Analysis 33, 1-12 (2013) / DOI 10.1524/anly.2013.1135
(© Oldenbourg Wissenschaftsverlag, Miinchen 2013

Uniform spacing of zeros of orthogonal
polynomials for locally doubling measures
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Summary: Recently it has been shown, that if a weight has the doubling property on its support
[—1,1], then the zeros of the associated orthogonal polynomials are uniformly spaced: if 8y, ; and
Bm,j+1 are the places in [0, 7], for which cos 0y, ; and co8 Gy, ;41 is the j-th and the j - 1-th
zero of the m-th orthogonal polynomial, then By, j — g ;41 ~ % In this paper it is shown, that
this result is also true in a local sense: if a weight has the doubling property in an interval of its
support, then uniform spacing of the zeros is true inside that interval. The result contains as special
cases some theorems of Last and Simon on local zero spacing of orthogonal polynomials,

1 Results

Let w be a measure with compact support on the real line. The m-th associated orthonor-
mal polynomial of degree m is denoted by puw = pm (i, x). For a long while it has been
well known that its zeros are distinct, single, and lie in the convex hull of the support. In
the literature a lot of articles have dealt with the zeros of orthogonal polynomials and their
asymptotic distribution, see e.g. [10, Chapter V1], [2, Chapter 5], [1, Chapter 2], [7] or 8,
Chapters 1, 8]. For establishing the distribution of the zeros relatively weak assumptions
are needed, see e.g. [9, Chapter 2], but finer questions like the spacing between neigh-
bouring zeros need stronger conditions. A relatively mild property, namely the doubling
property will be used in this work. The measure y is called doubling on an interval |, b]
if for some constant L we have 1 {27) < Lu(I') for all intervals 27 € [a, b], where 21 is
the interval twice the length of I and with midpoint at the midpoint of 7. When using this
terminology we tacitly will always assume that 4 is not identically zero on [z, b], and then
the doubling property easily implies that [, b] must be part of the support of .. Recently
(. Mastroianni and V. Totik [5] proved that if the support of 4 is the interval [—1, 1] and
14 has the doubling property on it, then the zeros array themselves faiely regularly, namely
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if Xy, ; = COSp, ; and X, j 41 = COS B, ;41 are adjacent zeros of the m-th orthonormal
polynomial then

2 2
1 L=xim 1 - <4 l=xpn 1
Al Tm TR | S e SA T T
or, in another form,
11 1

= O, —Om, 11 SAH

with some constant A depending only on the doubling constant of j. Observe that this
implies that the distance between neighbouring zeros lying in a fixed closed subinterval
of (—1,1) is ~ L@

In this paper we prove that this regular spacing of the zeros holds inside every interval
on which the measure is doubling, i.e. the aforementioned uniform spacing is actually
a consequence of a local property of the measure.

Theorem 1.1 Let (i be a measure with compact support on the real line and with the
doubling property on [a,b). Then for every 8 > O there exists a constant A independent
of m such that

1 A .
Xn:fxm’j-u—xm’jfag 7 =kk+1,...,1—1, (1.1)

Where Xm ko < Xm 1 < .o < X 1 are the zeros of py inla +4,b —8].

Remark 1.2 The assumplions of the theorem imply that for large m there are zeros in
[@ 8,5 — 8], and their number actvally tends to infinity with m. In fact, because of the
compactness of the support the moment problem is determinate {2, I1.2. Theorem 2.2],
so if x  supp(u) and & > 0 then there is a zero of p, in (x —€,x +€) for large n [8, 1.2
11, Fact 1], which shows that the roots eventually fill [ + 8,5 — 8] for every 6 > 0.

Remark 1.3 Tt is clearly enough to prove the existence of a threshold nzy such that for
m = my the theorem holds with a constant A’

Remark 1.4 Monitoring the constants in the proof of this theorem and Lemma 2.1 it

’ dlam(supp(.m)) (R
follows that A’ depends only on §, and w(a bl

This theorem is about the zeros lying inside [a + 8, b — §], i.e. about the zeros that do
not lie too close to a or b. For zeros lying close to a or b the result may not be true, as is

' A ~ B means that the ratio of the two sides is bounded from below and from above by two positive
constants.
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shown by any Jacobi weight and [a, b] = [—1, 1] (Facobi weights are doubling, but around
=1 their zero spacing is ~ 1/m?).
The claim in the theorem can be formulated in the following way:

1
0 < — < Hminfm Xy, ;41— Xm,;) < HMSUPHL(Xp, j+1— X, ;) S A <00, (1.2)
A m—+o0 M—00

From this form it immediately follows that the result above generalizes Y. Last and B.
Simon’s following two theorems:

Corollary 1.5 (Theorem 8.5 in [4]) Suppose dp is purely absolutely continuous in
a neighbourhood of the point Ey, and for some g > 0,

0 <liminf—"%_ < limsup—2%_ < o0, (1.3)
x=Eg |[x— Lol T gy |x— Eol?

Then

limsupm|x$P (o) —x$ TV (Ee)| < oo,
m—>00

where x,g,l )(Eo) is the smallest zero and x,gfl)(Eg) is the largest zevo of pm for which
%o (o) = Fo < 343 (o).

Corollary 1.6 (Theorem 9.3 in [4]) Suppose dpp = wdx + diis, where, for the singular
part, ts{xo — 8, x0 + 8]) = 0 and, for the absolutely continuous part,

0< inf wlx)=< sup wx)<oce. (1.4
|p--o|=6 |y—xol=<d

Then for any € < §,

inf  lminfm|xP () — xSV () > 0.

|[y—xg|<e m—>00

We should only remark that the assumptions (1.3) and (1.4} imply the doubling
property, so Theorem 1.1 can be applied.

Before starting the next theorem we recall the definition of the m-th Christotfel
function and Cotes numbers associated with the measure (i

N in 2
n® = min [ P,

degp<m

where the infimum is taken for all polynomials of degree at most m taking the value 1 at
&, and

}Lm,k = Am (xm,k)

respectively.
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Theorem 1.7 If 1 is a measure with compact support on the real line and with the
doubling properiy on [a, b, then for every 8 > 0 there exisis a constant B = By such that

1 < Am < B, (1.5)
B 7 Amii1

whenever X and X i1 € [@ + 8,0 —8].

Theorem 1.1 and Theorem 1.7 together have a converse.

Theorem L8 Let it be a measure with compact support, If (1.1) and (1.5) hold or every
interval [a + 8,6 — 8] C supp(w), 8 > O (with some A and B in (1.1) and (1.5) that may
depend on 8), then [ has the doubling property on every such interval.

2 Preliminaries

For the upper estimate in Theotrem 1.1 we need the following lemma:

Lemma 2.1 Let p be a measure with compact support on the real line and with the
doubling property on [a,b). Then for every 8 > 0 there is a constant D such that for

m>% 1 1 1 f 1 17y
BM([?‘"’;G&er}) <am®) < D!L([E"—;,é"ﬁ‘a})s

whenever £ € la+§,b—38).

Before proving this we cite two lemmas, that we shall use in this article.

Lemma 2.2 (Example 2 in [3]) There exist positive constants C, ¢ such that for every m
there are polynomials Py, of degree at most m satisfying '

Pu(0) =1,  |Pu(x)| =Ce™s¥m x c[-2,2]. @.1)

Lemma 2.3 (Lemma 2.1 in [6])} The following conditions for a measure [ are equiva-
lent:

(i) 1t has the doubling property on [a,b]: there is an L = L ([a,b]) such that (£1(21) <
Lu(I) for all intervals 21 C [a,b].

3
(ii) There is an s and a K such thar u(I) < K (%) ((J) for all intervals J C I C
[a,b].

(iii) There is an v > 0 and a K such that p{J) = K(]‘}r—]‘)r,u(f) Jor all intervals
JclIClab]
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{iv) Thereisan s > O and a K such that

) = K(|1| +1J||-;|dist{1,f}) )

Jor arbitrary intervals I and J C [a,b].

Now we are ready to verify Lemma 2.1. First we deal with the right-hand side. The
idea is to find a svitable polynomial with which A,, can be cstimated from above. This
polynomial will be fast decreasing on the support.of the measure, so its integral is small
outside of the doubling interval (‘outside integral”), while inside of that interval we can
estimate its integral by applying the doubling property (‘inside integral’),

As for the left-hand side we show it comes from the case when a measure has the
doubling property on all its support.

Proof of Lemma 2.1: We may assume that the support of p is a subset of [—1,1].
According to Lemina 2.2, there is a Py, polynomial of degree 7 with the properties in
(2.1).

Using this we get for A, and for £ € [a + 8,6 —8]:

mn® = min [ a0 = [ PRG-Bdut)

deg p<m

[ Cre=2eVm D gy (x)

[A

E+L
— fé Cze—2c-./m x-—g d,u,(x)

—1
-4 b4 =
+f Cze_ZCmdM(x)+f Czleﬁzc mleéldu’(x)
a =

3
+5

at+d 1
+- f C2em2evmlx—l g, (x) + f Scze—zwmlx-ﬂd@(x), (2.2)

~1 b4

provided m > %
First we estimate the fourth and the fifth integrals (‘outside integrals’) of the right-hand
side:

. 1
[ Cze—ZcmdM(x) Sf scze—zc ml(bﬁg)*ﬂd,u,(x)
b 2
1
_ Cze—ﬂ\/ml{b——%)_fﬁ s di(x)
-z
Cze-—ZC m|(bﬁ%)ﬁ(b75)‘ M([_l’ 1])

= 22V E u(1,1)). @3)

IA
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Using the doubling property (Lemma 2.3 (i1))

t, ] 6= n b+ a11Y
u([&—;,sm]) > K( 2 ) e

2 . 1
K(m) i) — @4

follows. Since for sufficiently large m
5
2 —2(.\/)71—2 < 2 i_
cre et < K (52 ) wladd
holds, by (2.3) and (2.4) the inequality

1
f Ce 2Vl tlap(x) < ([é N lD 2.5
b-£ m m

&

is also true for large m. The estimate of the fourth integral is similar.
Now we consider the sccond and the third integrals (‘inside integrals”) of the right-
hand side of (2.2). Denote by T the integer, for which £ + % < bh— % <& %. Then

» 44!
L+1 CZB-ZC\/mlJC*El dM(JC) < f l C2e—26njm\x—-§[du(x)

~20V‘m($+-,%—§-’) d.u

"

<Zf

— Z C2 726\/“(']‘[1,
el S

€+—+—

Again using the doubling property with some K and s {Lemma 2.3 (iv)) we have

B S L ()

< K(i+ 1)m([s,s+ iD .
T &:_}_L‘tl_

Zf 'm C2e—20ﬁdM§Kzs (Ziscze—ZCﬁ)M([%-’g_l_%jl)’ (26)

=1Vt i=1

From this we obtain that

CONR. <00

because 2i =i+ 1.
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Since the estimate of the second integral follows the same way, we do not detail it.
Collecting (2.3), (2.5) and (2.6) we get the required inequality of the right-hand side
in Lemma 2.1,

In order to prove the lower estimate we recall that if g is a doubling measure on
[1,1], then for the Christoffel function there is a constant C independent of /m and x
such that

O

holds (see [6, (7.14)]). It is clear in the light of the doubling property that when we are
of positive distance from =1 and #, p > 0, then the last incquality is equivalent to the
following one (maybe with a different C that may depend on 7 and p):

é—u([x~~:—t,x+%])ilm(x); x € [-1+p1-gl.

Simple linear transformation gives a similar inequality when g is supported on an interval
[a,/] and is doubling there. Finally, if [@, 5] is a proper subset of the support of 1 and 4
is doubling there, then the lemma follows from the inequality A (x, (£} = Am (X, [L][a,51)s
if we apply the just mentioned inequality to the restricted measure ji|[q,5). O

3 Proofs

After these preparations the proof of Theorem 1.1, Theorem 1.7 and Theorem 1.8 is
similar to those found in [5].

Proof of Theorem 1.1: First we deal with the upper estimate in {1.1). It can be assumed
that supp(u) C [-1,1]. Fixm = % and let Xj = X, 7, Xj41 = Xm,j+1 € [a -+ 8,0 —8]. We
apply the Markoff inequality [2, L5. (5.4)], that claims

3 hn < (00, 1)) < (=00, XD < Y Am,j- 3.1)

XX X; =X

From this and Lemma 2.1 we get

[A

Am,j+ Am, 41

1
D (M (I:xj - %,xj + ;D +u ([J&m - ;;—,xjﬂ + %D) (3.2)

KExjp1—x = % then there is nothing to prove, so we may assume xj41 —X; > %
In this case '

wllxi xje1)

A

+1 - i
xi+— <Xy ——.
I i+l m
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Setting
I ! X1+ L
= | Xy |
J m j+1 m
1 1
Ey = — —
1 [xj " xj+m}
and

1 1
By = [xj+1 —— Xjp1 T w] .
m m
by the doubling property (Lemma 2.3 (i)), we have

pll)y = Lp(lxeg, x541]) < DL(E ) + 1 £2)),

wherc the last inequality follows from (3.2).
Again using the doubling property (Lemma 2.3 (iii})
| E1]

(k) = K(W) {7y,

w(E2) = K(%) ey

follows. Consequently, by simplifying with & (f), the preceding inequalities imply

K K .
1= DLlIl" (E]"+E2]") = 2DLW(|E1£+|E2|)’ :

After a rearranging

1
1 42D LK)7
41— %5 < |I| < @DLE)F(|Ey| + | E2]) < %

is obtained, which was to be demonstrated.

Now, let us consider the inequality on the lefi-hand side of (1.1). The basis of the
proof is the Remez inequality [6, (7.16)]: If 1 is a doubling measure on {—1, 1], then for
every A > 0 there is a constant € = Cy such that for | arccos(E)| < %

1
f p2dun=C f P2 du, (3.3)
1 LI\E

where E consists of finitely many intervals. This implies by simple linear transformation
that if p is doubling on [a,b], § > 0, I C |a+ 8,6 —4§] is an interval of length < ;f; and
¢m 18 a polynomial of degree at most m, then

| dausc[ g
[a,b] [a b\

where C depends only on § and the doubling constant of & on [a, b].
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From here the proof is a literal repeat of the proof of Theorem 1 in {5]. In fact,
we may assume that x; 41 —x; = % where 0 < § < 1/2, otherwise we are done. Let

Gm—p = (T—“i%f) Since deg(gm_2) < m —2 we have

i
0= [ pmamadin= [ dha0—) %) du)
R —1
xjf1
= [ st )
+f 722 () (5 —x70) (=37 dpu(x)
[ RN EFIET RN
x4
> [ G - )
+f 02 () — 27 1) (= 27) AR ) (3.4)
CRINEFETERY

considering that (x — x;41){x — x;) > 0 is positive outside [x;, %;41].
Iet us deal with the last two integrals separately. As x;1) —x; < % we get for the
first one:

Xj41
[ a0 s =) duc)
Xj

Xj+1 2 52 ik 2
=—f qm_z(x)ﬂx—xj'+1||x—xfld;u(X)Zjn—zf Gm—n it
X X

7 /

In the case of the second integral we use the assumption X, 11— X; = % < ﬁ and the
Remez inequality:

f g2 5 () — %) (x — %) dje{x)
eI\ [x %5 41

)
la, b1\ ;= & ot + 3]
),

z 2
(2m)? Jia,o)\[x;— Lxy+ 1]

1 ij-u 2 4
z = G2 dit.
acm? [, m-2

T (X)X =2 +1)(x — x;) dju(x)

1 b
G2l > s fa Gm—p A

Using the last inequalities we continue (3.4):

52 Xjd1 5 q 1 Xj41 2 i
> ——— PO
ool mz xj Qm.—z ﬂ‘+ 4Cm2 LJ qm—-z .u'

1 9 1 i1 2
(ﬁ‘s )(ﬁ)fx. Gm—2 -
f

It
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This is possible only if s — & <0, that is if § > ﬁ This means that, necessarily,

Xjp1—x; > ﬁ %, so the lower estimate also holds, [

Proof of Theorem 1.7: The theorem is a simple consequence of Theorem 1.1, Lemma 2.1
and (he doubling property (I.emma 2.3 (i)) on [a, b].
Theorem 1.1 shows that

A A 1 1
X1 — X1+ — | D | X ——xp +—
m " m m

holds for A := A+ 1. Now by Lemma 2.1 and the doubling property we get the upper
estimate:

g D ([xk+1 - é,xkﬂ + %D

< < p? 7,082 4] @
Amgt1 [ — Lo + 5 ])

is similar, O

The proof of the lower estimate for the quotient

m. ik

A
lm k41

Proof of Theorem 1.8: As we mentioned above the proof follows the proof of Theorem
3 in [5], however it is. technically somewhat simpler since we work far from the endpoints
of [a,b].

Fix §. Applying Remark 1.2 to [a' + %,b— %] it follows that there is an /#; such
that whenever s > 1, then there exists a zero of the m-th orthonormal polynomial on
[a + %, a+ 8] and on [b —8,b— %], respectively.

. We have lo prove that there is a constant L such that for every interval I for which
2I Cla+6,b6—6]

B0 < (D) |
holds. It can be easily seen that it is enough to prove this for intervals with length at most
%, where A is the constant in (1.1).

Let us choose m such that
44 84
m m

so, if T denotes the center of /, by (1.1) and the Remark 1.2, there is a £ such that
X e < T = Xy k41, MOTEOVET

[Xm,—1:Xm 1] C 1. (3.6)

On the other hand since 27 < [a + 8,5 — 8], there is a largest (smallest) zero to the
left (right) of 2/ by Remark 1.2, that is there are x,, 5, and X, ;45 € [a + %, bh— %] for
which

[xm,.’cfr+1 ;xm,kJrsfl] c2c [xm,kﬁr;xm,k+s]- (3.7

@ [x] denotes the least integer not less than x.
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Note that (3.6) and (3.7) imply a lower and an upper estimate for the measure of /

H : s B k—r X ks ])
and 27 respectively. So if the quotient P (A wRY)

constant independent of I, we are done,
From (3.6) and the Markoff inequality (see (3.1)) we immediately obtain:

can be estimated above by a fix

w(l) = -#([xm,kmlaxm,fc+l]) = A'm,k- 3.3)

Let us try to estimate the measure of (X k—r, Xm k+s] BY Am,k to0. Again using the
MarkofT inequality (see ¢3.1)),{1.1) and (1.5) we get

5 L
1o gor Friees) < Y Mangers <hma ) BY, 39

j=—r j=—r

where B = B; is the constant in {1.5) for the interval [a + %,b — %] According to (1.1),

2
the left side of (3.5) and (3.7)
1 , I
21 2 Xk ys1— Xmge = (5= I)ZE > (s— 1)@

from which we gain an upper estimate for s and, in a similar way, for r, namely max(s, r) <
1642 + 1. Putting this fact together with (3.9) we obtain

2
p2I) <t mr s X sl 2B 0 (3.10)
Comparing (3.8) and (3.10) we can infer the doubling property with the doubling
constant I = 2B164°+2_and this is already independent of 7. |
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