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Abstract. Matching two-sided estimates are given for Christoffel functions
associated with a doubling measure ν over a quasismooth curve or arc. The size
of the the n-th Christoffel function at a point z is given by the ν-measure of the
largest disk about z which lies within the 1/n-level line of the Green’s function.
The main theorem contains as special case all previously known weak asymptotics
for Christoffel functions, and it also gives their size in explicit form about smooth
corners. Applications are given for estimating the size of orthonormal polynomials
and for Nikolskii-type inequalities.

1. Introduction

Let ν be a measure with support in the complex plane. The n-th
Christoffel function of ν with parameter p is defined as

λn(ν, p, z) := inf
pn ∈Pn

pn(z)=1

∫ ∣∣pn(t)
∣∣p

dν(t),

where n is a non-negative integer, p ∈ [1, ∞) and Pn is the set of all polyno-
mials of degree at most n.

The Christoffel function plays an important role in the theory of orthog-
onal polynomials. In the classical case p = 2 it is well known that

λn(ν, 2, z) =
1∑n

k=0

∣∣πk(z)
∣∣ 2 ,
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where πk is the k-th orthonormal polynomial with respect to ν. This shows
that we can estimate the values of orthonormal polynomials at a point with
the help of the Christoffel functions.

When the measure is concentrated on the real line, the Markov–Stieltjes
inequalities show that the distribution of the measure ν can be well esti-
mated via its Christoffel functions [6, § I.5]. This made it possible to use
Christoffel functions for estimating the distance between two adjacent ze-
ros of orthogonal polynomials [7,9,13,15,17]. Mastroianni and Totik gave a
general estimate for Christoffel functions expanding the classical unweighted
case. They worked with doubling measures with support [−1, 1]: the mea-
sure ν with support [−1,1] has the doubling property if there is a constant cν

such that for every x ∈ [−1, 1] and δ > 0

cν ν
(
[x − δ, x + δ]

)
� ν

(
[x − 2δ, x + 2δ]

)

holds.

Theorem 1.1 ([8, (7.14)]). Let ν be a doubling measure on [−1,1]. Then
for any p ∈ [0, ∞) there is a constant c depending only on the doubling con-
stant cν and p such that for all x ∈ [−1, 1] and n ∈ N

1
c
ν(

[
x − Δn(x), x + Δn(x)

]
) � λn(ν, p, x) � c ν(

[
x − Δn(x), x + Δn(x)

]
),

(1.1)

where Δn(x) =
√

1−x2

n + 1
n2 .

When the doubling measure is defined on the unit circle T, then a similar
result holds, but then

[
x − Δn(x), x+Δn(x)

]
must be replaced by the arc of

length 1/n about the point x ∈ T. When ν is a nice measure on a C2-smooth
Jordan curve (homeomorphic image of the unit circle), then fine asymptotics
for Christoffel functions were proven in [14]. No general estimate is known
for less smooth curves let alone for curves with corners. Also, the case when
the measure is lying on a Jordan arc (homeomorphic image of [0, 1]) is open.

The main purpose of this paper is to show that (1.1) is valid if [−1, 1] is
replaced by a quasismooth curve or arc in the complex plane, or by a finite
union of them. The case when the curve or arc has Dini-smooth corners will
be a special case. Applications will be given for estimating orthogonal poly-
nomials. Other applications will be provided for Nikolskii-type inequalities
in between different Lp(ν)-norms of polynomials.

Our method relies on V. Andriewskii’s work [1–3] who extended some
results of [8] to quasismooth curves or arcs.
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2. Main result

In order to claim the addressed extension we shortly review the notions
and notations we are going to use. First, recall that L ⊂ C is a Jordan
curve (arc) if it is a homeomorphic image of the unit circle (interval). We
shall only consider rectifiable curves (arcs). Denote by L(z1, z2) the (shorter)
subarc of L that joins z1 ∈ L and z2 ∈ L, and by

∣∣L(z1, z2)
∣∣ the arc length

of L(z1, z2).

Definition 2.1. The Jordan curve or arc L is quasismooth (in the sense
of Lavrentiev), if there is a (Lavrentiev) constant ΛL such that

∣∣L(z1, z2)
∣∣ � ΛL|z1 − z2|

holds for arbitrary z1, z2 ∈ L.

In the treatment of L the Green’s function gets an important role.
Let Ω be the exterior of L (the connected component of C∞ \ L contain-
ing ∞) and let Φ be the conformal mapping of Ω onto the exterior of the
unit disk

{
z ∈ C∞ : |z| > 1

}
=: D

∗ with the normalization Φ(∞) = ∞ and
Φ′(∞) := limz→∞

Φ(z)
z > 0. The normalization guarantees that there is only

one such map [12, Ch. 4.4] (Fig. 2). The Green’s function of Ω with pole at
∞ coincides then with log |Φ|.

Let Ω̃ denote the so-called Charatheodory compactification [10, Ch. 4.4]
of Ω that is the union of Ω and the set of all prime ends belonging to null
chains of Ω. Then Φ can be extended to a homeomorphism between Ω̃ and
the closure of the exterior of the unit disk

{
z ∈ C∞ : |z| � 1

}
[10, Theorem

2.15].
For δ > 0 let

(2.1) Lδ := {ζ ∈ Ω :
∣∣Φ(ζ)

∣∣ = 1 + δ}
be the (1 + δ)-level line of Φ and

(2.2) ρδ(z) := d(Lδ, z) = inf
ζ∈Lδ

|z − ζ|

the distance from z to this level line.
The notion of the doubling property for a measure with support on a

Jordan curve or arc is a natural extension of the interval-case. Let

B(z, δ) =
{
w | |w − z| � δ

}

denote the closed disk of radius δ about the point z.
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Definition 2.2. Let ν be a measure on the complex plane whose sup-
port is a quasismooth curve or arc L. ν is called a doubling measure on L,
if there is a constant cν such that

cν ν
(
B(z, δ)

)
� ν

(
B(z, 2δ)

)

holds for any z ∈ L and δ > 0.

As an example, we show that the arc measure on a quasismooth curve
or arc L is always a doubling measure. Indeed, let ν be that arc measure.
The doubling property follows if we show that δ � ν

(
B(z, δ)

)
� Cδ with

some C independent of z ∈ L and of small δ > 0. Let δ be sufficiently small,
say smaller than |L|/2ΛL. The left-inequality is clear, since L ∩ B(z, δ) con-
tains an arc that connects the center z of B(z, δ) with a boundary point on
B(z, δ). On the other hand, L ∩ B(z, δ) consists of countably many subarcs
of L, the total length of which is at most as large as the length of the arc
L(z1, z2), where z1 and z2 are the first and last points (in some orientation
of L) of contact of L with B(z, δ). Hence, by the quasismoothness of L,

ν
(
B(z, δ)

)
�

∣∣L(z1, z2)
∣∣ � ΛL|z1 − z2| � ΛL2δ.

A similar argument shows that in the previous definition B(z, δ) and
B(z, 2δ) can be replaced by the connected component of L ∩ B(z, δ) and
L ∩ B(z, 2δ) respectively that contains z.

Take a direction of L (say, from ζ1 to ζ2 in the arc-case, if ζ1 and ζ2

denote the two endpoints of L; counterclockwise in the curve-case), and let
δ > 0 be such that supz∈L ρδ(z) < |L|/2. For a z ∈ L let z−δ be the point
followed by z and zδ that follows z such that

∣∣L(z−δ, z)
∣∣ = ρδ(z)/2 and∣∣L(z, zδ)

∣∣ = ρδ(z)/2 respectively. If there is no such point (in the arc case)
then set z−δ := ζ1 and zδ := ζ2 respectively. With these set

(2.3) lδ(z) := L(z−δ, zδ),

and introduce the function

(2.4) vδ(z) := ν
(
lδ(z)

)
.

On quasismooth curves and arcs we introduce a further parameter in the
definition of the Christoffel function:

Definition 2.3. Let L be a quasismooth curve or arc, ν a doubling
measure on L, p ∈ [1, ∞) and t ∈ R. Then the function

(2.5) λn(ν, p, t, z) := inf
pn ∈Pn

pn(z)=1

∫
ρ 1

n
(ζ)t∣∣pn(ζ)

∣∣ p
dν(ζ)

is called the n-th Christoffel function associated to ν with parameter (p, t).
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Note that setting t = 0 we obtain the classical Lp Christoffel function
of ν.

Now we are ready to extend [8, (7.14)].

Theorem 2.4. Let L be a quasismooth curve or arc and ν a doubling
measure on L. If p ∈ [1, ∞), t ∈ R then there is a constant c = c(L, cν , p, t)
such that

(2.6)
1
c

ρ 1
n
(z)tv 1

n
(z) � λn(ν, p, t, z) � c ρ 1

n
(z)tv 1

n
(z)

is true for any z ∈ L and n ∈ N.

Corollary 2.5. The same result holds if L is a finite union of qua-
sismooth curves or arcs lying exterior to one another, and ν is a doubling
measure on L remarking that ρ 1

n
(z) with respect to L means the function that

is equal to ρ 1
n
(z) with respect to the connected component of L containing z.

The case t = 0 may be the most interesting one. It shows that the mag-
nitude of the n-th Christoffel function at a point z ∈ L is about as large as
the ν-measure of l 1

n
(z).

3. Corollaries

3.1. Estimate for orthonormal polynomials. Using the fact that

(3.1) λn(ν, 2, 0, z) =
1∑n

k=0

∣∣πk(z)
∣∣ 2 ,

where πk is the k-th orthonormal polynomial associated to ν (see e.g. [16,
Theorem 1.4]) we immediately obtain the following corollaries.

Corollary 3.1. Let ν be a doubling measure on a quasismooth curve
or arc L. Then

(3.2)
∣∣πn(z)

∣∣ �
√

c√
v 1

n
(z)

holds for every z ∈ L.

Corollary 3.2. Let ν be a doubling measure on a quasismooth curve
or arc L. Then

(3.3) max
0�k�n

∣∣πk(z)
∣∣ � 1

√
c

√
n
√

v 1
n
(z)

.
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Moreover, if we know that n · v 1
n
(z) → 0 then here we can delete “max”:

Corollary 3.3. Let ν be a doubling measure on a quasismooth curve or
arc L. Then for any z ∈ L for which n · v 1

n
(z) → 0 holds there is an infinite

subset M = M(z) of N such that for all n ∈ M

(3.4)
∣∣πn(z)

∣∣ � 1√
n

1√
v 1

n
(z)

.

There is a discrepancy of order
√

n in the estimates in the two Corol-
laries 3.1 and 3.2, but that is natural. Consider for example, the classical
Jacobi polynomials at some point z ∈ (−1, 1). Then

∣∣πk(z)
∣∣ � C, while

nv1/n(z) ∼ 1, so (3.3) gives then the correct order (and this example also ex-
plains why one needs the “max” in (3.3), since, in general, πk(z) can tend to
zero along a subsequence of the k’s). On the other hand, there are weights
w � c > 0 on [−1, 1] such that if dν(x) = w(x) dx, then πn(0)/n1/2−ε → ∞
along some subsequence of the n’s for all ε > 0, see [11]. Although it is not
clear if this ν is doubling, this example shows that, in general, nothing much
better than (3.2) can be expected (note that in this case v1/n(z) � c/n).

Without the assumption n · v1/n(z) → 0 we can only prove a weaker corol-
lary.

Corollary 3.4. Let ν be a doubling measure on a quasismooth curve or
arc L. Then for any z ∈ L and ε > 0 there is an infinite subset M = M(z, ε)
of N such that for all n ∈ M

∣∣πn(z)
∣∣ � 1

n1/2+ε

1√
v 1

n
(z)

.

3.2. Christoffel functions on Dini-smooth curves and arcs. In
the subsequent two corollaries we have some further assumption about the
smoothness of L. We suppose that the considered curve or arc is Dini-
smooth or has Dini-smooth corner at some point. Then we have an explicit
form for the magnitude of ρ 1

n
(z).

Definition 3.5. A Jordan curve or arc L is Dini-smooth, if it has a
parametrization γ(t) with non-zero and Dini-continuous derivative, that is

∫ π

0

ω(t)
t

dt < ∞
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holds for the modulus of continuity

ω(δ) := sup
t1,t2∈[0,2π]

|t1−t2|<δ

∣∣γ′(t1) − γ′(t2)
∣∣

of the derivative γ′.

We have already mentioned that no estimate is known for Christoffel
functions if the underlying curve has a corner; for example, the size of the
Christoffel functions is unknown for the arc measure on the boundary of a
square around the corners. We are going to give the precise order at Dini-
smooth corners. We say that L has a corner at γ(t0) =: ζ if the halftangents
exist at γ(t0). If we speak of a corner with angle βπ then we always con-
sider the angular domain (determined by the halftangents) which falls in the
exterior of the curve in the curve-case and we always consider the angular
domain with greater angle in the arc-case. So in the curve-case the mag-
nitude of the angle falls between 0 and 2π while in the arc-case it ranges
from π to 2π (see Fig. 1).

Fig. 1: Corner at ζ with angle βπ. In the curve-case we always consider the angular do-
main lying the exterior of the curve, while in the arc-case we always consider the angular

domain to which the grater angle belongs

The corner at γ(t0) is Dini-smooth if there are two subarcs of L ending
and lying on the opposite sides of γ(t0) which are Dini-smooth, and, simi-
larly, the endpoint ζi is Dini-smooth if it is also an endpoint of a Dini-smooth
subarc of L. Note that if L is Dini-smooth then at any point (except for the
endpoints) there is a Dini-smooth straight angle, so the following statements
include the corner-free case, as well.

We introduce the following function at a Dini-smooth corner ζ with angle
β which replaces ρ 1

n
(z) in Theorem 2.4. With lδ from (2.3) we set

Δn(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
nβ

if z ∈ l 1
n
(ζ)

|z − ζ|1− 1
β

n
if z ∈ L \ l 1

n
(ζ).
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Remark 3.A. We can also define Δn(z) at a Dini-smooth endpoint,
say, ζ1. In this case β := 2 as if there were a corner at ζ1 with angle 2π.

Lemma 3.6. Let L be a quasismooth curve or arc which has a Dini-
smooth corner/endpoint at ζ with angle βπ (0 < β < 2 in the curve-case,
1 � β < 2 in the arc-case and β := 2 if ζ is an endpoint). Then there are
an ε = ε(L, ζ) > 0 and a constant c7 = c7(L, ζ, ε, β) such that for all points
z ∈ L with |z − ζ| � ε the inequalities

1
c7

Δn(z) � ρ 1
n
(z) � c7Δn(z)

hold.

Combining this lemma with Theorem 2.4 we immediately obtain

Corollary 3.7. Let L be a quasismooth curve or arc which has a Dini-
smooth corner/endpoint at ζ with angle βπ (0 < β < 2 in the curve-case,
1 � β < 2 in the arc-case and β := 2 if ζ is an endpoint). Then there are an
ε = ε(L, ζ) > 0 and a constant c = c(L, cν , p, t, ζ, ε, β) such that for all points
z ∈ L with |z − ζ| � ε the inequalities

1
c

Δn(z)tv 1
n
(z) � λn(ν, p, t, z) � cΔn(z)tv 1

n
(z)

hold.

In particular, if the curve or arc is piecewise Dini-smooth, then the pre-
vious corollaries are globally valid. We first give an appropriate form for
Δn(z). Let ζ1, . . . , ζn be the corners of L with angles different from π where
in the arc-case ζ1, ζn continue denoting the endpoints of L. Let β1π, . . . , βnπ
be the corresponding angles (0 < βi < 2 in the curve-case; βi := 2, if i = 1
or n and 1 < βi < 2, if 1 < i < n in the arc-case). With

Δn(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
nβi

if z ∈ l 1
n
(ζi) (i = 1, 2, . . . , n)

∏n
i=1 |z − ζi|1− 1

βi

n
if z ∈ L \ ( ∪n

i=1 l 1
n
(ζi))

we get the global variant of Lemma 3.6:

Lemma 3.8. If L is a piecewise Dini-smooth curve or arc, then there
exists a constant c8 = c8(L) such that

1
c8

Δn(z) � ρ 1
n
(z) � c8Δn(z)

for all z ∈ L.
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Corollary 3.9. If L is a piecewise Dini-smooth curve or arc, then
there exists a constant c = c(L, cν , p, t) such that

1
c
Δn(z)tv 1

n
(z) � λn(ν, p, t, z) � cΔn(z)tv 1

n
(z)

holds for all z ∈ L.

Theorem 1.1 corresponds to the choice L = [−1, 1], p = 2 and t = 0.

3.3. Nikolskii-type inequalities. If 1 � p < q, then, by Hölder’s in-
equality, we can estimate the Lp norm by Lq norm from above. In the
opposite direction the so-called Nikolskii-type inequalities are used for poly-
nomials. With the help of Theorem 2.4 we can create such inequalities for
doubling measures supported on a quasismooth curve or arc. So these re-
sults partly overlap with [2, Theorem 6] in which Andrievskii proved an
unweighted Nikolskii-type inequality over rectifiable curves in another way.

Introduce the following notations:

Mn := sup
ζ∈L

1
v 1

n
(ζ)

,

and for a function f on L let

‖f ‖ ∞ := sup
ζ∈L

∣∣f(ζ)
∣∣ , ‖f ‖ν,p :=

( ∫
L

∣∣f(ζ)
∣∣p

dν(ζ)
) 1

p

.

With these we have the following Nikolskii-type inequalities.

Corollary 3.10. Let L be a quasismooth curve or arc and ν a doubling
measure on L. If 1 � p < q, then there is a constant c = c(p, q) independent
of n such that

(3.5) ‖pn‖∞ � cM
1
p
n ‖pn‖ν,p,

as well as

(3.6) ‖pn‖ν,q � M
1
p

− 1
q

n ‖pn‖ν,p

for every polynomial pn of degree at most n.

Remark 3.B. By Lemma 4.10 and (4.6′) below, the magnitude of Mn is
at most n2α4 (with the constant α4 in (4.6′)) which is n2 in the unweighted
case. Moreover, if we know that L is a piecewise Dini-smooth curve with an-
gles β1π, . . . , βNπ and β := max (β1, . . . , βN , 1), then this magnitude is nβα4 .
So our corollary includes the classical results for the unit circle as well as
for [−1, 1] (up to constants).
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4. Proofs

Before the proofs, we list some properties of ρδ (see (2.2)) which are
simple consequences of [4, Theorem 4.1 (p. 97) and Lemma 5.3 (p. 147)],
then mention two straightforward implications of the doubling property and
finally cite some results of Andrievskii [1,2] necessary for the proofs.

Recall that Φ is the conformal map taking the unbounded component Ω
of C \ L onto the outside D

∗ of the unit circle. If z ∈ L then let z̃δ denote
Φ−1

(
(1+ δ)Φ(z)

)
in the curve-case. In the arc-case we have to be a bit more

elaborate: Let ζ1 and ζ2 be the two endpoints of L. Their images under Φ
are eiθ1 and eiθ2 respectively for some appropriate 0 � θ1 < θ2 < θ1 + 2π.
Every other point z of L is the impression of two prime ends Z1 and Z2

of Ω̃. We let

Δ1 := {z ∈ D
∗ : θ1 < arg z < θ2}, Δ2 := D

∗ \ Δ̄1,

Ω̃j := Φ−1(Δ̄j), Lj
δ := Lδ ∩ Ω̃j , ρj

δ(z) := d(z, Lj
δ).

Then set z̃j
δ := Φ−1

(
(1 + δ)Φ(Zj)

)
and

z̃δ :=

{
z̃1
δ if ρ1

δ(z) � ρ2
δ(z)

z̃2
δ if ρ2

δ(z) < ρ1
δ(z)

(see Fig. 2).

Lemma 4.1 ([1, (3.1), (3.2), (3.4), (3.5)], [2, (3.1),(3.3),(3.4),(3.5)]). Let
L be a quasismooth curve or arc, z, z1, z2 ∈ L. Then there are constants
c1 = c1(L), c2 = c2(L), c3 = c3(L), c4 = c4(L), α1 = α1(L), α2 = α2(L) such
that for any δ > 0 the following relations hold:

(4.1)
1
c1

|z − z̃δ | � ρδ(z) � c1|z − z̃δ |;

if |z1 − z2| � ρδ(z1), then

(4.2)
1
c2

ρδ(z1) � ρδ(z2) � c2ρδ(z1);

if |z1 − z2| > ρδ(z1), then

(4.3)
ρδ(z2)

|z1 − z2| � c3

(
ρδ(z1)

|z1 − z2|

)α1

;

and for 0 < δ1 < δ2 � 1

(4.4)
1
c4

(
δ2

δ1

) 1
α2 � ρδ2(z)

ρδ1(z)
� c4

(
δ2

δ1

)α2

.
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Fig. 2: In the arc-case every point of L except the two endpoints is the impression of two
prime ends, e.g. z is the impression of both Z1 and Z2. Their images lie on the distinct
subarcs of the unit circle with endpoints eiθ1 and eiθ2 which are the images of the endpoints
of L. eiθ1 , the origin and eiθ2 determine two angular domains. Their parts lying outside of
the unit disk are denoted by Δ1 and Δ2, and we set Ω1 := Φ−1(Δ1) and Ω2 := Φ−1(Δ2).
In the curve-case the notation is similar but it becomes simpler, because every point of L

is an impression of precisely one prime end

We emphasize that the constants are independent of δ, z and ζ.
Recall now the definition of vδ from (2.4), for which we claim

Lemma 4.2 ([1, Lemma 4], [2, (4.2)], cf. [8, Lemma 2.1 (vi), (vii), (viii)]).
If ν is a doubling measure on a quasismooth curve or arc L then there are
constants c5 = c5(L, cν) and α3 = α3(L, cν) such that for 0 < δ < 1

(4.5) vδ(z1) � c5

(
1 +

|z1 − z2|
ρδ(z2)

)α3

vδ(z2)

Acta Mathematica Hungarica



T. VARGA

for any point pair z1, z2 ∈ L. Furthermore, with some c6 = c6(L, cν) and
α4 = α4(L, cν)

(4.6)
1
c6

(
δ2

δ1

) 1
α4 � vδ2(z)

vδ1(z)
� c6

(
δ2

δ1

)α4

for every z ∈ L and 0 < δ1 < δ2 < 1. Finally, if J is a subarc of L and E
is a subarc of J , then

(4.6′)
1
c6

( |J |
|E|

) 1
α4 � ν(J)

ν(E)
� c6

( |J |
|E|

)α4

.

Noting that the roles of z1 and z2 are symmetric, (4.5) combined with
(4.2) gives

• if |z1 − z2| � ρδ(z1) then

(4.5a)
1

c52α3
vδ(z2) � vδ(z1) � c5(1 + c2)

α3vδ(z2);

• if |z1 − z2| > ρδ(z1), even if |z1 − z2| � ρδ(z2), then

|z1 − z2|
ρδ(z2)

� 1
c2

,

so

(4.5b) vδ(z1) � c5(2c2)
α3

( |z1 − z2|
ρδ(z2)

)α3

vδ(z2).

The following theorem provides that dν(ζ) can be replaced by v1/n(ζ)
ρ1/n(ζ) |dζ|

during the proofs.

Theorem 4.3 ([1, Lemma 2], [2, (4.21)]). Let L be a quasismooth curve
or arc and ν a doubling measure on L with doubling constant cν . Then for
any p ∈ [1, ∞), t ∈ R there is a constant ca = ca(L, cν , p, t) such that for ev-
ery polynomial pn of degree at most n

1
ca

∫
L

∣∣pn(ζ)
∣∣p

ρ 1
n
(ζ)t

v 1
n
(ζ)

ρ 1
n
(ζ)

|dζ|(4.7)

�
∫

L

∣∣pn(ζ)
∣∣p

ρ 1
n
(ζ)t dν(ζ) � ca

∫
L

∣∣pn(ζ)
∣∣p

ρ 1
n
(ζ)t

v 1
n
(ζ)

ρ 1
n
(ζ)

|dζ|.
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Theorem 4.4 (Bernstein inequality, [1, Theorem 1], [2, Theorem 1]).
Let L be a quasismooth curve or arc and ν a doubling measure on L with
doubling constant cν . Then for any p ∈ [1, ∞), t ∈ R there is a constant
cB = cB(L, cν , p, t) such that for any polynomial pn of degree at most n

(4.8)
∫

|p′
n|pρp+t

1
n

dν � cB

∫
|pn|pρt

1
n

dν.

The basic idea of the upper estimate for the Chrisoffel function is to find
an appropriate polynomial with small norm. In the present paper we are
going to use the so-called Dzjadyk kernel K1,1,2,n(ξ, ζ) (for precise definition
see e.g. [5]). This is a polynomial of ζ with degree 10n − 1 and coefficients
depending on ξ. The choice of ξ depends on the point of L where we investi-
gate the Christoffel function. We summarize Andrievskii’s calculation with
respect to such appropriate ξ in a lemma.

Lemma 4.5 ([1, (3.9)],[2, (4.6)]). If L is a quasismooth curve or arc then
there exits a constant cJ = cJ(L) and for any z ∈ L there is a ξ = ξ(z) such
that

(4.9)
1
cJ

1
|z − ζ| + ρ 1

n
(z)

�
∣∣K1,1,2,n(ξ, ζ)

∣∣ � cJ
1

|z − ζ| + ρ 1
n
(z)

for every ζ ∈ L.

Taking an appropriate power of
∣∣K1,1,2,n(ξ, ζ)

∣∣ it can be achieved that
this power is small enough outside a neighbourhood B(z, d) compared to its
value at z. The calculation for K1,1,2,n(ξ, ζ) is much simplified by:

Lemma 4.6 ([1, (3.18)], [2, (3.6)]). Let L be a quasismooth curve or arc,
b > 1 and d > 0. Then for every z ∈ L

(4.10)
∫

L\B(z,d)

1
|ζ − z|b

|dζ| � |L|1−b +
2ΛLb

(b − 1)db−1
,

where ΛL is the Lavrentiev constant of L (see Definition 2.1).

Recall that here B(z, δ) is the disk of radius δ about the point z.

Proof of Theorem 2.4. We only give the proof for the arc-case, be-
cause the curve-case is similar and actually simpler since there are no end-
points. By virtue of (4.7), in Lp-norms dν(ζ) can be replaced by

v 1
n
(ζ)

ρ 1
n
(ζ)

|dζ|,

and we do so in the proof. We deal with the upper estimate and the lower
estimate separately.

Acta Mathematica Hungarica



T. VARGA

We begin with the upper estimate. The proof is based on fast decreasing
polynomials as in the proof of [8, Theorem 4.3], [17, Lemma 6] or [15, The-
orem 3.1]. Here this role is played by the Dzjadyk kernel (see Lemma 4.5).
Let m be a fixed positive integer defined later, n̂ the integer part of n

10m and
for a z ∈ L let Kn denote the polynomial

K1,1,2,n̂(ξ, ζ)
K1,1,2,n̂(ξ, z)

with the ξ = ξ(z) from Lemma 4.5. This (Kn)m is a polynomial of ζ of
degree at most n and Kn(z)m = 1. We introduce the following notation
which make our calculations more transparent: if g, h : M → R are two real
valued functions on a set M which is obvious from the actual situation, then
g(u) � h(u) denotes the fact that there is a constant κ independent of u
such that g(u) � κh(u) holds for every u ∈ M, while g(u) � h(u) means that
g(u) � h(u) and h(u) � g(u). By (4.9), (4.4) and the fact that |l 1

n
(z)| =

ρ 1
n
(z) (see (2.3)) we get

∣∣Kn(ζ)
∣∣ � c2

J

ρ 1
n̂
(z)

|z − ζ| + ρ 1
n̂
(z)

�
ρ 1

n
(z)

|z − ζ| + ρ 1
n
(z)

(4.11)

�

⎧⎪⎪⎨
⎪⎪⎩

1 if ζ ∈ l 1
n
(z)

ρ 1
n
(z)

1
|z − ζ| if ζ ∈ L \ l 1

n
(z).

The definition of Christoffel function (2.5) and (4.7) show that

(4.12) λn(ν, p, t, z) �
∫ ∣∣Kn(ζ)m∣∣ p

ρ 1
n
(ζ)t−1v 1

n
(ζ)|dζ|.

In what follows we estimate the right-hand side of (4.12) to get the appro-
priate upper bound for λn. We break the integral into two parts:

∫ ∣∣Kn(ζ)m∣∣ p
ρ 1

n
(ζ)t−1v 1

n
(ζ)|dζ| =

∫
l 1

n
(z)

+
∫

L\l 1
n

(z)
.

With (4.11) in hand and using (4.2) as well as (4.5a), the first part can be
simply treated:

∫
l 1

n
(z)

∣∣Kn(ζ)m∣∣p
ρ 1

n
(ζ)t−1v 1

n
(ζ)|dζ| �

∫
l 1

n
(z)

ρ 1
n
(ζ)t−1v 1

n
(ζ)|dζ|

� ρ 1
n
(z)tv 1

n
(z).
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Regarding the other part we make use of (4.11), (4.3) and (4.5b):
∫

L\l 1
n

(z)

∣∣Kn(ζ)m∣∣p
ρ 1

n
(ζ)t−1v 1

n
(ζ)|dζ|

�
∫

L\l 1
n

(z)

(
ρ 1

n
(z)

1
|z − ζ|

)mp

ρ 1
n
(z)α1(t−1)

· |z − ζ|(1−α1)(t−1)

(
|z − ζ|
ρ 1

n
(z)

)α3

v 1
n
(z)|dζ|

� ρ 1
n
(z)tv 1

n
(z)ρ 1

n
(z)mp+α1(t−1)−α3−t

·
∫

L\l 1
n

(z)

(
1

|z − ζ|

)mp−(1−α1)(t−1)−α3

|dζ|.

Introduce the notation b for mp − α1 − α3 + t(α1 − 1) + 1, remember that
|l 1

n
(z)| = ρ 1

n
(z), and apply (4.10) for the integral in the last expression. This

way we continue the preceding expression:

� ρ 1
n
(z)tv 1

n
(z)ρ 1

n
(z)b−1

∫
L\l 1

n
(z)

(
1

|z − ζ|

)b

|dζ|

� ρ 1
n
(z)tv 1

n
(z)ρ 1

n
(z)b−1

⎛
⎝|L|1−b +

2ΛLb

(b − 1)ρ 1
n
(z)b−1

⎞
⎠ .

We are almost ready, only we should achieve that b � 1, but this is possible,
if m is taken at least as large as α1+α3−t(α1−1)

p , e.g. let m be the upper integer

part of α1+α3−t(α1−1)
p . With this choice the expression

ρ 1
n
(z)b−1

⎛
⎝|L|1−b +

2ΛLb

(b − 1)ρ 1
n
(z)b−1

⎞
⎠

is bounded above in n, so there is c = c(L, cν , p, t) independent of n such
that ∫ ∣∣Kn(ζ)m∣∣ p

ρ 1
n
(ζ)t−1v 1

n
(ζ)|dζ| � cρ 1

n
(z)tv 1

n
(z),

which proves the upper estimate.
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Next, we turn to the lower estimate. Let z ∈ L be a point and let pn(ζ)
be a polynomial of degree at most n for which pn(z) = 1 holds. We prove
that there is a constant c̃ = c̃(L, cν , p, t) independent of n and z such that

(4.13)
∫

L

∣∣pn(ζ)
∣∣ p

ρ 1
n
(ζ)t

v 1
n
(ζ)

ρ 1
n
(ζ)

|dζ| � c̃ρ 1
n
(z)tv 1

n
(z).

In view of (4.7) this will give the lower estimate for the Christoffel func-
tion in Theorem 2.4. Let

ĉ := 2pcp+t+1
2 c5(1 + c2)

α3cB

(c2 from Lemma 4.1, c5 and α3 from (4.5), cB from Theorem 4.4); if

(4.14)
∫

L

∣∣pn(ζ)
∣∣p

ρ 1
n
(ζ)t−1v 1

n
(ζ)|dζ| <

1
ĉ
ρ 1

n
(z)tv 1

n
(z)

does not hold then we are done with c̃ = 1
ĉ , so we may assume (4.14). Clearly,

∫ ∣∣pn(ζ)
∣∣p

ρ 1
n
(ζ)t−1v 1

n
(ζ)|dζ| �

∫
l 1

n
(z)

∣∣pn(ζ)
∣∣p

ρ 1
n
(ζ)t−1v 1

n
(ζ)|dζ| � . . . .

(4.15)

If ζ ∈ l 1
n
(z), then by applying Hölder’s inequality we obtain

∣∣pn(ζ) − pn(z)
∣∣ =

∣∣∣∣
∫

L(z,ζ)
p′

n(s) ds

∣∣∣∣

�
∫

l 1
n

(z)

∣∣p′
n(s)

∣∣ |ds| �
( ∫

l 1
n

(z)

∣∣p′
n(s)

∣∣p|ds|
) 1

p

ρ 1
n
(z)

p−1
p

=

⎛
⎝ 1

ρ 1
n
(z)p+t−1v 1

n
(z)

⎞
⎠

1
p ( ∫

l 1
n

(z)

∣∣p′
n(s)

∣∣p
ρ 1

n
(z)p+t−1v 1

n
(z)|ds|

) 1
p

ρ 1
n
(z)

p−1
p .

Applying (4.2) and (4.5a) we can replace ρ 1
n
(z) by ρ 1

n
(s) and v 1

n
(z) by v 1

n
(s)

in the integral over l 1
n
(z), so the inequality is continued as

� c
1+ t−1

p

2 c
1
p

5 (1 + c2)
α3
p

⎛
⎝ 1

ρ 1
n
(z)p+t−1v 1

n
(z)

⎞
⎠

1
p

·
( ∫

l 1
n

(z)

∣∣p′
n(s)

∣∣p
ρ 1

n
(s)p+t−1v 1

n
(s)|ds|

) 1
p

ρ 1
n
(z)

p−1
p ,
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and here we can replace the integral over l 1
n
(z) by the same integral over L.

By the Bernstein inequality (Theorem 4.4), then by (4.14), we can con-
tinue as

� ĉ
1
p

2

⎛
⎝ 1

ρ 1
n
(z)p+t−1v 1

n
(z)

⎞
⎠

1
p ( ∫

L

∣∣pn(s)
∣∣p

ρ 1
n
(s)t−1v 1

n
(s)|ds|

) 1
p

ρ 1
n
(z)

p−1
p

(4.16)

� 1
2

⎛
⎝ 1

ρ 1
n
(z)p+t−1v 1

n
(z)

⎞
⎠

1
p

(ρ 1
n
(z)tv 1

n
(z))

1
p ρ 1

n
(z)

p−1
p � 1

2
.

In view of pn(z) = 1 this shows that
∣∣pn(ζ)

∣∣ � 1/2 for all z ∈ l1/n(z). Using
this, (4.2) and (4.5a) we continue (4.15) as

. . . �
∫

l 1
n

(z)

(
1
2

)p

ρ 1
n
(ζ)t−1v 1

n
(ζ)|dζ|(4.17)

� 1
ct−1
2

1
c5(1 + c2)

α3

∫
l 1

n
(z)

(
1
2

)p

ρ 1
n
(z)t−1v 1

n
(z)|dζ|

=
1

ct−1
2

1
c5(1 + c2)

α3

(
1
2

)p

ρ 1
n
(z)tv 1

n
(z),

which proves (4.13) (say) with

c̃ =
1

ct−1
2

1
c5(1 + c2)

α3

(
1
2

)p

,

and with them the lower estimate in Theorem 2.4. �

Proof of Corollary 2.5. If L1, . . . , LN denote the connected com-
ponents of L (that is L1, . . . , LN are curves or arcs) then we can apply
Theorem 2.4 to each one separately with some constants cL1 , . . . , cLN

. Then
setting c := max (cL1 , . . . , cLN

) we get for z ∈ L

inf
pn ∈Pn

pn(z)=1

∫
L

ρ 1
n
(ζ)t∣∣pn(ζ)

∣∣p
dν(ζ) � inf

pn ∈Pn

pn(z)=1

∫
Lz

� 1
cLz

ρ 1
n
(z)tv 1

n
(z)

� 1
c

ρ 1
n
(z)tv 1

n
(z),
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where Lz is the component of L that contains the point z. This gives the
necessary lower estimate for the Christoffel function.

The upper estimate follows the proof of the right-hand side of (2.6) for
the point z ∈ Lz . We construct the polynomial Kn for Lz as in (4.11). If L
consists of one component (that is L = Lz) we are done. If there are other
components, then we have to ensure that the integral of the absolute value of
the polynomial is small enough on these components too. Therefore we mul-
tiply Kn by an appropriate auxiliary polynomial. To find this polynomial
we invoke the following two theorems:

Theorem 4.7 ([12, Bernstein’s lemma, Theorem 5.5.7, p. 156]). Let K
be a compact subset of C with positive logarithmic capacity, and let D be a
compact subset in C \ K. Then there is a constant η = η(K,D) such that for
any polynomial q that is not constant

∣∣q(z)
∣∣ � ηdeg q sup

ζ∈K

∣∣q(ζ)
∣∣

is valid for every z ∈ D.

In this theorem the only assumption on K is that it should have positive
logarithmic capacity, which is true for any Jordan curve or arc, or for unions
of them.

Theorem 4.8 ([12, Bernstein–Walsh theorem, Theorem 6.3.1, p. 170]).
Let K be a compact subset of C such that C \ K is connected. If f is a
function holomorphic on an open neighbourhood U of K then there are a
polynomial sequence {qn}n∈N

(deg qn � n), M > 0 and θ ∈ (0, 1) such that

sup
z∈K

∣∣f(z) − qn(z)
∣∣ � Mθn

holds for every n.

Next, we recall the notion of polynomial convex hull.

Definition 4.9. If K is a compact subset of C and Ω denotes the un-
bounded connected component of C \ K, then the set C \ Ω is called the
polynomial convex hull of K. It is the union of K with all the bounded
components of C \ K.

From Theorem 4.7 by (4.11) we get that there exists a constant ηLz
such

that

(4.18) sup
L\Lz

∣∣Kn(z)
∣∣ � CLz

ηn
Lz

,

Acta Mathematica Hungarica



CHRISTOFFEL FUNCTIONS FOR DOUBLING MEASURES

where

CLz
= sup

ζ∈Lz

n∈N

∣∣Kn(z)
∣∣ < ∞.

On the other hand, let U1, . . . , UN denote some disjoint neighbourhoods of
the polynomial convex hulls of L1, . . . , LN and set

f(ζ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ζ ∈ Uz

0 if ζ ∈
N⋃

i=1

Ui \ Uz,

where Uz is the neighbourhood of the polynomial convex hull of Lz . Since f is
holomorphic on an open neighbourhood of L, we can apply Theorem 4.8 and
obtain that there are a polynomial sequence {qn}n∈N

(deg qn � n), M > 0
and θ ∈ (0, 1) such that

(4.19)
∣∣∣∣qn(ζ)
qn(z)

∣∣∣∣ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + Mθn

|1 − Mθn| � 1 if ζ ∈ Lz

Mθn

|1 − Mθn| � θn if ζ ∈ L \ Lz.

Let

(4.20) Kn(ζ) = (K[ n

τ+1 ]
(ζ))

m
q[ τn

τ+1 ]
(ζ)

q[ τn

τ+1 ]
(z)

,

where m is chosen as in the proof of Theorem 2.4 while τ is set subsequently.
We shall also need

Lemma 4.10 ([4, Corollary 2.7, p. 61]). Let K be an arbitrary contin-
uum (that is a connected compact set with infinite cardinality) with connected
complement. If L denotes the boundary of K, then

δ2 � d(L,Lδ) � 1.

Here d(L,Lδ) denotes the distance between L and the level line Lδ as-
sociated with L.

Now using (4.18), (4.19) and the facts that ρ 1
n
(ζ) � 1 and v 1

n
(ζ) � |L|

� 1 we obtain
∫

L\Lz

∣∣ Kn(ζ)
∣∣p

ρ 1
n
(ζ)t−1v 1

n
(ζ) |dζ|(4.21)
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�
∫

L\Lz

η
nmp

τ+1

Lz
θ

nτmp

τ+1 ρ 1
n
(ζ)t−1v 1

n
(ζ) |dζ| �

(
(ηLz

θτ )
mp

τ+1

)n
.

Choose τ > 0 such that ηLz
θτ < 1 holds, e.g. τ := log 1/η

log θ + 1, so the previous
integral is exponentially small.

By (4.11), (4.18), (4.19) and (4.20) we get

Kn(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ζ = z

� 1 if ζ ∈ l 1
n
(z)

�
(

ρ 1
n
(z)

1
|z − ζ|

)m

if ζ ∈ Lz \ l 1
n
(z)

� (ηLz
θτ )

nm

τ+1 if ζ ∈ L \ Lz.

Considering that deg Kn � n the n-th Christoffel function can be estimated
from above as follows:

λn(ν, p, t, z) �
∫

L

∣∣ Kn(ζ)
∣∣p

ρ 1
n
(ζ)t

v 1
n
(ζ)

ρ 1
n
(ζ)

|dζ|(4.22)

=
∫

l 1
n

(z)
+

∫
Lz \l 1

n
(z)

+
∫

L\Lz

� ρ 1
n
(z)tv 1

n
(z),

where to get the last inequality we follow the proof of Theorem 2.4 con-
sidering (4.19) to establish an estimate for the integral over l1/n(z) and
Lz \ l1/n(z) respectively. As to the integral over L \ Lz we use (4.21) and
the estimate

ρ 1
n
(ζ)tv 1

n
(ζ) 
 1

n2t

1
n2α4


 (ηLz
θτ )

n

τ+1 ,

which is the consequence of the application of (4.6′) to l 1
n
(ζ) and L, as well

as of Lemma 4.10. �
Corollaries 3.1 and 3.2 are trivial consequences of (3.1), while to Corol-

lary 3.3 we only have to use the simple observation that if for a sequence
{an}∞

n=1

max
1�k�n

ak → ∞

holds, then there is an infinite subset M ⊂ N such that for every n ∈ M

an = max
1�k�n

ak.
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Proof of Corollary 3.4. Fix z ∈ L and ε > 0. Assume that

(4.23)
∣∣πn(z)

∣∣ <
1

n1/2+ε

1√
v 1

n
(z)

holds except for finitely many n. From this assumption we derive a contra-
diction. Let the maximum of the indices of the exceptions be m = m(z, ε).
By Theorem 2.4 and (3.1)

Sm∑
k=0

∣∣πk(z)
∣∣ 2 � c

v 1
Sm

(z)

where S is a positive integer chosen later. Let T be another positive integer
also defined later. According to (4.6)

1
v 1

Sm
(z)

� c6

T
1

α4

1
v 1

T Sm
(z)

.

Substituting this into the previous inequality and using again Theorem 2.4
for v 1

T Sm
we get

(
1
c

− cc6

T
1

α4

)
1

v 1
T Sm

(z)
�

TSm∑
k=Sm+1

∣∣πk(z)
∣∣ 2

.

By (4.23) and by the monotonicity of v1/k(z) in k we can continue this as

<
TSm∑

k=Sm+1

1
k2ε+1

1
v 1

k
(z)

�
TSm∑

k=Sm+1

1
k2ε+1

1
v 1

T Sm
(z)

� 1
v 1

T Sm
(z)

∞∑
k=Sm+1

1
k2ε+1

.

Now if we choose T such that
(

1
c

− cc6

T
1

α4

)
>

1
2c

and S such that
∞∑

k=Sm+1

1
k2ε+1

<
1
2c

,

then we obtain the desired contradiction. �
Lemma 3.6 and Lemma 3.8 are simple consequences of [5, Lemma 2.10,

Lemma 2.11 and Lemma 2.12]. Because of the similarity we only cite [5,
Lemma 2.10] and prove Lemma 3.6 here.
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Lemma 4.11 ([5, Lemma 2.10]). Let L be a quasismooth curve which
has a Dini-smooth corner at ζ ∈ L with angle βπ, 0 < β < 2. Then there
is a constant ε = ε(L, ζ) such that for all points z ∈ L, z′ ∈ (L ∪ Ω) with
|z − z′ | � |z − ζ| � ε the inequalities

1
r1

∣∣∣∣ Φ(z) − Φ(ζ)
Φ(z) − Φ(z′)

∣∣∣∣ �
∣∣∣∣ z − ζ

z − z′

∣∣∣∣ � r1

∣∣∣∣ Φ(z) − Φ(ζ)
Φ(z) − Φ(z′)

∣∣∣∣ ,(4.24)

1
r2

∣∣Φ(z) − Φ(ζ)
∣∣β � |z − ζ| � r2

∣∣Φ(z) − Φ(ζ)
∣∣β(4.25)

hold with some constants ri = ri(L, ζ, ε, β) > 0, i ∈ {1; 2}.

[5, Lemma 2.11 and Lemma 2.12] are the appropriate variants of [5,
Lemma 2.10] for arc and for the endpoints of an arc respectively.

Remark 4.A. It can be seen from the proof of [5, Lemma 2.10] that if
L is piecewise Dini-smooth with finitely many corners (with angles different
from π) then ε, r1, r2 can be chosen independently of ζ and of the angles,
so the previous inequalities are valid for every ζ ∈ L with the same ε, r1

and r2.

Applying the lemma we can reason in the following way (cf. [3, Lemma 3]):

Proof of Lemma 3.6. We deal with only the curve-case, because the
proof for the arc-case or the endpoint follows the same way but applying [5,
Lemma 2.11] and [5, Lemma 2.12] respectively.

We shall use the constants αj and cj from Lemmas 4.1 and 4.2.
Let z ∈ lε(ζ). It can be assumed that ρ 1

n
(z) < ε for any z ∈ L (this is

true if n is large enough).
• If |z − ζ| � ρ 1

n
(z) then, by (4.2),

(4.26)
1
c2

ρ 1
n
(ζ) � ρ 1

n
(z) � c2ρ 1

n
(ζ),

• if |z − ζ| > ρ 1
n
(z) then, with K := (c1c4)

α2 , (4.4) and (4.1) with
z′ = z̃ 1

Kn
show

|z − ζ| � 1
c4

(
Kn

n

)1/α2

ρ 1
Kn

(z) � |z − z̃ 1
Kn

|,

so we can apply (4.24) with z′ = z̃ 1
Kn

. Therefore, by applying (4.4), (4.1),
(4.24) and (4.25) in this order we obtain

ρ 1
n
(z) � c4K

α2ρ 1
Kn

(z) � c1c4K
α2 |z − z̃ 1

Kn
|(4.27)
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� r1c1c4K
α2

|z − ζ| |Φ(z) − (1 + 1
Kn)Φ(z)|∣∣Φ(z) − Φ(ζ)
∣∣

� r1r
1/β
2 c1c4K

α2
|z − ζ|1− 1

β

Kn
,

and similarly ρ 1
n
(z) 
 |z−ζ|1− 1

β

n .
To finish the proof, in (4.26) we have to show that ρ 1

n
(ζ) � 1

nβ , but this
easily follows from (4.24) and (4.25). Indeed, let z be a point on L such that
|z − ζ| = ρ 1

n
(ζ). If H � (c1c2c4)

α2 then by (4.1), (4.2) and (4.4)

(4.28)
1

c1c2c4Hα2
ρ 1

n
(ζ) � |z − z̃ 1

Hn
| � ρ 1

n
(ζ),

so (4.24) can be applied with z′ = z̃ 1
Hn

. Considering (4.28) we obtain that

1
r1H

1
n

�
∣∣Φ(z) − Φ(ζ)

∣∣ � r1c1c2c4H
α2

H

1
n

.

Substituting this into (4.25) we get

1
r2

1
(r1H)β

1
nβ

� |z − ζ| = ρ 1
n
(ζ) � r2

(
r1c1c2c4H

α2

H

)β 1
nβ

.

Now (4.26) and (4.27) imply the existence of a constant c7 such that

1
c7

Δn(z) � ρ 1
n
(z) � c7Δn(z). �

Proof of Corollary 3.10. By (2.6) we have

(4.29) v 1
n
(z) �

∫
L

∣∣∣∣pn(ζ)
pn(z)

∣∣∣∣
p

dν(ζ),

that is

∣∣pn(z)
∣∣ p � 1

v 1
n
(z)

‖pn‖p
ν,p.
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Taking the supremum over L and then taking the p-th root we get (3.5). To
obtain (3.6) we use (3.5):

‖pn‖ν,q �
( ∫

L
‖pn‖q−p

∞
∣∣pn(ζ)

∣∣p
dν(ζ)

) 1
q

� M
q−p

pq
n ‖pn‖

q−p

q
ν,p ‖pn‖

p

q
ν,p = M

1
p

− 1
q

n ‖pn‖ν,p. �
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[7] Y. Last and B. Simon, Fine structure of the zeros of orthogonal polynomials IV. A

priori bounds and clock behavior, Comm. Pure Appl. Math., 61 (2008), 486–
538.

[8] G. Mastroianni and V. Totik, Weighted polynomial inequalities with doubling and
A∞ weights, Constr. Approx., 16 (2000), 37–71.

[9] G. Mastroianni and V. Totik, Uniform spacing of zeros of orthogonal polynomials,
Constr. Approx., 32 (2010), 181–192.

[10] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag (Berlin,
Heidelberg, New York, 1992).

[11] E. A. Rahmanov, On estimates of the growth of orthogonal polynomials with weight
bounded away from zero, Mat. Sb. (156), 114 (1981), 269–298; English transl.
in Math. USSR Sb., 42 (1982).

[12] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press
(Cambridge, 1995).
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