
J. Math. Anal. Appl. 394 (2012) 378–390

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa

Non-symmetric fast decreasing polynomials and applications
Vilmos Totik a,b,∗, Tamás Varga c

a Department of Mathematics and Statistics, University of South Florida, 4202 E. Fowler Ave, PHY 114, Tampa, FL 33620-5700, USA
b Bolyai Institute, Analysis Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Aradi v. tere 1, 6720, Hungary
c Bolyai Institute, University of Szeged, Szeged, Aradi v. tere 1, 6720, Hungary

a r t i c l e i n f o

Article history:
Received 26 October 2011
Available online 17 April 2012
Submitted by Thomas Ransford

Keywords:
Fast decreasing polynomials
Doubling weights
Orthogonal polynomials
Spacing of zeros
Christoffel-functions

a b s t r a c t

A polynomial Pn is called fast decreasing if Pn(0) = 1, and, on [−1, 1], Pn decreases fast (in
terms of n and the distance from 0) as wemove away from the origin. This paper considers
the version when Pn has to decrease only on some non-symmetric interval [−a, 1] with
possibly small a. In this case one gets a faster decrease, and this type of extension is needed
in someproblems,when symmetric fast decreasing polynomials are not sufficient.We shall
apply such non-symmetric fast decreasing polynomials to find local bounds for Christoffel
functions and for local zero spacing of orthogonal polynomials with respect to a doubling
measure close to a local endpoint.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Fast decreasing, or pin polynomials have been used in various places inmathematical analysis. They imitate in a best way
the ‘‘Dirac delta’’ among polynomials of a given degree and they can serve to construct well-localized ‘‘partitions of unity’’
consisting of polynomials.

In [3], a fairly complete description of the possible degree of fast decreasing symmetric polynomials was given in the
following form. LetΦ be an even function on [−1, 1] such thatΦ is increasing on [0, 1], it is continuous from the right, and
Φ(0+) ≤ 0. Consider polynomials P such that P(0) = 1 and

|P(x)| ≤ e−Φ(x),

and let nΦ denote the smallest degree for which such polynomials exist. Then, according to [3, Theorem 1],
1
6
NΦ ≤ nΦ ≤ 12NΦ,

where

NΦ = 2 sup
Φ−1(0)≤x<Φ−1(1)


Φ(x)
x2

+

 1/2

Φ−1(1)

Φ(x)
x2

dx + sup
1/2≤x<1

Φ(x)
− log(1 − x)

+ 1.

The point is that this estimate is universal, in particularΦ can depend on some parameters. For example (see [3, Section 2]),
ifψ is an increasing function on [0,∞) andψ(x) ≤ Cψ(x/2) there, then there are polynomials Pn of degree at most n such
that

Pn(0) = 1, |Pn(x)| ≤ Ce−cψ(nx), x ∈ [−1, 1], (1.1)
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for some constants C, c , independent of n, if and only if
∞

1

ψ(u)
u2

du < ∞. (1.2)

Another parametric choice is (see [3, Section 2]): if ϕ is an increasing function on [0, 1] and ϕ(x) ≤ Cϕ(x/2) there, then
there are polynomials Pn of degree at most n such that

Pn(0) = 1, |Pn(x)| ≤ Ce−cnϕ(x), x ∈ [−1, 1], (1.3)

for some constants C, c , independent of n, if and only if 1

0

ϕ(u)
u2

du < ∞. (1.4)

In this setting the decrease have to be the same on [−1, 0] and on [0, 1], but that is not important; if Φ is not an even
function then similar results can be proven by considering the even function Φ∗(x) = Φ(x) + Φ(−x). However, what is
important is a control of the polynomials on all of [−1, 1], i.e. on a relatively large interval around 0 (where the polynomial
takes the value 1).

If one needs to control the polynomials only on some interval [−a, 1]with some small a, then things change: the decrease
of Pn away from 0 can be faster due to the fact that Pn can behave arbitrarily to the left of −a.

In this paper we consider the analogue of (1.1) in this non-symmetric setting and give applications concerning Christoffel
functions and zero spacing of orthogonal polynomials.

2. Non-symmetric fast decreasing polynomials

Let ψ be a nonnegative and increasing function on [0,∞), such that ψ(0+) = 0 and ψ(x) ≤ M0ψ(x/2) with some
constantM0.

Theorem 2.1. Suppose that
∞

1

ψ(u)
u2

du < ∞. (2.1)

Then there are constants C, c > 0 such that for all a ∈ [0, 1/2] and for all n there are polynomials Pn = Pn,a of degree at most n
with the properties that Pn(0) = 1, |Pn(x)| ≤ 2, x ∈ [−a, 1], and

|Pn(x)| ≤ C exp


−cψ


n|x|
√

|x| +
√
a


, x ∈ [−a, 1]. (2.2)

We mention that the theorem is sharp from several points of view. Let us record here

Proposition 2.2. If for a sequence an ∈ [0, 1/4] there are polynomials Pn, n = 1, 2, . . . with properties Pn(0) = 1 and
(2.2) (with a = an), then necessarily (2.1)must be true.

A similar argument gives that if δn → 0, then there is a ψ for which (2.1) holds but

|Pn(x)| ≤ C exp


−cψ


n|x|
δn(

√
|x| +

√
a)


, x ∈ [−a, 1]

is impossible.
The non-symmetric version of (1.3)–(1.4) is the following, in which ϕ is a nonnegative and increasing function on [0, 1],

such that ϕ(0+) = 0, and ϕ(x) ≤ M0ϕ(x/2)with some constantM0.

Theorem 2.3. Suppose that 1

0

ϕ(u)
u2

du < ∞. (2.3)

Then there are constants C, c > 0 such that for all a ∈ [0, 1/2] and for all n there are polynomials Pn = Pn,a of degree at most n
with the properties that Pn(0) = 1 and

|Pn(x)| ≤ C exp


−cnϕ


|x|
√

|x| +
√
a


, x ∈ [−a, 1]. (2.4)

Theorem 2.3 is also sharp in the same sense as Proposition 2.2: if (2.4) is true with some sequence {Pn} and a = an, then
(2.3) must hold.
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Proof of Theorem 2.1. We shall get these non-symmetric fast decreasing polynomials from the symmetric ones by a series
of transformations.

I. There are C0, c0 and for every n polynomials Qn of degree at most n such that Qn(0) = 1 and for x ∈ [−1, 1] we have
0 ≤ Qn(x) ≤ 1 and

Qn(x) ≤ C0e−c0ψ(n|x|).

This is just the example considered in (1.1) and (1.2).
We may assume this Qn to be even, for otherwise we can consider (Qn(x)+ Qn(−x))/2.
II. Let τ be a fixed number such that C0e−c0ψ(τ) < 1/2 (when there is no such τ then ψ is bounded and there is nothing

to prove). For every n and for every (8τ/n)2 ≤ a ≤ 1/4 there are even polynomials Rn = Rn,a of degree at most n with the
properties:

• Rn(0) = 1,
• Rn(2

√
a
√
1 − a) = 0,

• 0 ≤ Rn(x) ≤ 1, x ∈ [−1, 1], and
• Rn(x) ≤ C0e−c0ψ(n|x|/4), x ∈ [−1, 1].

Indeed, put

Rn(x) = Q[n/2](x)


Q[n/4](x)− Q[n/4](2

√
a
√
1 − a)

1 − Q[n/4](2
√
a
√
1 − a)

2

, (2.5)

and note that, by the choice of the τ , we have

Q[n/4](2
√
a
√
1 − a) ≤ C0 exp(−c0ψ([n/4]2

√
a
√
1 − a))

≤ C0 exp(−c0ψ(τ)) < 1/2,

and hence the second factor on the right of (2.5) is at most 1 for all x ∈ [−1, 1].
III. For every n and for every (8τ/n)2 ≤ a ≤ 1/4 there are polynomials Sn = Sn,a of degree at most n such that Sn(a) = 1,

0 ≤ Sn(x) ≤ 2 for x ∈ [0, 1] and

0 ≤ Sn(x) ≤ 2C0 exp


−c0ψ


n|x − a|
32(

√
x +

√
a)


, x ∈ [0, 1]. (2.6)

Set

Sn(x) = Rn(
√
x
√
1 − a −

√
1 − x

√
a)+ Rn(

√
x
√
1 − a +

√
1 − x

√
a).

Since Rn is a linear combination of powers x2k, k = 0, 1, . . ., this Sn is a polynomial of degree at most n/2. By the choice of
Rn we clearly have Sn(a) = 1.

Let now 0 ≤ x ≤ 2a. Then, since

|
√
x
√
1 − a −

√
1 − x

√
a| =

 x − a
√
x
√
1 − a +

√
1 − x

√
a

 ≥

 x − a

2
√
2a

 ,
and

|
√
x
√
1 − a +

√
1 − x

√
a| ≥

√
a/2,

we have

Sn(x) ≤ C0 exp(−c0ψ(n|x − a|/8
√
2a))+ C0 exp(−c0ψ(n

√
a/8))

≤ 2C0 exp(−c0ψ(n|x − a|/8
√
2a)). (2.7)

On the other hand, if 2a ≤ x ≤ 1, then

|
√
x
√
1 − a −

√
1 − x

√
a| ≥

√
x
√
1 − a −


x/2 ≥

√
x


3/4 −

1/2


≥

√
x/8,

while

|
√
x
√
1 − a +

√
1 − x

√
a| ≥

√
x/2,

and so

Sn(x) ≤ C0 exp(−c0ψ(n
√
x/32))+ C0 exp(−c0ψ(n

√
x/8))

≤ 2C0 exp(−c0ψ(n
√
x/32)). (2.8)

Now (2.7) and (2.8) prove (2.6).
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IV. For every n and for every 2(8τ/n)2 ≤ a ≤ 1/2 there are polynomials Vn = Vψn,a of degree at most n such that Vn(0) = 1,
0 ≤ Vn(x) ≤ 2 for x ∈ [−a, 1], and

0 ≤ Vn(x) ≤ 2C0 exp


−c0ψ


n|x|
128(

√
|x| +

√
a)


, x ∈ [−a, 1]. (2.9)

Indeed, for Vn(x) = Sn,a/2((x + a)/2) we clearly have all the properties if we apply (2.6) (with x replaced by (x + a)/2
and a replaced by a/2) and notice that for x ∈ [−a, 1]

(x + a)/2 +

a/2 ≤ 2(


|x| +

√
a).

Completion of the proof of Theorem 2.1. Apply IV to the function ψ∗(u) = ψ(256u) rather than to ψ(u) (the constants
C0, c0, τ will now be different, and below their meaning is with respect to ψ∗). Then Pn,a(x) = Vψ

∗

n,a (x) satisfies the re-
quirements provided 2(8τ/n)2 ≤ a ≤ 1/2. On the other hand, if 0 ≤ a ≤ 2(8τ/n)2 then we set Pn,a = Vψ

∗

n,a∗(x), where
a∗

= (16τ/n)2. For this we have

0 ≤ Pn,a(x) ≤ 2C0 exp


−c0ψ


2n|x|
√

|x| + 16τ/n


, x ∈ [−a, 1], (2.10)

and all we need to mention is that

ψ


2n|x|

√
|x| + 16τ/n


≥ ψ


n|x|

√
|x| +

√
a


− ψ(16τ) (2.11)

(check this separately for |x| ≤ (16τ/n)2 and the rest). �

We skip the proof of Theorem 2.3, for it is very similar to the proof of Theorem 2.1, one just needs to use (1.3)–(1.4)
instead of (1.1)–(1.2), and instead of the condition (8τ/n)2 ≤ a ≤ 1/4 one should use (ϕ−1(M/n))2 ≤ a ≤ 1/4 with some
appropriately largeM (and then (2.11) should read with a∗

= (ϕ−1(M/n))2 as

ϕ


2|x|

√
|x| +

√
a∗


≥ ϕ


|x|

√
|x| +

√
a∗


− ϕ(

√
a∗)

and here nϕ(
√
a∗) is bounded in n).

Proof of Proposition 2.2. We only sketch the proof. In what follows we write a for an, but keep in mind that it can depend
on n.

Suppose (2.2) is true. Then, with b = 2a/(1 + a) and

Rn(x) = Pn


1 − x
2

(1 + a)− a

,

we have Rn(1 − b) = 1,

• |Rn(x)| ≤ C1 exp(−c1ψ(d1n|(1 − b)− x|/
√
b)) for x ∈ [1 − 2b, 1],

• |Rn(x)| ≤ C1 exp(−c1ψ(d1n
√

|1 − x|)) for x ∈ [−1, 1 − 2b],

with some constants C1, c1, d1.
Set B = arccos(1−b) and Sn(t) = Rn(cos t). Then Sn is an even trigonometric polynomial of degree atmost n, Sn(±B) = 1

and

• |Sn(t)| ≤ C2 exp(−c2ψ(d2n|t − B|)) for t ∈ [0, 2B],
• |Sn(t)| ≤ C2 exp(−c2ψ(d2nt)) for t ∈ [2B, π].

Hence, for

T2n(u) = Sn(u − B)Sn(u + B)

we have T2n(0) = 1 and

• |T2n(u)| ≤ C3 exp(−c3ψ(d3n|u|)) for u ∈ [−B, B],
• |T2n(u)| ≤ C3 exp(−c3ψ(d3n|u|)) for u ∈ [−π, π] \ [−B, B].

T2n is again an even trigonometric polynomial, therefore

U2n(v) =
Tn(v − π/2)+ Tn(v + π/2)

Tn(0)+ Tn(π)

is also an even trigonometric polynomial such that U2n(π/2) = 1 and

• |U2n(v)| ≤ C4 exp(−c4ψ(d4n|v − π/2|)) for v ∈ [0, π].
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Now set

Q2n(x) = U2n(arccos x).

This is an algebraic polynomial of degree at most 2n such that Q2n(0) = 1 and
• |Q2n(x)| ≤ C5 exp(−c5ψ(d5n|x|)) for x ∈ [−1, 1].
Hence, by (1.1)–(1.2), we must have

∞

1

ψ(d5u/2)
u2

du < ∞,

which is the same as (2.1). �

3. Christoffel functions for locally doubling weights

As an application of Theorem 2.1, in this section we estimate the Christoffel function at a point by the measure of a
neighborhood of that point.

We recall the definition of Christoffel functions. Letµ be a finite measure with compact support on the real line. The n-th
Christoffel function associated with µ is defined as

λn(a, µ) = inf
q(a)=1
deg q≤n


q2(x) dµ(x),

where theminimum is taken for all polynomials of degree at most n taking the value 1 at a. This function plays an important
role in the theory of orthogonal polynomials. In fact, if {pk(µ, ·)} are the orthonormal polynomials with respect to µ then

1
λn(a, µ)

=

n
k=0

pk(µ, a)2,

i.e. the reciprocal of λn, is given by the diagonal of the associated reproducing kernel. See Nevai and Simon [7,9] for various
properties and applications of Christoffel functions.

The measure µ is called doubling on the interval [A, B] if µ([A, B]) > 0 and there is a constant L (called the doubling
constant) such that

µ(2I) ≤ Lµ(I) (3.1)
for all intervals 2I ⊂ [A, B] (here 2I is the interval I enlarged twice from its center). In a similar, but slightly different
fashion, µ is called globally doubling on a set K if (3.1) is true for every interval I centered at a point of K . One should
exercise some care here: µ may be doubling on [A, B] without being globally doubling on [A, B] (consider for example,
[A, B] = [0, 1], dµ(x) = |1− x|dx on [0, 1] and dµ(x) = dx on (1, 2]). However, it is easy to see thatµ is doubling on [A, B]
precisely if its restriction to [A, B] is globally doubling there [A, B].

It was shown in [5, (7.14)] that if the support of µ is [−1, 1] and µ is doubling there, then we have1

λn(a, µ) ∼ µ

[a − ∆̂n(a), a + ∆̂n(a)]


, (3.2)

where

∆̂n(a) =

√
1 − a2

n
+

1
n2
.

The local analogue was given in [12, Lemma 6]: if µ is doubling on an interval [A, B], then (without any assumption on its
behavior outside [A, B]) we have λn(a) ∼ 1/n uniformly on every subinterval [A + ε, B − ε]. Now we show, with the help
of the non-symmetric fast decreasing polynomials constructed in Section 2, the local behavior of λn around a local endpoint
of the support.

Call a point A a ‘‘left endpoint’’ of the support of µ, if for some α > 0 we have µ([A − α, A)) = 0 but µ([A, A + β)) > 0
for all β > 0.

Theorem 3.1. Let A be a ‘‘left endpoint’’ of the support of µ. Assume that µ is a doubling measure on some interval [A, A + β],
and let γ < β . Then uniformly in a ∈ [A, A + γ ] we have

λn(a, µ) ∼ µ ([a −∆n(a), a +∆n(a)]) , (3.3)

where

∆n(a) =

√
a − A
n

+
1
n2
.

1 A ∼ Bmeans that the ratio of the two sides is bounded from below and from above by two positive constants.
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While Theorem 3.1 could be deduced from the global version (3.2), the proof we give for the upper estimate works also
on general sets rather than just on intervals. When the doubling character is known only on a set K then naturally only an
upper estimate can be given:

Theorem 3.2. Let A be a ‘‘left endpoint’’ of the support of µ. Assume that µ is a globally doubling measure on some set
K ⊂ [A, A + β], and let γ < β . Then uniformly in a ∈ K ∩ [A, A + γ ] we have

λn(a, µ) ≤ Cµ ([a −∆n(a), a +∆n(a)]) (3.4)

with some C independent of a ∈ K and n.

Example. The Cantor measure is defined as follows. Do the standard triadic Cantor construction. At level lwe have a set Cl
consisting of 2l intervals each of length 3−l. Now let

ρl = (3/2)l · m|Cl
,

where m is the Lebesgue measure on R, i.e. ρl puts equal uniform masses to each subinterval of Cl. As l → ∞ this ρl has a
weak∗ limit ρ, called the Cantor measure. It is easy to see that ρ is supported on the Cantor set C = ∩l Cl and is globally
doubling on C (but not, say, on [0, 1]), even though it is a singular continuous measure.

Let (p, q) denote any subinterval of Cl. On applying Theorem 3.2 (and its obvious modification for right endpoints) we
get the upper bound

λn(a, ρ) ≤ Cp,qρ([a −∆n(a), a +∆n(a)]), a ∈ (p, q)

with

∆n(a) =

√
(a − p)(q − a)

n
+

1
n2
.

Since ρ(I) ≤ C0|I|log 2/ log 3 for any interval I with some absolute constant C0, it follows that

λn(a, ρ) ≤ C ′

p,q

√
(a − p)(q − a)

n
+

1
n2

log 2/ log 3

, a ∈ (p, q).

For example, at every endpoint of a contiguous subinterval to C we have λn ≤ Cn−2 log 2/ log 3, and we believe that this is the
correct order for λn at those points.

Before proving Theorems 3.1 and 3.2, let us mention an equivalent form of the doubling property, see [5, Lemma 2.1]:

Lemma 3.3. The following conditions for a measure µ are equivalent:

(1) µ is doubling in [A, B].
(2) There is an s and a K such that µ(I) ≤ K (|I|/|J|)s µ(J) for all intervals J ⊂ I ⊂ [A, B].2
(3) There is an s > 0 and a K such that

µ(I) ≤ K


|I| + |J| + dist{I, J}
|J|

s

µ(J)

for all intervals I and J ⊂ [a, b].
(4) There is a σ and a κ such that µ(J) ≤ κ (|J|/|I|)σ µ(I) for all intervals J ⊂ I ⊂ [A, B].

Proof of Theorem 3.1. (3.3) holds on every interval [A+ γ ′, A+ γ ] with 0 < γ ′ < γ < β by [12, Lemma 6]. Therefore, we
may assume A = 0, α = β = 1 and a ∈ [0, 1/4]. Soµ has no mass in [−1, 0] but it is (non-zero and) doubling on [0,1], and
we shall estimate the Christoffel function at an a ∈ [0, 1/4]. Note also that in this case

∆n(a) =

√
a

n
+

1
n2
.

First we give a bound for λn(a, µ) from above. We apply Theorem 2.1 with ψ(x) =
√
x. According to that theorem, for

any 0 ≤ a ≤ 1/2 there are polynomials Pm,a of degree at mostm such that Pm,a(0) = 1, |Pm,a(x − a)| ≤ 2 on [0, 1],

0 ≤ Pm,a(x − a) ≤ C exp


−c


m|x − a|

√
a


, 0 ≤ x ≤ 2a (3.5)

2
|H| denotes the Lebesgue measure of the set H .
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and

0 ≤ Pm,a(x − a) ≤ C exp


−c

m


|x − a|

, 2a ≤ x ≤ 1 (3.6)

with some absolute constants c, C > 0. Let B ≥ 2 be such that supp(µ) ⊂ [−B, B].
Next, we invoke the inequality (see [1, Proposition 4.2.3])

|qn(x)| ≤ ∥qn∥[−1,1]


|x| +


x2 − 1

n
, deg(qn) ≤ n, x ∈ R,

which implies for any interval [θ − δ, θ + δ] the inequality

|qn(x)| ≤ ∥qn∥[θ−δ,θ+δ](2 · dist(x, θ)/δ)n, deg(qn) ≤ n, x ∈ R \ [θ − δ, θ + δ].

Since 0 ≤ Pm,a(x) ≤ 2 on [0, 1], we obtain from here that

Pm,a(x) ≤ 2(8B)m for all x ∈ [−B, B].

Consider now

U(2M+1)m(x) := Pm,a(x − a)

1 −

(x − a)2

(B + 1)2

Mm

,

where M will be chosen below, and for a given n set pn(x) := U(2M+1)m(x) with m = m(n) =
 n
2M+1


. Its degree is at most

n, pn(a) = 1, and since
1 −

(x − a)2

(B + 1)2


≤ 1 on [−B, B],

we obtain

pn(x) ≤ C exp


−c


m|x − a|

√
a


, x ∈ [0, 2a], (3.7)

pn(x) ≤ C exp


−c

m


|x − a|

, x ∈ [2a, 1], (3.8)

and on [−B, B] \ [−1, 1/2] (recall that 0 ≤ a ≤ 1/4)

|pn(x)| ≤ 2(8B)m

1 −

1
16(B + 1)2

Mm

.

Now ifM is chosen so large that

(8B)

1 −

1
16(B + 1)2

M

<
1
e
,

then we obtain

|pn(x)| ≤ 2e−m
≤ 2e−n/4M , x ∈ [−B, B] \ [−1, 1/2]. (3.9)

First let 4/n2
≤ a ≤ 1/4. Using the preceding estimates we can write

λn(a, µ) = inf
q(a)=1
deg q≤n


q2 dµ ≤


p2n dµ

=

 a+∆n(a)

a−∆n(a)
+

 a−∆n(a)

0
+

 2a

a+∆n(a)
+

 1/2

2a
+


R\[−1,1/2]

, (3.10)

where we used that, by assumption, µ([−1, 0]) = 0 and a ∈ [0, 1/4]. In the first integral 0 ≤ pn(x) ≤ 2 on [0, 1], so a+∆n(a)

a−∆n(a)
p2ndµ ≤

 a+∆n(a)

a−∆n(a)
4 dµ = 4µ([a −∆n(a), a +∆n(a)]). (3.11)
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The second and the third integrals are treated together, since we have similar estimates (see (3.7)) for pn on the
corresponding intervals: a−∆n(a)

0
+

 2a

a+∆n(a)
≤ 2

 2a

a+∆n(a)
C exp


−c


m|x − a|

√
a


dµ(x)

≤ 2C
H
i=1

 a+(i+1)∆n(a)

a+i∆n(a)
exp


−c


m|x − a|

√
a


dµ(x), (3.12)

whereH is the positive integer forwhich a+H∆n(a) < 2a ≤ a+(H+1)∆n(a). The integrand on [a+i∆n(a), a+(i+1)∆n(a)]
is at most

exp


−c


m|x − a|

√
a


≤ exp


−c


mi∆n(a)

√
a



≤ exp


−

c

2
√
M


ni∆n(a)

√
a


≤ exp


−

c

2
√
M

√
i


since n
4M ≤ m and n∆n(a) ≥

√
a. Using this and the doubling property (Lemma 3.3, (3)) we obtain for (3.12)

≤ 2C
H
i=1

exp


−
c

2
√
M

√
i

µ([a + i∆n(a), a + (i + 1)∆n(a)])

≤ 2C


∞
i=1

K(i + 1)se
−

c
2
√
M

√
i


µ([a −∆n(a), a +∆n(a)]), (3.13)

where K and s depend only on the doubling constant of µ.
The estimate of the fourth integral is like the former one, but we use (3.8) instead of (3.7): 1/2

2a
≤ C

Ĥ
i=H

 a+(i+1)∆n(a)

a+i∆n(a)
exp


−c

m


|x − a|

dµ(x),

where Ĥ is the constant for which a + Ĥ∆n(a) < 1/2 ≤ a + (Ĥ + 1)∆n(a). Using that

m


|x − a| ≥ m

i∆n(a) ≥

n
4M


i
n2

≥

√
i

4M
on [a + i∆n(a), a + (i + 1)∆n(a)] we get from the doubling property (Lemma 3.3, (3)) 1/2

2a
≤ C


∞
i=H

K(i + 1)se
−

c
2
√
M

4√i


µ([a −∆n(a), a +∆n(a)]). (3.14)

Finally, we deal with the fifth integral. According to the doubling property (Lemma 3.3,(2)) we can see that, for large n,

µ([a −∆n(a), a +∆n(a)]) ≥
1
K


|[a −∆n(a), a +∆n(a)]|

|[0, 1]|

s

µ([0, 1])

≥ c|∆n(a)|s ≥ c


1
n2

s

≥ c1e−n/4M .

Therefore (3.9) gives
R\[−1,1/2]

p2n dµ ≤ µ(R \ [−1, 1/2])4e−n/4M
≤ Cµ([a −∆n(a), a +∆n(a)]). (3.15)

From (3.11) and (3.13)–(3.15) we obtain

λn(a) ≤ Cµ([a −∆n(a), a +∆n(a)]),

which is the upper estimate in (3.3).
When 0 ≤ a ≤ 4/n2, then the argument is similar if, instead of (3.10), we use the splitting

p2ndµ =

 a+∆n(a)

0
+

 1/2

a+∆n(a)
+


R\[0,1/2]

.
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The corresponding lower estimate for λn(a, µ) in (3.3) is immediate from (3.2). Indeed, according to our assumptions,µ
is a doubling measure on [0, 1], so taking the restriction ν = µ|[0,1] we get with

∆̃n(x) =
2
√
x − x2

n
+

1
n2

for a ≤
1
2 (transform (3.2) to the interval [0, 1] by a linear transformation)

λn(a, µ) = inf
q(a)=1
deg q≤n


q2(x) dµ(x) ≥ inf

q(a)=1
deg q≤n

 1

0
q2(x) dµ(x) = λn(a, ν)

≥
1
C0

 a+∆̃n(a)

a−∆̃n(a)
dν(x) ≥

1
C0

 a+∆n(a)

a−∆n(a)
dν(x)

=
1
C0
µ([a −∆n(a), a +∆n(a)]). (3.16)

This proves the lower estimate in (3.3), and the proof is complete. �

We skip the proof of Theorem 3.2, for it agrees with the proof of the upper estimate given in the preceding proof. Indeed,
in that proof we only needed that if µ is doubling on a set K then for all intervals I centered at a point of K and for all λ ≥ 1
we have

µ(λI) ≤ Cλsµ(I),

with some constant C independent of I and λ, which is clearly true with s = log L/ log 2.

4. Local zero spacing of orthogonal polynomials

Let µ be a measure on the real line with compact support, {pn} the orthonormal polynomials with respect to µ and let
xn,1 < · · · < xn,n be the zeros of pn. In this section, using Theorem 3.1, we give matching upper and lower bounds for
xn,k+1 − xn,k around local endpoints of the support where the weight is doubling.

If µ is supported on [−1, 1] and it is doubling there, then by [6, Theorem 1]

xn,k+1 − xn,k ∼


1 − x2n,k

n
+

1
n2
, k = 1, . . . , n − 1. (4.1)

Actually, this is also true for k = 0 and k = n if we set xn,0 = −1 and xn,n+1 = 1, i.e. the first and last zeros are of distance
∼1/n2 from the endpoints of the intervals. In this result a global property implies quasi-uniform spacing for the zeros over
the whole support of the measure.

Last and Simon [4] considered zero spacing using information only around the zeros in question. Roughly speaking,
they showed that if µ is absolutely continuous in a neighborhood of E0 and its density behaves like |x − E0|q there, then
x(1)n (E0) − x(−1)

n (E0) ∼ 1/n for the zeros x(±1)
n (E0) enclosing E0. As a generalization, Varga showed in [12] that if µ is a

doubling measure on an interval [a, b] then

xn,k+1 − xn,k ∼
1
n

uniformly for xn,k ∈ [a + ε, b − ε] for all ε > 0.
In this section we prove the analogue of this last result for a local endpoint.

Theorem 4.1. Let A be a ‘‘left endpoint’’ for the support of µ, and assume that µ is a doublingmeasure on some interval [A, A+β].
Then for any γ < β

xn,k+1 − xn,k ∼ ∆n(xn,k) =


xn,k − A

n
+

1
n2

(4.2)

uniformly in xn,k, xn,k+1 ∈ [A, A + γ ].

This theorem and Theorem 3.1 have a simple consequence concerning the quotient of adjacent Cotes numbers. Recall
that the Cotes numbers are the values of the Christoffel function at the zeros of orthonormal polynomials: λn,k := λn(xn,k).
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Corollary 4.2. Assume that µ has the doubling property on [A, A+ β] and vanishes on some interval [A− α, A]. Then, for every
γ < β , there is a constant Dγ such that

1
Dγ

≤
λn,k

λn,k+1
≤ Dγ , (4.3)

whenever xn,k, xn,k+1 ∈ [A, A + γ ].

This is the local version of [6, Theorem 2].
Exactly as in [6, Theorem 3], Theorem 4.1 and Corollary 4.2 have a converse:

Theorem 4.3. Assume that µ vanishes on [A− α, A], and that (4.2) and (4.3) hold on every interval [A, A+ γ ], γ < β . Thenµ
has the doubling property on every such interval.

Proof of Theorem 4.1. The proof follows that of theorem 1 in [6]. We begin the proof by the following variant of Lemma 4
in [6]: for A ≤ y ≤ x, if (see (4.2) for the definition of∆n)

x − y ≤ S(∆n(x)+∆n(y)), S ≥ 1,

then

∆n(x) ≤ 16S∆n(y). (4.4)

This can be obtained by simple calculation as in [6, Lemma 4].
By [12, Theorem 1], (4.2) is true on any interval [A + γ ′, A + γ ], 0 < γ ′ < γ < β , therefore it can be assumed again

that α = β = 1 and γ = 1/4 (apply a linear transformation if necessary).
We begin with the upper estimate of xn,k+1 − xn,k. We need the following well known Markov inequality (see [2]):

k−1
j=1

λm,j ≤ µ((−∞, xm,k)) ≤ µ((−∞, xm,k]) ≤

k
j=1

λm,j (4.5)

connecting the measure, the zeros of the orthogonal polynomials and the Cotes numbers. If we apply this with k + 1 and k
and subtract the resulting inequalities, then it follows that

µ([xm,k, xm,k+1]) ≤ λm,k + λm,k+1. (4.6)

Let xn,k, xn,k+1 ∈ [0, 1/4] and∆n,k := ∆n(xn,k). We may assume xn,k+1 − xn,k ≥ 2∆n,k, for otherwise there is nothing to
prove. Then

xn,k +∆n,k ≤ xn,k+1 −∆n,k.

Let

E1 =

xn,k −∆n,k, xn,k +∆n,k


, E2 =


xn,k+1 −∆n,k, xn,k+1 +∆n,k


and

I =

xn,k −∆n,k, xn,k+1 +∆n,k


.

If we can estimate |I| by a constant times∆n,k from above, then we are done.
We obtain from the doubling property of µ and from (4.6)

µ(I) ≤ Lµ([xm,k+1, xm,k]) ≤ L

λm,k+1 + λm,k


.

Now we apply Theorem 3.1 to continue this as

≤ LC(µ(E1)+ µ(E2)) ≤ 2LCκ


|E1|
|I|

+
|E2|
|I|

σ
µ(I)

where, in the last estimate, Lemma 3.3, (4) was used. Therefore,

|I| ≤
σ
√
2LCκ(|E1| + |E2|),

and then (4.4) with S =
σ
√
2LCκ gives the upper bound

xn,k+1 − xn,k ≤ C∆n,k.

As for the lower estimate, we may assume that xn,k+1 − xn,k = δ∆n,k with some δ ≤
1
2 . Define the polynomial qn−2 such

that

pn(x) = qn−2(x)(x − xn,k)(x − xn,k+1).
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Using that pn is orthogonal to all polynomials of degree at most n − 1 we obtain

0 =


pnqn−2 dµ =


q2n−2(x)(x − xn,k)(x − xn,k+1) dµ(x)

=

 xn,k+1

xn,k
+


R\[xn,k,xn,k+1]

. (4.7)

Note that the integrand is negative only on [xn,k, xn,k+1]. Since xn,k+1 − xn,k = δ∆n,k with δ ≤ 1/2, we get xn,k+1

xn,k
q2n−2(x)(x − xn,k)(x − xn,k+1) dµ(x) = −

 xk+1

xk
q2n−2(x)|x − xn,k||x − xn,k+1| dµ(x)

≥ −δ2∆2
n,k

 xn,k+1

xn,k
q2n−2 dµ. (4.8)

For the second integral we use the assumption δ ≤
1
2 and Remez’ inequality [5, (7.16)]: if µ doubling on [0, 1], then for

everyΛ there is a CΛ such that for [η, ϑ] ⊂ [0, 1] and for an arbitrary polynomial rn of degree at most n 1

0
r2n dµ ≤ CΛ


[0,1]\[η,ϑ]

r2n dµ (4.9)

holds, provided | arccos([2η − 1, 2ϑ − 1])| ≤ Λ/n. We are going to apply this with

[η, θ] = [xn,k − 2∆n,k, xn,k + 2∆n,k] ∩ [0, 1].

Because of the definition of∆n,k, we have | arccos([2η − 1, 2ϑ − 1])| ≤ Λ/n, so (4.9) is applicable, and we obtain
R\[xn,k,xn,k+1]

q2n−2(x)(x − xn,k)(x − xn,k+1)dµ(x)

≥


[0,1]\[xn,k−2∆n,k,xn,k+2∆n,k]

q2n−2(x)(x − xn,k)(x − xn,k+1) dµ(x)

≥ ∆2
n,k


[0,1]\[xn,k−2∆n,k,xn,k+2∆n,k]

q2n−2 dµ ≥
∆2

n,k

CΛ


q2n−2 dµ

≥
∆2

n,k

CΛ


[xn,k,xn,k+1]

q2n−2 dµ. (4.10)

From (4.7), (4.8) and (4.10) we get

0 ≥


1
CΛ

− δ2

∆2

n,k

 xn,k+1

xn,k
q2n−2 dµ.

But this is possible only if δ ≥
1

√
CΛ

, hence

xn,k+1 − xn,k ≥
1

√
CΛ
∆n,k

follows. �

The proof of Corollary 4.2 is much the same as that of theorem 2 in [6] once Theorems 3.1 and 4.1 are available. We also
skip the proof of Theorem 4.3, since the proof of [6, Theorem 3] can be adjusted to the local setting considered here; the
necessary changes are very similar to what was done in the proof of Theorem 3.1.

5. Remark to Theorem 4.1

Theorem 4.1 is a local version of (4.1) (proved in [6, Theorem 1], where µ was assumed to be doubling on its support
[−1, 1]), and the zero spacing xn,k+1 − xn,k in Theorem 4.1 follows precisely the same pattern as that in [6, Theorem 1] once
the zeros xn,k, xn,k+1 belong to the interval where the measure is doubling. We have already mentioned that theorem 1 in [6],
i.e. (4.1), also tells us that if µ is supported on [−1, 1] and it is doubling there, then the distance from the smallest zero to
the left endpoint of the support is about 1/n2. The proof of Theorem 4.1 gives also that if A is the smallest element of the
support and µ is doubling on some interval [A, A + β], then, for large n,

xn,1 − A ∼ ∆n(xn,1) ∼ 1/n2.
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In other words, in this case the distance from the smallest zero to the left endpoint A is again about 1/n2, just as it was in
the global case in (4.1). Now we show that this is not necessarily true for local endpoints. We exhibit an example when the
support of the measure consists of two disjoint intervals [−2,−1] and [0, d], but for infinitely many n the smallest positive
zero of the corresponding orthogonal polynomials is very close to 0, much closer than 1/n2.

Example 5.1. There is a 0 < d < 1 such that if µ is the restriction of the Lebesgue-measure onto [−2,−1] ∪ [0, d], then
for infinitely many nwe have for the smallest positive zero xn,j0 of pn(µ, ·) the inequality

1
2
e−n

≤ xn,j0 ≤ 2e−n. (5.1)

The proof can be easily modified to yield the following stronger statement: if δn = o(n−2) is any sequence, then there is a d
such that for µ = m


[−2,−1]∪[0,d] and for some subsequence {nk} of the natural numbers we have

lim
k→∞

xnk,j0/δnk = 1.

Proof. We need the following results in the construction.
Let νn be the measure that places mass 1

n to every zero of the n-th orthogonal polynomial pn(µ, ·) (so-called normalized
counting measure on the zeros).

Denote byωS the equilibriummeasure of a compact set S ⊂ R of positive capacity (see [8] for the concept of equilibrium
measure).

Lemma 5.2. If µ is the restriction of the linear Lebesgue measure on some set S consisting of finitely many intervals, then
νn → ωS in theweak∗ topology of measures on the complex plane.

This follows from [10, Theorem 3.1.4] and from any of the regularity criteria given in [10, Chapter 4.].

Lemma 5.3 ([11, Section 3]). Let [a1, b1], . . . , [al, bl] be pairwise disjoint intervals and ε ≤ bl−al. If ωε denotes the equilibrium
measure for [a1, b1] ∪ · · · ∪ [al−1, bl−1] ∪ [al, bl − ε], then

1. ωε([al, bl − ε]) is strictly monotone decreasing in ε,
2. ωε([ai, bi]) strictly monotone increasing in ε for every 1 ≤ i ≤ l − 1.

Lemma 5.4. Let mε denote the normalized Lebesgue measure on the previous interval system. Then the zeros of the orthogonal
polynomials associated with mε are continuous functions of ε.

This is obvious, since the Gram–Schmidt process shows that the coefficients of the n-th orthogonal polynomials are
continuous functions of ε.

After these we turn to the construction. In Lemma 5.3 we set l = 2, [a1, b1] = [−2,−1] and [a2, b2] = [0, 1].
Let E = [−2,−1] and I = [0, 1] be these two intervals and mη the normalized Lebesgue measure on E ∪ Iη , where
Iη = [0, 1− η], 0 < η < 1/2. Let x(η)n,k, k = 1, 2, . . . , n denote zeros (in increasing order) of the n-th orthogonal polynomial
pn(mη, ·) associatedwithmη , and let x(η)

n,jη0
be the smallest positive zero of pn(mη, ·). For large n this exists, and by Theorem4.1

we know that x(η)
n,jη0+1

≥ c/n2 with some c > 0 independent of η < 1/2 and n.

If η′ > η, then, by Lemmas 5.2 and 5.3, for large n, say for n ≥ Nη,η′ , there are at least two more zeros of pn(mη′ , ·) in
E than pn(mη, ·) has there (the proportion of the zeros lying in E is larger for pn(mη′ , ·) than for pn(mη, ·)). This means that
x(η

′)

n,jη0+1
∈ E, while x(η)

n,jη0+1
∈ Iη by definition. Hence, no matter how n ≥ Nη,η′ is fixed, if ε is moving from η to η′, the zero

x(ε)
n,jη0+1

moves from the interval [c/n2,∞) to the interval (−∞,−1] in a continuous manner. So there is an η < ε < η′ such

that x(ε)
n,jη0+1

= e−n. Note that, in this case, necessarily jε0 = jη0 + 1, since there cannot be a positive zero of pn(mε, ·) smaller

than e−n
= x(ε)

n,jη0+1
, for then, by Theorem 4.1, x(ε)

n,jη0+1
would have to be larger than c/n2. Thus, x(ε)n,jε0

= e−n.

Based on this, we can easily define sequences 0 = ε0 < ε1 < · · · < 1/2 and integers n0 < n1 < · · · such that

x(εm)
nk,j

εm
0

= e−nk(1 + O(k−1)) (5.2)
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for all m ≥ k, the O being uniform in m and k. Indeed, if εm, nm are already given, then select an ε′
m > εm so small that for

εm ≤ ε ≤ ε′
m we have

|x(ε)nk,jε0
− x(εm)

nk,j
εm
0

| < e−nk/m2 for all k ≤ m, (5.3)

and then let nm+1, εm+1 be the numbers with

x(εm+1)

nm+1,j
εm+1
0

= e−nm+1

that the above procedure gives for η = εm and η′
= ε′

m (actually, in that procedure nm+1 can be any sufficiently large
number—just pick any one of them). This completes the definition of the sequences {εm}, {nm}.

Note that (5.2) holds, since, by (5.3) with ε = εm+1 (and m replaced by the l in the summation below)

|x(εm)
nk,j

εm
0

− e−nk | = |x(εm)
nk,j

εm
0

− x(εk)
nk,j

εk
0

|

≤

m−1
l=k

|x(εl+1)

nk,j
εl+1
0

− x(εl)
nk,j

εl
0
| ≤

m−1
l=k

e−nk/l2 ≤ e−nk/k.

Now if ε is the limit of {εm}, then it follows that

x(ε)nk,jε0
− e−nk = e−nkO(k−1) (5.4)

for all k, and this proves (5.1). �
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