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Fast decreasing and orthogonal polynomials

Vilmos Totik

Abstract. This paper reviews some aspects of fast decreasing polynomials
and some of their recent use in the theory of orthogonal polynomials.

1. Fast decreasing polynomials

Fast decreasing, or pin polynomials have been used in various situations. They
imitate the ”Dirac delta” best among polynomials of a given degree. They are
an indispensable tool to localize results and to create well localized ”partitions of
unity” consisting of polynomials of a given degree.

We use the setup for them as was done in [5], from where the results of this
section are taken. Let Φ be an even function on [−1, 1], increasing on [0, 1], and
suppose that Φ(0) ≤ 0. Consider e−Φ(x), and our aim is to find polynomials Pn of
a given degree ≤ n such that

(1.1) Pn(0) = 1, |Pn(x)| ≤ e−Φ(x), x ∈ [−1, 1].

Let nΦ = n be the minimal degree for which this is possible. The following theorem
gives an explicitly computable bound for this minimal degree.

Theorem 1.1. (Ivanov–Totik [5])

1

6
NΦ ≤ nΦ ≤ 12NΦ,

where

NΦ = 2 sup
Φ−1(0)≤x<Φ−1(1)

√
Φ(x)

x2

+

∫ 1/2

Φ−1(1)

Φ(x)

x2
dx+ sup

1/2≤x<1

Φ(x)

− log(1− x)
+ 1.

Here
Φ−1(t) = sup{u Φ(u) ≤ t}

is the generalized inverse.
It can be shown that each term can be dominant in NΦ, but, in the most

important cases, the second term gives the order of nΦ.
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Theorem 1.1 is universal in the sense that the function Φ may have parameters,
in particular it may include the degree n of the polynomial. In applications mostly
the following two types of decrease is used. Let ϕ, ϕ(0) ≤ 0, be an even function
on [−1, 1]. Assume that ϕ is increasing on [0, 1] and there is a constant M0 such
that ϕ(2x) ≤ M0ϕ(x) for all 0 < x ≤ 1/2.

Corollary 1.2. There are Pn of degree at most n = 1, 2, . . . with

Pn(0) = 1, |Pn(x)| ≤ Ce−cnϕ(x), x ∈ [−1, 1],

(where c, C > 0 are independent of n), if and only if∫ 1

0

ϕ(u)

u2
du < ∞.

On the other hand, if ψ, ψ(0) ≤ 0, is an even function on R for which ψ is
increasing on [0,∞) and there is a constant M0 such that ψ(2x) ≤ M0ψ(x) for all
x > 0, then we have

Corollary 1.3. There are Pn of degree at most n = 1, 2, . . . with

Pn(0) = 1, |Pn(x)| ≤ Ce−cψ(nx), x ∈ [−1, 1],

(where c, C > 0 are independent of n), if and only if∫ ∞

−∞

ψ(u)

1 + u2
du < ∞.

In Corollary 1.2 the decrease of {Pn(x)}∞n=1 is exponential at every x �= 0. In
Corollary 1.3 this decrease is somewhat worse, but the polynomials Pn start to get
small very close to 0 (e−cψ(nx) start having effect from |x| ∼ 1/n).

As concrete examples consider

Example 1.4.

Pn(0) = 1, |Pn(x)| ≤ Ce−cn|x|α , x ∈ [−1, 1],

with some Pn of degree at most n = 1, 2, . . . (and with some c, C > 0) is possible
precisely for α > 1.

Example 1.5.

(1.2) Pn(0) = 1, |Pn(x)| ≤ Ce−c(n|x|)β , x ∈ [−1, 1],

with some Pn of degree at most n = 1, 2, . . . (and with some c, C > 0) is possible
precisely for β < 1.

In particular,

Pn(0) = 1, |Pn(x)| ≤ Ce−cn|x|, x ∈ [−1, 1],

is NOT possible for polynomials of degree at most n. It easily follows from Theorem
1.1 that to have this decrease one needs deg(Pn) ≥ cn logn.
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2. Quasi-uniform zero spacing of orthogonal polynomials

Let μ be a Borel-measure on [−1, 1] with infinite support, let pn(x) = γnx
n+· · ·

denote the orthonormal polynomials with respect to μ, and let xn,1 < xn,2 < · · · <
xn,n be the zeros of pn. There is a vast literature on the spacing of these zeros.
For example, in the case of Jacobi polynomials classical results show (see e.g. [16,
Ch 6]) that if xn,k = cos θn,k, then θn,k − θn,k+1 ∼ 1/n (here, and in what follows,
A ∼ B means that the ration A/B is bounded away from 0 and ∞). With

Δn(x) =

√
1− x2

n
+

1

n2

this is the same as
xn,k+1 − xn,k ∼ Δn(xn,k),

and we call this behavior quasi-uniform spacing (B. Simon would probably use a
terminology of some kind of “clock behavior”). One can visualize quasi-uniform
spacing in the following way: project the zeros xn,k onto the unit circle (up and
down) to get 2n points. These points divide the unit circle into 2n arcs. Now
quasi-uniform behavior means that the length of these arcs is ∼ 1/n, i.e. the ratio
of the length of any two of these arcs is bounded by a constant independent of the
arcs and of n. Note that this is also true for the arcs around ±1 which are the
projections of the segments [−1, x1,n] and [xn,n, 1].

In the paper [11] this quasi-uniform behavior was shown to be the case for a
large class of measures, namely for the so called doubling measures. A measure μ
with supp(μ) = [−1, 1] is called doubling if

(2.1) μ(2I) ≤ Lμ(I), for all intervals I ⊂ [−1, 1].

Here 2I is the interval I enlarged twice from its center. This is a fairly weak
condition, for example, all generalized Jacobi weights

dμ(x) = h(x)
∏

|x− xj |γjdx, γj > −1, h > 0 continuous,

are doubling. On the other hand, if dμ(x) = |x|γ for −1 ≤ x < 0, and dμ(x) = |x|δ
for 0 < x ≤ 1, then this μ is doubling only if γ = δ. Note also that by a result
of Feffermann and Muckenhoupt [3], a doubling measure can vanish on a set of
positive measure, so a doubling measure is not necessarily in the Szegő class. With
this notion the aforementioned result states as

Theorem 2.1. (Mastroianni-Totik [11]) If μ is doubling, then

(2.2) A−1 ≤ xn,k+1 − xn,k

Δn(xn,k)
≤ A

with some constant A independent of n and k, i.e. the zeros are quasi-uniformly
distributed.

Note that there is a “rule of thumb”: zeros accumulate where μ is large. The
reason for this is that the monic orthogonal polynomials pn/γn minimize the L2(μ)-
norm:

(2.3)

∫ (
pn(μ, ·)

γn

)2

dμ = min

{∫
P 2
ndμ Pn(x) = xn + · · ·

}
.

But this is only a very crude rule, since for a weight like

dμ(x) = |x− 1/2|200|x+ 1/2|−1/2dx
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the zero spacing is quasi-uniform regardless that the weight is much stronger around
−1/2 than around 1/2. Of course, finer spacing will distinguish such differences in
the weight (see e.g. [23]).

Y. Last and B. Simon [8] had the first results on local zero spacing if only local
information is used on the weight. They proved that
1. if dμ(x) = w(x)dx and for some q > 0

A|x− Z|q ≤ w(x) ≤ B|x− Z|q

in a neighborhood of a point Z, then (with a C independently of n)

|x(1)
n (Z)− x(−1)

n (Z)| ≤ C

n

where x
(−1)
n (Z) ≤ Z ≤ x

(1)
n (Z) are the zeros enclosing Z, and

2. if w is bounded away from 0 and ∞ on I, then (with a c independently of n)

|x(1)
n (y)− x(−1)

n (y)| ≥ c

n

inside I.
This was extended to locally doubling measures by T. Varga:

Theorem 2.2. (Varga [24]) If μ is doubling on an interval I, then

xn,k+1 − xn,k ∼ 1

n

locally uniformly inside I.

The endpoint version of this is:

Theorem 2.3. (Totik-Varga [19]) If μ is doubling on I = [a, b] and μ((a −
ε, a)) = 0, then

xn,k+1 − xn,k ∼
√
xn,k+1 − a

n
+

1

n2

locally uniformly for xn,k ∈ [a, b− ε].

So this holds around local endpoints of the support (i.e. at which, for some
ε > 0, μ((a− ε, a)) = 0 but μ((a, a+ ε)) �= 0).

Zero spacing is connected to the measure via Christoffel functions and the
Markov inequalities. So to see how fast decreasing polynomials enter the picture in
connection with zero spacing we have to discuss Christoffel functions.

3. Christoffel functions

Recall the definition of the n-th Christoffel function associated with a measure
μ:

λn(x) = inf
Pn(x)=1

∫
|Pn|2dμ,

where the infimum is taken for all polynomials of degree at most n taking the value
1 at the point x. It is well known (and easily comes from the minimality property
(2.3)) that

λn(x) =

(
n∑

k=0

|pk(μ, x)|2
)−1

.
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Their importance lies in the fact that Christoffel functions, unlike the orthogonal
polynomials, are monotone in the measure μ (as well as in their index n). Hence,
they are much easier to handle than the orthogonal polynomials themselves.

For them the following rough asymptotics was proved.

Theorem 3.1. (Mastroianni-Totik [11]) If μ is doubling, then for x ∈ [−1, 1]

λn(x) ∼ μ([x−Δn(x), x+Δn(x)])

uniformly in n and x ∈ [−1, 1].

Recall also the Cotes numbers:

λn,k = λn(xn,k),

which appear in Gaussian quadrature∫ 1

−1

fdμ ∼
n∑

k=1

λn,kf(xn,k).

For them Theorems 2.1 and 3.1 easily give

Theorem 3.2. (Mastroianni-Totik [11]) If μ is doubling, then for all n and
1 ≤ k < n we have

(3.1) B−1 ≤ λn,k

λn,k+1
≤ B,

with some constant B independent of n and k.

Now Theorems 2.1 and 3.2 have a converse:

Theorem 3.3. (Mastroianni-Totik [11]) If μ is supported on [−1, 1] and
(2.2) and (3.1) are true, then μ is doubling.

We mention that it is an open problem if (2.2) (i.e. quasi-uniform zero spacing)
alone is equivalent to μ being doubling.

Next, we show how fast decreasing polynomials are used in connection with
zero spacing. Zero spacing of orthogonal polynomials is controlled by the Christoffel
function via the Markov inequalities:

(3.2)

k−1∑
j=1

λn,j ≤ μ((−∞, xn,k)) ≤ μ((−∞, xn,k]) ≤
k∑

j=1

λn,j .

If we apply this with the index k and the index i, then it follows that

(3.3)
k−1∑

j=i+1

λn,j ≤
∫ xn,k

xn,i

dμ ≤
k∑

j=i

λn,j .

Suppose we want to prove the upper estimate in Theorem 2.2. Thus, suppose
that μ is a doubling weight on, say, [−1, 1], and we want to prove xn,k+1 − xn,k ≤
C/n for all zeros lying in, say, [−1/2, 1/2]. We claim, that to this all we need is the
bound

(3.4) λn(x) ≤ Cμ([x− 1/n, x+ 1/n]), x ∈ [−3/4, 3/4].

Indeed, then from the Markov inequality (3.3) and from (3.4), we have

μ([xn,k, xn,k+1]) ≤ λn,k + λn,k+1(3.5)

≤ C
(
μ([xn,k − 1/n, xn,k + 1/n]) + μ([xn,k+1 − 1/n, xn,k+1 + 1/n])

)
.
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We may assume xn,k+1 − xn,k > 4/n, since otherwise there is nothing to prove.
Then we set I = [xn,k − 1/n, xn,k+1 + 1/n], E1 = [xn,k − 1/n, xn,k + 1/n] and
E2 = [xn,k+1 − 1/n, xn,k+1 + 1/n]. Using the doubling property (2.1) and the
bound (3.5), we get

μ(I) ≤ Lμ([xn,k, xn,k+1]) ≤ CL (μ(E1) + μ(E2)) .

Now it can be shown that the doubling property implies that with some K and
r > 0

μ(E1) ≤ K

(
|E1|
|I|

)r

μ(I),

μ(E2) ≤ K

(
|E2|
|I|

)r

μ(I).

Consequently, the preceding inequalities yield

1 ≤ 2CL
K

|I|r (|E1|+ |E2|)r

i.e.

xn,k+1 − xn,k < |I| ≤ (2CLK)1/r
2

n
.

Thus, it is enough to prove (3.4), and this is where fast decreasing polynomials
enter the picture. Since we want to prove a local result like (3.4) from the local
assumption that μ is doubling in a neighborhood I of x, we may assume that
x = 0 ∈ I = [−a, a] and supp(μ) ⊂ [−1, 1]. Take fast decreasing polynomials Pn of
degree at most n such that

Pn(0) = 1, |Pn(x)| ≤ Ce−c(n|x|)1/2 , x ∈ [−1, 1]

(see (1.2)). On [2k/n, 2k+1/n] ⊂ [−a, a] we have

|Pn(x)| ≤ C exp(−c2k/2),

and at the same time, by the doubling property of μ on [−a, a], we have

μ([2k/n, 2k+1/n]) ≤ μ([2k/n, (2k + 2k+1)/2n]) ≤ L2μ([2k−1/n, 2k/n])

≤ · · · ≤ L2kμ([0, 1/n]).

Hence,∫ 1

0

|Pn|2dμ ≤ C
∑

2k/n≤a

exp(−c2k/2)L2kμ([0, 1/n]) + e−c(na/2)1/2μ([−1, 1]).

Here the sum is convergent, and it is easy to see that the doubling property implies
μ([0, 1/n]) ≥ (c/ns) with some s, so the preceding inequality gives∫ 1

0

|Pn|2dμ ≤ Cμ([0, 1/n]).

A similar estimate holds for the integral over [−1, 0], and this verifies (3.4).
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4. Nonsymmetric fast decreasing polynomials

Symmetric fast decreasing polynomials that we have considered up to now, are
not enough to prove this way the endpoint case, namely Theorem 2.3. The problem
is not in the requirement that the bound e−Φ(x) is a symmetric function; indeed,
if Φ is not even, then one can consider instead of it the symmetric Φ(x) + Φ(−x)
which is at least as large as Φ(x) (minus an irrelevant constant). However, so far
we have requested that (1.1) should hold on [−1, 1], i.e. there is a control on Pn on
a relatively long interval to the right and to the left from the peaking point 0. If
the left-interval where one needs to control Pn is considerably shorter (like in the
endpoint case), then one can get faster decrease.

Theorem 4.1. (Totik-Varga [19]) For β < 1 there are C, c > 0 such that
for all x0 ∈ [0, 1/2] there are polynomials Qn(t) of degree at most n = 1, 2, . . . such
that Qn(x0) = 1,

|Qn(t)| ≤ C exp

⎛
⎝−

(
cn|t− x0|√

|t− x0|+
√
x0

)β
⎞
⎠ , t ∈ [0, 1].

Note that here the denominator is ∼ √
x0 on [0, 2x0], which, for such x, results

in a large positive factor in the exponent when compared to what we have in the
symmetric case. For example, in the extreme case when x0 = 0 we get: there are
Pn of degree at most n such that Pn(0) = 1 and

|Pn(x)| ≤ Ce−cnxγ

, x ∈ [0, 1],

precisely if γ > 1/2. Compare this with Example 1.4 according to which in the
symmetric case

|Pn(x)| ≤ Ce−nxβ

, x ∈ [−1, 1],

is possible precisely if β > 1.
Now the upper estimate in Theorem 4.1 goes through the Markov inequalities

and the estimate of the Christoffel function:

(4.1) λn(x) ≤ Cμ([x− δn(x), x+ δn(x)])

where

δn(x) =

√
xn,k+1 − a

n
+

1

n2

exactly as in the proof in the preceding section; and (4.1) follows from Theorem
4.1 as the analogous result (3.4) followed from (1.2).

5. Fast decreasing polynomials on the complex plane

For a long time fast decreasing polynomials and their applications were re-
stricted to the real line. Recently it has turned out that they also exist on more
general sets on the complex plane and they play a vital role in some questions
related to orthogonal polynomials.

Let K ⊂ C be a compact subset of the complex plane and Z ∈ K. Of course,
if Z lies in the interior of K (or in the interior of one of the connected components
of its complement) then, by the maximum modulus principle, there are no fast
decreasing polynomials on K that peak at Z. The situation is different if Z lies on
the so called outer boundary of K, defined as the boundary ∂Ω of the unbounded
component of the complement C \K.
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Theorem 5.1. (Totik [17], [20]) Let Z ∈ ∂Ω be a point on the outer boundary
of K. Assume there is a disk in Ω that contains Z on its boundary. Then, for
γ < 1, there are a c > 0 and polynomials Qn of degree at most n = 1, 2, . . . such
that Qn(Z) = 1, |Qn(z)| ≤ 1 for z ∈ K and

(i): type I:

|Qn(z)| ≤ Ce−c(n|z−Z|)γ , z ∈ K,

(ii): type II:

|Qn(z)| ≤ Ce−cn|z−Z|1/γ , z ∈ K.

These two types of decrease are the analogues of Examples 1.4 and 1.5. Here,
exactly as on the real line, γ = 1 is not possible.

We also mention, that the assumption that there is a disk in Ω containing Z on
its boundary is very natural; in fact, it cannot be replaced e.g. by the assumption
that there is a cone/wedge in the complement of opening < π with vertex at Z.

In the next sections we shall give applications of these complex fast decreasing
polynomials.

6. Christoffel functions on a system of Jordan curves

Recall that a Jordan curve is the homeomorphic image of the unit circle C1,
while a Jordan arc is the homeomorphic image of the interval [0, 1].

Let E be a finite system of smooth (C2) Jordan curves and let μ be a Borel-
measure on E. We assume that there are infinitely many points in the support of
μ. The definition of the Christoffel functions is the same:

λn(μ, z) = inf
Pn(z)=1

∫
|Pn|2dμ,

and we have again that if pn(μ, z) are the orthonormal polynomials, then

1/λn(μ, z) =
n∑
0

|pk(μ, z)|2.

To describe the asymptotic behavior of λn on E, we need the concept of equi-
librium measures. The equilibrium measure μE of E minimizes the logarithmic
energy ∫ ∫

log
1

|z − t|dν(z)dν(t)

among all Borel-measures ν supported on E having total mass 1. We shall also
define the equilibrium density ωE as the density (Radon-Nikodym derivative) of
the equilibrium measure with respect to arc length measure s on E: dμE = ωEds.
The same concepts can be defined for arcs, and even for more general sets.

For example,

ω[−1,1](x) =
1

π
√
1− x2

,

while for a circle/disk of radius r we have ωE ≡ 1/2πr, i.e. in this case the
equilibrium measure lies on the bounding circle and it has constant density there
(the constant coming from the normalization to have total mass 1). With these
notions we can state
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Theorem 6.1. (Totik [17], [20]) Let E be a finite family of C2 Jordan curves,
and assume that μ is a Borel-measure on E for which log μ′ ∈ L1(s), where μ′ is
the Radon-Nikodym derivative of μ with respect to arc measure s. Then at every
Lebesgue-point z0 of μ and log μ′

lim
n→∞

nλn(μ, z0) =
μ′(z0)

ωE(z0)
.

Recall, we say that z0 ∈ γ is a Lebesgue-point (with respect to s) for the
integrable function w if

lim
s(J)→0

1

s(J)

∫
J

|w(ζ)− w(z0)|ds(ζ) = 0,

where the limit is taken for subarcs J of E that contain z0, the arc length s(J)
of which tends to 0. Also, if dμ = wds + dμs is the decomposition of μ into its
absolutely continuous and singular part with respect to s, then z0 is a Lebesgue-
point for μ if it is Lebesgue-point for w and

lim
s(J)→0

μs(J)

s(J)
= 0.

There is a local version of Theorem 6.1, where the smoothness of E and the
Szegő condition μ′ ∈ L1(s) is assumed only in a neighborhood of z0 (see [17], [20]).

The theorem is also true when some of the curves are replaced by arcs, but
the proof for the arc case is completely different (the polynomial inverse image
approach to be discussed below cannot be used; an arc has no interior, it cannot be
exhausted by lemniscates), and is, again, based heavily on complex fast decreasing
polynomials.

w0

z
0

E

TN

Figure 1. Creating lemniscates

Sketch of the proof of Theorem 6.1
There are two distinctively different parts: the continuous case has been dealt

with in [17], while the case of general Lebesgue-points in [20].
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Part I. Continuous case: μ is absolutely continuous and μ′ = w is continuous
and positive at z0.

In this case we use a polynomial inverse mapping (see [21]).

a): The result is known for the unit circle C1 (Szegő).
b): Go over to a lemniscate E∗ = T−1

N (C1) where TN is an appropriate fixed
polynomial (see Figure 1).

c): Approximate E by a leminscate E∗ = T−1
N (C1) containing z0 (see Figure

2).

Here, in part c), fast decreasing polynomials of type II (see Theorem 5.1) are
used in a very essential way. For the approximation in part c) one also needs an
extension of Hilbert’s lemniscate theorem: Suppose that Γ is another system of C2

Jordan curves consisting of the same number of components as E such that each
component of Γ lies in the corresponding component of E with the exception of
the point z0, where the two (system of) curves touch each other and have different
curvatures. Then there is a lemniscate E∗ = T−1

N (C1) consisting of the same number
of component and which separates E and Γ (and of course touch both at z0).

E

z0

E*

Figure 2. Approximating E by a lemniscate

Part II. Reduction to the continuous case.

1): Set dν = μ′(z0)
ωE(z0)

ds on the component of E that contains z0, and let ν = μ

on other components.
The density of this ν is just constant on the component of E which

contains z0, so for this ν Part I applies at z0.
2): Show that λn(ν, z0) = (1 + o(1))λn(μ, z0).

Here, and in many similar questions, the main problem is how to control the
size of the optimal polynomials in

λn(ν, z) = inf
Pn(z)=1

∫
|Pn|2dν.

This problem is handled by the following inequality.
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Theorem 6.2. (Totik [20]) Let γ be a C2 Jordan curve and w ≥ 0 a measur-
able function on γ with w, logw ∈ L1(s). If z0 ∈ γ is a Lebesgue-point for logw,
then there is a constant M such that for any polynomials Pn of degree at most
n = 1, 2, . . . and for any z ∈ γ (or for z lying inside γ)

(6.1) |Pn(z)|2 ≤ MeM
√

n|z−z0| n

∫
γ

|Pn|2w ds.

This is a fairly non-trivial estimate, for example nothing like this is true outside
γ:

Example 6.3. Let γ be the unit circle, w ≡ 1, Pn(z) = zn, z0 = 1. Then, for
z > 1,

|Pn(z)|2 = z2n = (1 + (z − 1))2n ≥ en(z−1),

and here the right hand side is far from being ≤ MeM
√

n|z−1| n.

The crucial idea is to combine Theorem 6.2 with fast decreasing polynomials
of type I (see Theorem 5.1): Qεn(z0) = 1,

|Qεn(z)| ≤ Ce−(εn|z−z0|)2/3 , z ∈ E.

Now no matter how small ε > 0 is, the factor e−(εn|z−z0|)2/3 kills the factor

eM
√

n|z−ζ0| in (6.2), so the product PnQεn is bounded on γ and is very small
away from z0. At the same time, it has almost the same degree at Pn, and we can
use these as test polynomials to estimate the Christoffel functions for the measure
ν (or μ) in Part II.1) above. Using the Lebesgue-point property and these test
polynomials, it is relatively easy to verify Part II.2).

7. Universality

Let w be an integrable weight function on some compact set Σ ⊂ R, and let pk
be the orthonormal polynomials associated with w. Form the so called reproducing
kernel

Kn(x, y) =

n∑
k=0

pk(x)pk(y).

A form of universality of random matrix theory/statistical physics at a point x
claims

Kn

(
x+ a

w(x)Kn(x,x)
, x+ b

w(x)Kn(x,x)

)
Kn(x, x)

→ sin π(a− b)

π(a− b)

as n → ∞. This was proved under analyticity of w in various settings by different
authors (see e.g. Pastur [12], Deift, Kriecherbauer, McLaughlin, Venakides and
Zhou, [2] or Kuijlaars and Vanlessen [6], [7]). D. S. Lubinsky [10] proved it under
mere continuity: if Σ = [−1, 1] and w > 0 is continuous in (−1, 1), then universality
is true at every x ∈ (−1, 1). Actually, he proved universality at an x ∈ (−1, 1) if
w(x)dx ∈ Reg and w > 0 is continuous at x. Here Reg is the class of measures μ
for which

lim inf λn(μ, x)
1/n ≥ 1

at every point x of the support with the exception of a set of zero logarithmic
capacity. This is a weak global condition on the measure, and it says that for most
points x in the support the value |Pn(x)| of polynomials is not exponentially larger
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than their L2(μ)-norm ‖Pn‖L2(μ). See [15] for various reformulations of regularity
and for different regularity criteria.

Extension of Lubinsky’s universality to general support and to almost every-
where convergence (under Szegő condition) was done by Simon [13], Findley [4]
and Totik [18].

Lubinsky had a second, complex analytic approach to universality, which was
abstracted by Avila, Last and Simon [1]: universality is true at a point x0 ∈ S if

(i):

lim
n→∞

1

n
Kn(μ;x0 + a/n, x0 + a/n) =

ωΣ(x0)

w(x0)

uniformly in a ∈ [−A,A] for any fixed A,

(ii): there is a C > 0 such that for any A > 0, |z| ≤ A and for sufficiently
large n ≥ nA

1

n
Kn(x0 + z/n, x0 + z/n) ≤ CeC|z|, z ∈ C.

Since 1/λn(μ, x) = Kn(x, x), property (i) is basically the asymptotics for
Christoffel functions discussed before (with the small change x0 → x0+a/n, called
by Simon the “Lubinsky wiggle”, see Remark 3 on p. 225 of [14]). On the other
hand, (ii) is not that easy to verify at a given non-continuity point. Now (ii) follows
from the inequality (6.1) with the use of fast decreasing polynomials of type II (see
Theorem 5.1) at every point which is a Lebesgue-point for w and logw. This way
one gets

Theorem 7.1. (Totik [22]) Let μ ∈ Reg and dμ(x) = w(x)dx on an interval
I with logw ∈ L1(I). Then universality is true at every x0 ∈ I which is a Lebesgue-
point for both w and logw. In particular, it is true a.e.

That universality is true almost everywhere under a local Szegő condition was
proved in [18] by a totally different method (using polynomial inverse images). It
should be noticed that these two absolutely different approaches (namely in [18] and
Theorem 7.1) need the same assumption, namely local Szegő condition w ∈ L1(I).
It is an open problem if this Szegő condition can be replaced by something weaker
(like w > 0 a.e. in I).

8. The Levin-Lubinsky fine zero spacing theorem

Let again w be an integrable weight, but now assume that its support is [−1, 1],
and let xn,k be the zeros of the associated orthogonal polynomials pn(μ, x). The
following remarkable result was proved as a consequence of Lubinsky’s universality
theorem.

Theorem 8.1. (Levin-Lubinsky [9]) If w > 0 is continuous on (−1, 1), then

xn,k+1 − xn,k = (1 + o(1))

√
1− x2

n,k

n

uniformly for xn,k ∈ [−1 + ε, 1− ε].

Actually, Levin and Lubinsky proved more, namely that the same is true if it
is only assumed that w(x)dx ∈ Reg, w is continuous and positive at a point X,
and |xn,k −X| = O(1/n).
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The extension to more general support was given independently by Simon and
Totik:

Theorem 8.2. (Simon [13], Totik [18]) Let μ be a measure on the real line
with compact support S in the Reg class. Assume also that dμ(x) = w(x)dx,
logw ∈ L1(I) on some interval I. Then at every X ∈ I which is a Lebesgue-point
for w and logw, we have

(8.1) xn,k+1 − xn,k =
1 + o(1)

nπωS(X)
, |X − xn,k| = O(1/n),

where ωS denotes the equilibrium density of S with respect to linear Lebesgue-
measure.

In [13] the continuity and positivity of w was used, and in [18] a somewhat
less precise result (as regards where (8.1) holds) was verified. The stated more
precise form comes from Theorem 7.1, in the proof of which complex fast decreasing
polynomials have played a crucial role.
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