(z) =

mn∏
k=1

(z − znk ),

then Hn(εn) is part of the set, where |Qmn(z)| ≤ e−nεn . By [4, Theorem 5.2.3]
this latter set has logarithmic capacity e−εnn/mn , and hence (see [4, Theorem
5.3.5]) it has m2-measure at most πe−2εnn/mn . Thus,

m2(Hn(εn)) ≤ πe−2εnn/mn .

Setting here εn =
√
mn/n → 0, we obtain

m2(Hn(εn)) ≤ πe−2
√

n/mn ,

hence there is a subsequence N3 ⊂ N2 such that∑
n∈N3

m2(Hn(εn)) < ∞.
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Therefore, by the Borel-Cantelli lemma, m2-almost all points z ∈ H are con-
tained in only finitely many of the sets Hn(εn), n ∈ N3, and in all those points
(6) is true.

After these preparations let νn = ν1n + ν2n, where ν2n is the restriction of νn
to the exterior of B1/2 (and hence ν1n is the restriction of νn to B1/2). Let ν

3
n be

the balayage of ν2n out of C \ B1/2. Then, as before, ν3n is a measure on ∂B1/2

such that it has the same total mass as ν2n, and with some constant dn we have

Uν2
n(z) = Uν3

n(z) + dn, z ∈ B1/2.

Note however, that now we do not know if the total mass of ν3n/n tends to 0,
all we know is that this measure has total mass at most 1 and it is supported
on the circle |z| = 1/2. Set ν̃n = ν1n + ν3n, for which

1

n
Uνn(z)− dn

n
=

1

n
U ν̃n(z), z ∈ B1/2. (7)

Here ν̃n have support in B1/2, and we may select a subsequence N4 ⊂ N3 such
that along N4 the measures ν̃n/n converge in the weak∗ topology to a measure
ν̃ supported on B1/2. Note that ν̃n agrees with νn inside B1/2 and νn/n was
convergent along N1 to ν, so we get that ν and ν̃ coincide inside B1/2.

Now we invoke the lower envelope theorem (see [5, Theorem I.6.9]), according
to which for all z ∈ C, with the exception of a set of capacity 0, we have

lim inf
n→∞, n∈N4

1

n
U ν̃n(z) = U ν̃(z). (8)

In view of (4) and (5) there is a z0 ∈ S for which we have

lim
n→∞, n∈N2

(
1

n
Uµn(z0)−

1

n
Uνn(z0)

)
= 0, (9)

lim
n→∞, n∈N3

1

n
(Uµn(z0)− an) = Uµ(z0) (10)

and (see (7) and (8))

lim inf
n→∞, n∈N4

(
1

n
Uνn(z0)−

dn
n

)
= U ν̃(z0),

where the right hand side is finite, i.e. along some subsequence N5 ⊂ N4

lim
n→∞, n∈N5

(
1

n
Uνn(z0)−

dn
n

)
= U ν̃(z0). (11)
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Thus, along N5(
1

n
Uµn(z0)− an

)
−
(
1

n
Uνn(z0)−

dn
n

)
+ an − dn

n
→ 0

(see (9)), and since the two expressions in the brackets also converge by (10) and
(11) to a finite value, we obtain that {an − dn

n } converges (as n → ∞, n ∈ N5),
say it converges to the finite number b. Now, it follows from (4) and (7) that
for m2-almost all z ∈ S we have(

1

n
Uµn(z)− an

)
− 1

n
U ν̃n(z) + an − dn

n
→ 0,

along N5, and on invoking (5) we obtain that for almost all z ∈ S

1

n
U ν̃n(z) → Uµ(z) + b, as n → ∞, n ∈ N5.

As a consequence, then

lim inf
n→∞, n∈N5

1

n
U ν̃n(z) = Uµ(z) + b

is also true on S m2-almost everywhere. But, by the lower envelope theorem
([5, Theorem I.6.9]), the left hand side agrees with U ν̃(z) everywhere except
for a set of capacity 0 (in particular, m2-almost everywhere), hence we finally
obtain the equality

U ν̃(z) = Uµ(z) + b (12)

m2-almost everywhere on S.
On taking the average of both sides in (12) over some small disk Br(z) about

a fixed point z ∈ S, and letting r tend to 0 we obtain (12) everywhere on S,
since, as r → 0, we have, by the superharmonicity of logarithmic potentials,

1

πr2

∫
Br(z)

Uρ(t)dt → Uρ(z)

for any measure ρ with compact support (cf. [4, Theorem 2.7.2] and its proof).
Thus, (12) is true everywhere on S. In particular, since Uµ is harmonic in S,
the same must be true of U ν̃ , which implies that ν̃ has no mass in S (see e.g.
[4, Corollary 3.7.5]).

Let now γ be a C2 Jordan curve in S that circles K once, and let ds be the
arc measure on γ. We have just seen that all the mass of ν inside γ lies on K. If
∂/∂n denotes normal derivative on γ in the direction of the inner normal, then,
by Gauss’ theorem (see [5, Theorem II.1.1]), the total mass of µ inside γ is

µ(K) =
1

2π

∫
γ

∂Uµ

∂n
ds,
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and the total mass of ν̃ inside γ is

ν̃(K) =
1

2π

∫
γ

∂U ν̃

∂n
ds.

Since, by (12), here the right-hand sides are the same, we obtain

ν̃(K) = µ(K) = 1

which contradicts what we started with, i.e. with ν(K) ≤ α < 1, because
ν̃(K) = ν(K) (recall that ν and ν̃ coincide inside B1/2).

3 The Malamud-Pereira theorem

In 2003 an extension of the Gauss-Lucas theorem was found independently by
S. M. Malamud [2] and R. Pereira [3]. To formulate their theorem let us recall
that an (n− 1)× n size A = (aij) matrix is doubly stochastic if

• aij ≥ 0,

• each row-sum equals 1, and

• each column-sum equals (n− 1)/n.

Let pn be a polynomial of degree n, let z1, . . . , zn be its zeros and let
ξ1, . . . , ξn−1 the zeros of p′n. Set

Z =

 z1
...
zn

 Ξ =

 ξ1
...

ξn−1

 .

With these the Malamud-Pereira theorem states that there is a doubly stochastic

matrix A such that Ξ = AZ. An immediate consequence is that if φ : C → R+

is convex (in the classical sense that φ(αz + (1− α)w) ≤ αφ(z) + (1− α)φ(w)
for all z, w and 0 < α < 1), then

1

n− 1

n−1∑
j=1

φ(ξj) ≤
1

n

n∑
k=1

φ(zk). (13)

Now we show that this implies Theorem 1 provided we know that all zeros
of all pn lie in a fixed compact set, say in the disk BR. Indeed, consider a line
L disjoint from K. It determines two half-planes, and let HL be the half-plane
which is disjoint fromK. The claim in the theorem is easily seen to be equivalent
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to saying that there are o(n) zeros of p′n in every such HL. To show that last
claim, by the Gauss-Lucas theorem we may assume that L intersects BR. We
may also assume (apply rotation and translation) that L is the imaginary axis,
and K lies to the left of the line ℜz = −a with some a > 0. Consider the
function φ(z) = max(0,ℜ(z + a)). This is convex, so we may apply (13). Since
φ(z) = 0 on K, and φ(zk) ≤ 2R for all k (we wrote here 2R instead of R to
allow for the just made translation and rotation), the right-hand side in (13)
is at most 2Rmn/n, where mn is the number of zeros of pn lying outside K.
Hence, by assumption, the right-hand side tends to 0, and therefore so does the
left-hand side. However, on the left of (13) we have φ(ξj) ≥ a for every ξj lying
in the right-half plane, which is HL, and we obtain that there can be only o(n)
such ξj there.

Despite this simple proof, the Malamud-Pereira theorem does not seem to
imply Theorem 1 in its full generality.
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