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Abstract In this paper, we prove a sharp Bernstein-type inequality for algebraic
polynomials on circular arcs.
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1 Results

Inequalities for algebraic or trigonometric polynomials play a fundamental role in
various problems ranging from number theory to differential equations. One of the
most classical ones is Riesz’ inequality [11, Satz I’]: if Pn is a polynomial of degree
at most n, C1 denotes the unit circle, and ‖ · ‖K denotes supremum norm on a set K ,
then

∣
∣P ′

n(z)
∣
∣ ≤ n‖Pn‖C1, z ∈ C1. (1)
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The corresponding inequality for an interval was proven by Bernstein [1]:

∣
∣P ′

n(x)
∣
∣ ≤ n√

1 − x2
‖Pn‖[−1,1], −1 < x < 1, (2)

and for the uniform norm of the derivative, we have the so-called Markov inequality
[4]

∥
∥P ′

n

∥
∥[−1,1] ≤ n2‖Pn‖[−1,1].

In this paper, we prove the following analog for circular arcs. Let 0 < ω ≤ π , and
let

Kω = {

eiθ | θ ∈ [−ω,ω]} (3)

be the circular arc on the unit circle of central angle 2ω and with midpoint at 1.

Theorem 1 If Pn is a polynomial of degree at most n, then

∣
∣P ′

n

(

eiθ
)∣
∣ ≤ n

2

(

1 +
√

2 cos(θ/2)√
cos θ − cosω

)

‖Pn‖Kω, θ ∈ (−ω,ω). (4)

This is sharp:

Theorem 2 For every θ ∈ (−ω,ω), there are nonzero polynomials Pn of degree n =
1,2, . . . such that

∣
∣P ′

n

(

eiθ
)∣
∣ ≥ (

1 − o(1)
)n

2

(

1 +
√

2 cos(θ/2)√
cos θ − cosω

)

‖Pn‖Kω. (5)

Of course, the ω = π case is just the original Riesz inequality (1). Also, if we write
the consequence for an arc on the circle RC1 − R = {z | |z + R| = R}:

∣
∣P ′

n

(

R
(

eiθ − 1
))∣

∣ ≤ n

2R

(

1 +
√

2 cos(θ/2)√
cos θ − cosω

)

‖Pn‖RKω−R, θ ∈ (−ω,ω); (6)

apply it with ω = 1/R and θ = x/R, x ∈ [−1,1]; and let R → ∞; then we obtain (2)
(with a change of variable), since

∣
∣P ′

n

(

R
(

eiθ − 1
))∣

∣ → ∣
∣P ′

n(ix)
∣
∣, ‖Pn‖RKω−R → ‖Pn‖[−i,i]

and

2R2(cos(x/R) − cos(1/R)
) → 1 − x2.

The inequality in Theorem 1 can be written in alternative forms using the equi-
librium measure νKω of Kω and Green’s function g(z) = gC\Kω

(z,∞) with pole at
infinity of the complement of Kω (see [3, 9] or [10] for these concepts). In fact, if
dνKω(z)/ds is the density (Radon-Nikodym derivative) of the equilibrium measure
νKω with respect to arc length on C1, then (4) is the same as

∣
∣P ′

n(ζ )
∣
∣ ≤ n

2

(

1 + 2π
dνKω(ζ )

ds

)

‖Pn‖Kω, ζ ∈ Kω, (7)
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and if g′±(ζ ) denote the normal derivatives of Green’s function in the direction of the
two normals to Kω , then another equivalent form is

∣
∣P ′

n(ζ )
∣
∣ ≤ nmax

{

g′−(ζ ), g′+(ζ )
}‖Pn‖Kω, ζ ∈ Kω. (8)

For the reformulations of Theorem 1 given in (7) and (8), see the proof below, in
particular Proposition 3 and Corollaries 4 and 5. We believe that the form given in (8)
is (with a possible (1 + o(1)) factor) the correct form of the Bernstein inequality on
smooth Jordan curves. Our proof for Theorem 2 shows that if Kω is replaced by any
C2 Jordan curve or Jordan arc, or even by a family of these, then an estimate better
than (8) cannot be given; i.e., the asymptotic Bernstein factor is at least as large as
nmax{g′−(ζ ), g′+(ζ )}.

We also mention the Markov-type inequality: if Pn is a polynomial of degree at
most n, then

∥
∥P ′

n

∥
∥

Kω
≤ (

1 + o(1)
)n2

2
cot

(
ω

2

)

‖Pn‖Kω. (9)

This is sharp again: for some nonzero polynomials Pn, we have

∥
∥P ′

n

∥
∥

Kω
≥ (

1 − o(1)
)n2

2
cot

(
ω

2

)

‖Pn‖Kω. (10)

These are immediate consequences of [2], p. 243, see Sect. 2.
For even n, Theorem 1 is an easy consequence of the classical Videnskii inequality

on trigonometric polynomials, and for odd n, it also follows from a related inequality
of Videnskii for a trigonometric expression in which the frequencies of cosine and
sine are an integer plus one half. This derivation will be done in the next section.
The proof of Theorem 2 in Sect. 5 will be based on a theorem in [5] for Bernstein-
type inequalities on a Jordan curve (homeomorphic image of the unit circle). In the
process, we shall need to calculate the normal derivatives of Green’s function of the
complement of C \ Kω , which will be done in Sect. 3. Once this is done, we give in
Sect. 4 an alternative proof for Theorem 1 using a result of Borwein and Erdélyi.

The authors are thankful to Paul Nevai, who called their attention to the fact that in-
equality (1) was first published by M. Riesz and was later rediscovered by S.N. Bern-
stein.

2 Theorem 1 and Videnskii’s Inequalities

Let

V (θ) = V (ω; θ) =
√

2 cos(θ/2)√
cos θ − cosω

= cos(θ/2)
√

sin2(ω
2

) − sin2( θ
2

)
. (11)

The classical Bernstein inequality for trigonometric polynomials was extended by
Videnskii (see, e.g., [2], Chap. 5, E.19, p. 242 or [12]): let Qm(t) be a trigonometric
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polynomial with real coefficients of degree at most m, and let ω ∈ (0,π). Then for
any θ ∈ (−ω,ω), we have

∣
∣Q′

m(θ)
∣
∣ ≤ mV (ω; θ)‖Qm‖[−ω,ω]. (12)

There is an extension to half-integer trigonometric polynomials [13]: let

Qm+1/2(t) =
m

∑

j=0

aj cos

((

j + 1

2

)

t

)

+ bj sin

((

j + 1

2

)

t

)

, aj , bj ∈ R.

Then for any θ ∈ (−ω,ω), we have

∣
∣Q′

m+1/2(θ)
∣
∣ ≤

(

m + 1

2

)

V (ω; θ)‖Qm+1/2‖[−ω,ω]. (13)

A standard trick leads to the same inequalities with complex coefficients: for exam-
ple, if Q̃m is a trigonometric polynomial with complex coefficients and θ ∈ (−ω,ω),
then let |τ | = 1 be such that τQ̃′

m(θ) = |Q̃′
m(θ)|. Now if we apply (12) to the real

trigonometric polynomial Qm(t) = 
(τQ̃m(t)), then we get (12) for Q̃m.

Proof of Theorem 1 Let Pn be an algebraic polynomial of degree at most n, and set

Qn/2(t) := e−i n
2 tPn

(

eit
)

. (14)

For this,

‖Qn/2‖[−ω,ω] = ‖Pn‖K,

and

Q′
n/2(θ) = e−i n

2 θ (−in/2)Pn

(

eiθ
) + e−i n

2 θP ′
n

(

eiθ
)

eiθ i. (15)

So
∣
∣P ′

n

(

eiθ
)∣
∣ ≤ ∣

∣Q′
n/2(θ)

∣
∣ + n

2

∣
∣Pn

(

eiθ
)∣
∣, θ ∈ (−ω,ω),

and (4) is an immediate consequence of (12) (in the case when n is even) and (13)
(when n is odd) with m = n/2, because the second term on the right is ≤ ‖Pn‖Kω .

Since (15) gives, for t ∈ (−ω,ω),

∣
∣
∣
∣Q′

n/2(t)
∣
∣ − ∣

∣P ′
n(e

it )e−i n
2 t

∣
∣
∣
∣ ≤ ‖Pn‖Kω

n

2
, (16)

(9) follows from the following inequality of Videnskii (see, e.g., [2], p. 243): if Qm(t)

is a trigonometric polynomial of degree m, then for 2m ≥ (3 tan2(ω
2 ) + 1)1/2,

∥
∥Q′

m

∥
∥[−ω,ω] ≤ 2m2 cot

ω

2
‖Qm‖[−ω,ω]. (17)

Indeed, we may assume that n is even (if it is odd, consider Pn as a polynomial of
degree at most n + 1), and then we can apply (17) to the Qn/2 in (14) (note that now
the term on the right of (16) is o(n2)).

Since (17) is sharp (see [2], p. 243), (10) also follows.
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3 The Normal Derivatives of Green’s Function

Let K = Kω. Denote Green’s function of C \ K with pole at infinity by g(ζ ), g(ζ ) =
gC\K(ζ,∞). There are two normals to K ; the “outer” normal is pointing into the
exterior of the unit circle, and the “inner” normal is pointing towards its interior. We
need to compute the normal derivatives g′+, g′− of g with respect to both normals.

Denote the equilibrium measure of K by ν. It is known that ν is absolutely con-
tinuous with respect to arc length, see [10], p. 209, Theorem 2.1. We write dν/ds for
the density of ν with respect to arc measure. Recall also in the next proposition the
definition of V from (11).

Proposition 3 Let ζ0 = eiθ0 be an inner point of K and g′+, g′− the normal derivatives
of Green’s function in the direction of the outer and inner normals, respectively. Then

g′+(ζ0) = 1

2

(

1 +
√

2 cos θ0/2√
cos θ0 − cosω

)

(18)

and

g′−(ζ0) = 1

2

(

−1 +
√

2 cos θ0/2√
cos θ0 − cosω

)

. (19)

Corollary 4 We have

g′+(ζ0) + g′−(ζ0) = 2π
dν(ζ0)

ds
, (20)

g′+(ζ0) + g′−(ζ0) = V (θ0), (21)

and

g′+(ζ0) − g′−(ζ0) = 1. (22)

Proof Fix ζ0 = eiθ0 ∈ K , where θ0 ∈ (−ω,ω).
Let g̃ be the analytic conjugate of g with the normalization g̃(e−iω) =

limζ→e−iω g̃(ζ ) = 0, and let G(z) = g(z) + ig̃(z) be the complex Green’s func-
tion. Then, using the properties of Green’s functions, it is easy to see that Ψ (z) =
exp(G(z)) maps C \ K conformally onto the exterior of the unit circle.

Set

R(z) = −(

z − eiω
)(

z − e−iω
)

and S(z) = (z+1). We cut the plane along the arc K and take the branch of the square
root

√
R(z) which takes the value i at 0 (note that R(0) = −1). Then

√
R(0) = i =

iS(0).
With these notations, it was proved in [7], formula (5.12), that

G(z) = 1

2

∫ z

e−iω

1

ζ

(

1 − iS(ζ )√
R(ζ )

)

dζ, (23)
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where the integration is along a path from e−iω to z that does not intersect K . This
can also be seen directly from the facts that

• √
R(z)/i is positive on (−∞,1) and negative on (1,∞), the integrand in (23)

behaves as 2/ζ for large ζ , and therefore 
G(z) ∼ log |z|, and
• iS(ζ )/

√
R(ζ ) is real (see the calculation below) on both sides of the arc K , hence

G is purely imaginary on both sides of the cut.

Note also that the integration in (23) is independent of the path of integration because
∮

K

1

ζ

(

1 − iS(ζ )√
R(ζ )

)

dζ = 0,

see (26) below.
Now if ζ0 = eiθ0 is an inner point of K , then

g′+(ζ0) = 
 ∂G(ζ0)

∂n+
= 
 ζ0G

′(ζ0+) = 
 1

2

(

1 − iS(ζ0)√
R(ζ0+)

)

, (24)

where ζ0+ indicates that the appropriate value is taken on the outer side of K (which
is the side that lies outside the unit disk), while

g′−(ζ0) = 
 ∂G(ζ0)

∂n−
= −
 ζ0G

′(ζ0−) = 
 1

2

(
iS(ζ0)√
R(ζ0−)

− 1

)

, (25)

and here ζ0− indicates that the appropriate value is taken on the inner side of K .
Here, for ζ0 = eiθ0 lying in the inner side of K , we have

R
(

eiθ0
) = −(

eiθ0 − eiω
)(

eiθ0 − e−iω
) = −eiθ0

(

eiθ0 − 2 cosω + e−iθ0
)

= −2eiθ0(cos θ0 − cosω),

and hence

iS(ζ0)√
R(ζ0−)

= 1 + eiθ0

eiθ0/2
√

2(cos θ0 − cosω)
=

√
2 cos θ0/2√

cos θ0 − cosω

is real and positive. In a similar vein, for ζ0 = eiθ0 lying in the outer side of K , we
have

iS(ζ0)√
R(ζ0+)

= − iS(ζ0)√
R(ζ0−)

= −
√

2 cos θ0/2√
cos θ0 − cosω

. (26)

Plugging these into (24)–(25) we get (18) and (19).
From these formulae (21) and (22) immediately follow. Formula (20) is known,

see, e.g., [10], Theorem 2.3, p. 211. �

Corollary 5 Let Ψ be a conformal map from C \K onto the exterior of the unit disk.
Then for ζ0 = eiθ0 lying in the interior of K , we have

g′+(ζ0) = V (θ0) + 1

2
= ∣

∣Ψ ′(ζ0+)
∣
∣. (27)
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The derivative on the right-hand side is understood from the outside of Δ (by the
Kellogg-Warschawski theorem Ψ ′(ζ0+) exists on the boundary in the sense that
Ψ ′(ζ ) has a limit as ζ → ζ0 from the outside, see [8], Theorems 3.5, 3.6; further-
more this limit is nonzero).

Note also that different Ψ ’s differ by a multiplicative constant of modulus 1, so it
does not matter which one we take.

Proof The first equality was verified in (18).
In the proof of Proposition 3, we have also seen that

g′+(ζ0) = 
 ζ0G
′(ζ0+) = 
Ψ ′(ζ0+)ζ0

Ψ (ζ0+)
.

Now at ζ0, the direction of the outer normal to K is ζ0, so (using the conformality
of Ψ ) Ψ ′(ζ0+)ζ0/|Ψ ′(ζ0+)| is the direction of the outer normal to C1 at the point
z = Ψ (ζ0+), but this direction is again the same as z = Ψ (ζ0+). As a consequence,
Ψ ′(ζ0+)ζ0/Ψ (ζ0+) is positive, and hence we have the formula

g′+(ζ0) = 
Ψ ′(ζ0+)ζ0

Ψ (ζ0+)
=

∣
∣
∣
∣

Ψ ′(ζ0+)ζ0

Ψ (ζ0+)

∣
∣
∣
∣
=

∣
∣
∣
∣

Ψ ′(ζ0+)ζ0

Ψ (ζ0+)

∣
∣
∣
∣
= ∣

∣Ψ ′(ζ0+)
∣
∣. (28)

�

4 An Alternative Proof for Theorem 1

In this section, we prove Theorem 1 using the following result of P. Borwein and T.
Erdélyi (see [2], p. 324, Theorem 7.1.7). Recall that we denote the unit disk by Δ and
the unit circle by C1. Let ak ∈ C \ C1, k = 1, . . . ,m; set

B+
m(z) :=

∑

k:|ak |>1

|ak|2 − 1

|ak − z|2 , B−
m(z) :=

∑

k:|ak |<1

1 − |ak|2
|ak − z|2 ;

and let

Bm(z) := max
(

B+
m(z),B−

m(z)
)

.

Then, for every rational function r(z) of the form r(z) = Q(z)/
∏m

k=1(z− ak), where
Q is a polynomial of degree at most m, we have

∣
∣r ′(z)

∣
∣ ≤ Bm(z)‖r‖C1 z ∈ C1. (29)

We shall need the function

ζ = Φ(z) = z
1 + z sin(ω/2)

z + sin(ω/2)
. (30)

Simple computation gives, as, e.g., in [6], Eq. (4), that Φ is a conformal map from the
complement of the unit disk onto C\K , so Ψ = Φ−1 is one of the Ψ ’s in Corollary 5.
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It is also easy to see that if 
z > − sin(ω/2), then ζ = Φ(z) lies on the outer side of
the arc K (i.e., then ζ = ζ+), while if 
z < − sin(ω/2), then ζ = Φ(z) lies in the
inner side of the arc K (i.e., in this case ζ = ζ−).

Without loss of generality, we may assume that the polynomial in Theorem 1 is of
the form Pn(ζ ) = (ζ − α1) . . . (ζ − αn) (i.e., it has leading coefficient 1) and define

r(z) := Pn

(
1

Φ(z)

)

, (31)

where Φ is the function from (30). Then

‖r‖C1 = ‖Pn‖K

and (see (30))

r(z) =
n

∏

j=1

(
z + sin(ω/2)

z(1 + z sin(ω/2))
− αj

)

=
∏n

j=1(−αj sin(ω/2)z2 + (1 − αj )z + sin(ω/2))

zn(z sin(ω/2) + 1)n
.

So, to use (29), we set m = 2n, a1 = · · · = an = 0, and an+1 = · · · = a2n =
−1/ sin(ω/2). For z = eit , we see that

B−
2n(z) = n and B+

2n(z) = n

∣
∣ −1

sin(ω/2)

∣
∣
2 − 1

∣
∣ −1

sin(ω/2)
− eit

∣
∣
2
,

and here the second term is

B+
2n(z) = n

cos2(ω/2)

|1 + sin(ω/2) cos t + i sin(ω/2) sin t |2

= n
cos2(ω/2)

1 + sin2(ω/2) + 2 sin(ω/2) cos t
.

Taking maximum, we get

B2n(z) =
{

n if 
z = cos t ≥ − sin(ω/2),

n
cos2(ω/2)

1+sin2(ω/2)+2 sin(ω/2) cos t
if 
z = cos t ≤ − sin(ω/2).

(32)

It is important to observe that B2n(z) = B−
2n(z) = n (first line) if ζ = Φ(z) is “from

the outer side” of K . Hence, the Borwein–Erdélyi inequality implies that
∣
∣
∣
∣
P ′

n

(
1

Φ(z)

)
Φ ′(z)
Φ2(z)

∣
∣
∣
∣
≤ B2n(z)‖Pn‖K,

and since here |Φ(z)| = 1 for z ∈ C1, we get for Φ(z) = ζ =: eiθ , θ ∈ (−ω,ω),

∣
∣P ′

n

(

e−iθ
)∣
∣ ≤ B2n(z)

|Φ ′(z)| ‖Pn‖K. (33)



Constr Approx (2013) 37:223–232 231

For each θ ∈ (−ω,ω), there are two z ∈ C1 such that Φ(z) = eiθ , one on the arc in
the half-plane {z | 
z ≥ − sin(ω/2)}, and one on the complementary arc of C1. We
choose the former one in (33) which corresponds to the first line in (32), and get

∣
∣P ′

n

(

e−iθ
)∣
∣ ≤ n

|Φ ′(z)| ‖Pn‖K. (34)

Since Ψ (Φ(z)) = z, we have Ψ ′(Φ(z))Φ ′(z) = 1; i.e., |Ψ ′(ζ )| = 1/|Φ ′(z)|. If we
substitute this into (34) and use Corollary 5, we obtain (4) (note also that V (−θ) =
V (θ)). �

5 Proof of Theorem 2

It was proved in [5], Theorems 1.3, 1.4, that if Γ is a C2 smooth Jordan curve (homeo-
morphic image of the unit circle), Ω is the unbounded component of its complement,
and gΩ(z,∞) is Green’s function in Ω with pole at infinity, then

∣
∣P ′

n(ζ )
∣
∣ ≤ (

1 + o(1)
)

n
∂gΩ(ζ,∞)

∂n
‖Pn‖Γ , ζ ∈ Γ,

where n is the inner normal to Γ with respect to Ω . Furthermore, this is sharp, for if
ζ ∈ Γ is given, then there are nonzero polynomials Pn with

∣
∣P ′

n(ζ )
∣
∣ ≥ (

1 − o(1)
)

n
∂gΩ(ζ,∞)

∂n
‖Pn‖Γ . (35)

Now consider K and a point ζ on K which is not one of the endpoints of K .
We augment K to a C2 smooth Jordan curve Γ by attaching a small domain (as the
interior of Γ ) to K that lies in the unit disk (see Fig. 1).

We can do that in such a way that if ε > 0 is given, then

∂gΩ(ζ,∞)

∂n
≥ (1 − ε)

∂gC\K(ζ,∞)

∂n
= (1 − ε)g′+(ζ ). (36)

Fig. 1 The domain attached
to K
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In fact, since K is part of Γ , we have gΩ(ζ,∞) ≤ gC\K(ζ,∞), and at infinity the dif-
ference gC\K(ζ,∞) − gΩ(ζ,∞) coincides with log(cap(Γ )/cap(K)) (see [9], The-
orem 5.2.1), where cap(·) denotes logarithmic capacity. As we shrink Γ to K , the
capacity of Γ tends to the capacity of K , and so the nonnegative harmonic function
gC\K(ζ,∞) − gΩ(ζ,∞) tends to zero at infinity (this difference is also harmonic
there). Now we get from Harnack’s theorem ([9], Theorems 1.3.1 and 1.3.3) that this
difference tends to 0 uniformly on compact subsets of C \ K , and then (36) will be
true if Γ is sufficiently close to K by [5], Lemma 7.1.

Now apply (35) to this Γ . For the corresponding polynomials Pn we can write, in
view of ‖Pn‖K ≤ ‖Pn‖Γ ,

∣
∣P ′

n(ζ )
∣
∣ ≥ (

1 − o(1)
)

n
∂gΩ(ζ,∞)

∂n
‖Pn‖Γ ≥ (

1 − o(1)
)

n(1 − ε)g′+(ζ )‖Pn‖K.

Since here ε > 0 is arbitrary, and by Corollary 5 the last factor on the right-hand side
is (1 + V (θ))/2 with ζ = eiθ , the proof is complete. �

Acknowledgement Supported by ERC grant No. 267055.
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