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Abstract In this paper, we consider numerical and trigonometric series with a very general mono-

tonicity condition. First, a fundamental decomposition is established from which the sufficient parts

of many classical results in Fourier analysis can be derived in this general setting. In the second part

of the paper a necessary and sufficient condition for the uniform convergence of sine series is proved

generalizing a classical theorem of Chaundy and Jolliffe.
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1 Introduction

In this paper we consider a generalization of monotonicity for real sequences {an}. The condition
we use is that for some λ ≥ 2 and a positive constant M the inequality

2n∑
k=n

|∆ak| :=
2n∑
k=n

|ak − ak+1| ≤
M

n

λn∑
k=n/λ

|ak| (1.1)

is true for all n, where
λn∑

k=n/λ

means
∑

n/λ≤k≤λn

.

Monotone sequences clearly satisfy (1.1). See the papers [2]–[4], [8]–[12] for various other

variations, of which (1.1) is the most general one. For positive sequences property (1.1) was first

introduced in [12], where it was called the Mean Value Bounded Variation (MVBV) condition,

and the papers [1], [5]–[6], [8]–[10], [12] show that (1.1) in the positive case allows one to derive

necessary and sufficient conditions for various properties of trigonometric sums in terms of their
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coefficient sequences. In the paper [12] it was also shown that from this point of view condition

(1.1) cannot be further weakened.

In the present paper we show that in many situations the positivity assumption can be

dropped. In particular, for the uniform convergence of sine series condition (1) allows us to

derive necessary and sufficient conditions for uniform convergence, thereby obtaining a very

general extension of the classical result of Chaundy and Jolliffe.

Throughout the paper, we always use M for the positive constant appearing in (1).

2 A basic decomposition and sufficient conditions

The main result of the present section is the following structural theorem which gives a decom-

position of any sequence with property (1.1) as a difference of two such nonnegative sequences.

Without loss of generality we may assume λ > 8 and M > 1 in (1.1). For a sequence {an}
set

bn =
1

n

λn∑
k=n/λ

|ak|. (2.1)

Theorem 2.1 Let {an} be an arbitrary sequence with property (1.1) with some λ > 8. Then

there is a constant B such that the sequences {Bbn} and {cn = Bbn−an} are nonnegative, and

they both satisfy (1.1).

Note that this gives the announced decomposition, since an = Bbn − (Bbn − an).

Actually, we will see that B = 4M is appropriate.

Proof We start with

Lemma 2.2 For all n we have

|an| ≤ 2Mbn.

Proof Suppose to the contrary that for some n we have |an| > 2Mbn. Then for all n < k ≤ 2n

we obtain from property (1.1) for {an} that

|ak| ≥ |an| −
k−1∑
j=n

|∆aj | > 2Mbn −Mbn = Mbn,

so

bn ≥ 1

n

2n∑
k=n

|ak| > Mbn,

which is not possible since M > 1. �
Next, we show that {bn} satisfies property (1.1).

Clearly, if (1.1) is true for sufficiently large n then it is true (with a possibly different M)

for all n, so in verifying (1.1) we may always assume n to be sufficiently large.

We have, from (2.1),

|∆bk| =

∣∣∣∣∣∣1k
λk∑

j=k/λ

|aj | −
1

k + 1

λ(k+1)∑
j=(k+1)/λ

|aj |

∣∣∣∣∣∣
≤

λk∑
j=(k+1)/λ

|aj |
1

k(k + 1)
+

∑
k/λ≤j<(k+1)/λ

|aj |
k

+
∑

λk<j≤λ(k+1)

|aj |
k + 1

.
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Therefore,

2n∑
k=n

|∆bk| ≤
2λn∑

j=n/λ

|aj |
λj∑

k=j/λ

1

k(k + 1)

+

λ(2n+1)∑
j=n/λ

|aj |

 ∑
λj−1<k≤λj

1

k
+

∑
j/λ−1≤k<j/λ

1

k + 1

 ,

and this easily gives

2n∑
k=n

|∆bk| ≤
2λn∑

j=n/λ

|aj |
λ

j
+

λ(2n+1)∑
j=n/λ

|aj |
(

1

λj − 1
+

1

j/λ

)
≤ 3λ2

n

λ(2n+1)∑
j=n/λ

|aj |. (2.2)

On the other hand, in
λn∑

k=n/λ

bk =

λn∑
k=n/λ

1

k

λk∑
j=k/λ

|aj |

an |aj | with n/λ ≤ j ≤ λ(2n+ 1) has coefficient∑
j/λ≤k≤λj
n/λ≤k≤nλ

1

k
=

∑
max(j,n)/λ≤k≤λmin(j,n)

1

k
≥ 1

λn
(λmin(j, n)−max(j, n)/λ) .

For n/λ ≤ j < n the right-hand side is

1

λn

(
λj − n

λ

)
≥ 1

λn

(
n− n

λ

)
≥ 1

2λ
,

while for n ≤ j ≤ λ(2n+ 1) it is

1

λn

(
λn− j

λ

)
≥ 1

λn
(λn− (2n+ 1)) ≥ 1

2
.

Therefore, we obtain from (2.2) that

2n∑
k=n

|∆bk| ≤
6λ3

n

λn∑
k=n/λ

bk (2.3)

which verifies property (1.1) for the sequence {bk}.

Finally, we show that cn := 4Mbn−an, which, according to Lemma 2.2, are all nonnegative,

also satisfy property (1.1). We follow the preceding proof. Now

2n∑
k=n

|∆ck| ≤ 4M
2n∑
k=n

|∆bk|+
2n∑
k=n

|∆ak|,

and here the last sum is, by property (1.1) for {an},
2n∑
k=n

|∆ak| ≤ Mbn ≤ M

n

2n∑
k=n+1

(|bn − bk|+ bk) ≤ M
2n∑
k=n

|∆bk|+
M

n

2n∑
k=n

bk.

Therefore, in view of (2.3),

2n∑
k=n

|∆ck| ≤ 5M

2n∑
k=n

|∆bk|+
M

n

2n∑
k=n

bk ≤ (5M · 6λ3 +M)
1

n

λn∑
k=n/λ

bk.
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But, by Lemma 2.2, we have

ck ≥ 4Mbk − 2Mbk ≥ bk,

so on the right we can replace bk by ck and we obtain property (1.1) for the sequence {cn}. �

Corollary 2.3 Suppose that a real sequence {an} satisfies the condition (1.1), and consider

the trigonometric series

S(x) ≡
∞∑

n=1

an sinnx.

(a) If
∞∑

n=1

|an|
n

< ∞, (2.4)

then S converges everywhere, and it is the Fourier series of its sum f(x).

(b) If lim
n→∞

nan = 0, then S converges uniformly.

(c) If, for some 0 < γ < 1, we have
∞∑

n=1

nγ−1|an| < ∞, (2.5)

then x−γf(x) is L1-integrable.

(d) If 1 < p < ∞, 1/p− 1 < γ < 1/p and

∞∑
n=1

np+pγ−2|an|p < ∞, (2.6)

then x−γf(x) is Lp-integrable.

(e) Let S(x) be a Fourier series of an integrable function f(x) ∈ L2π. If lim
n→∞

an logn = 0,

then S converges to f in L1-norm.

Statements (a), (c), (d) and (e) are also true for the cosine series

S(x) ≡
∞∑

n=0

an cosnx,

except that in (a) the claim is that convergence takes place for all x ̸= 0 (mod π). It is easy

to see that conditions (2.5) and (2.6) imply (2.4), so the function f(x) in (c) and (d) is well

defined.

We note that when {an} is positive, then the conditions in (b)–(e) are not only sufficient, but

also necessary (under the condition (1.1)), e.g. S converges uniformly if and only if lim
n→∞

nan =

0. When {an} can change sign, then the necessity of the given conditions may not be always

true. However, we shall discuss the uniform convergence case in Section 3, where we shall obtain

also the necessity of nan → 0.

Proof Corollary 2.3. (a) The claim for nonnegative sequences is in [11]. Therefore, in view

of Theorem 2.1, it is enough to show that condition (2.4) implies the same condition for the

sequences {bn} and {cn = Bbn−an}. Furthermore, in view of Lemma 2.2 we have for B = 4M ,

2Mbn ≤ Bbn − 2Mbn ≤ Bbn − an = cn ≤ Bbn + 2Mbn = 6Mbn, (2.7)
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so (2.4) needs to be verified only for the sequence {bn}. But that is immediate:∑
n

bn
n

=
∑
n

1

n2

∑
n/λ≤j≤λn

|aj | =
∑
j

|aj |
∑

j/λ≤n≤λj

1

n2
≤ λ3

∑
j

|aj |
j

< ∞.

The proof of (b) is similar: the statement for nonnegative sequences is in [12], and we can

apply Theorem 2.1, since an = o(1/n) implies

bn =
1

n

λn∑
k=n/λ

o(1/k) = o(1/n),

and the same is true for {cn}.

As for (c), the relevant statement for nonnegative sequences was proved in [5] or [7], so, in

view of Theorem 2.1, it is sufficient to verify again that (2.5) implies the same for the sequence

{bn} (see also (2.7)), which is immediate:∑
n

nγ−1bn =
∑
n

nγ−2
∑

n/λ≤j≤λn

|aj | =
∑
j

|aj |
∑

j/λ≤n≤λj

nγ−2 ≤ M1

∑
j

jγ−1|aj | < ∞.

The proof of (d) is similar if we note that the statement for nonnegative sequences is in [1]

or [9].

Finally, the verification for (e) is similar to that in (b), and the statement for nonnegative

sequences appears in [1] or [10].

As for the relevant results for cosine series, apply Theorem 2.1 in the same fashion, and use

the results for nonnegative sequences (see, for example, [11]). �

3 Uniform Convergence: Necessary Condition

It was proved by Chaundy and Jolliffe (see e.g. [13, Theorem V.1.3]) that if {an} is a positive

decreasing sequence then the series
∞∑

n=1

an sinnx (3.1)

converges uniformly if and only if

lim
n→∞

nan = 0.

There have been many generalizations of this result when the monotonicity of {an} is replaced

by some generalized monotonicity condition, but the positivity of the sequence has usually been

assumed. The next theorem gives a very general extension when positivity is not required.

Theorem 3.1 Let a real sequence {an} satisfy (1.1). Then the series (3.1) converges uniformly

if and only if nan → 0.

Proof The sufficiency follows from Corollary 2.3, so we only need to prove the necessity.

Therefore, assume that the series (3.1) converges uniformly, and we need to show that, under

condition (1.1), nan → 0. We are actually going to show that

lim
n→∞

λn∑
k=n/λ

|ak| = 0,
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and then nan → 0 follows from Lemma 2.2.

If condition (1.1) is true for a λ then it is true for any larger λ, therefore we may assume

that λ > 8 is an integer.

For an ε > 0 choose N so that for N ≤ k ≤ l we have∥∥∥∥∥∥
l∑

j=k

aj sin kx

∥∥∥∥∥∥ < ε. (3.2)

Let

Bn =

λn∑
k=n/λ

|ak|

and

B∗
n =

λ2n∑
k=n/λ2

|ak|.

Consider the sets

An :=

{
k : |ak| ≥

Bn

2λn
, n/λ ≤ k ≤ λn, k ∈ N

}
, (3.3)

and write |An| for the number of the elements in An. For each k ∈ [n/λ, λn] we have, in view

of Lemma 2.2, the estimate |ak| ≤ (2M/k)B∗
n ≤ (2λM/n)B∗

n, hence

Bn ≤

 ∑
k∈[n/λ,λn]\An

Bn

2λn
+

∑
k∈An

2λMB∗
n

n

 ≤ λnBn

2λn
+ |An|

2MλB∗
n

n
.

Therefore,

|An| ≥ n
1

4λM

Bn

B∗
n

. (3.4)

We select disjoint subsets S1, . . . , Sκn of [n/λ, λn] as follows. Set m1 = minAn, and select

ν1 according to the following procedure:

(i) If for j = 0, 1, · · · , j0, n/λ ≤ m1 + j ≤ λn the numbers am1+j have the same sign, and

for j = 0, 1, · · · , j0 − 1, |am1+j | ≥ Bn/4λn while |am1+j0 | < Bn/4λn, then let ν1 = j0.

(ii) If case (i) is not satisfied for any j0, then let ν1 = k0 for which am1+k0 is the first element

with m1 + k0 ∈ [n/λ, λn] to become zero or of opposite sign than am1 .

(iii) If neither (i) and (ii) happen, then simply let ν1 = l0 for which m1 + l0 is the first

number greater than λn. Define now

S1 = {m1, m1 + 1, · · · ,m1 + ν1 − 1} .

Next, set m2 = min(An \ S1) if this latter set is not empty, and using the same procedure we

select ν2 and define

S2 = {m2, m2 + 1, · · · ,m2 + ν2 − 1} .

We continue this procedure until we reach an Sκn for which An \ (S1 ∪ · · · ∪ Sκn) = ∅.
Our first task is to give an estimate for κn, i.e. for the number of these Sj ’s. Note first of

all that for all 1 ≤ j < κn we have∑
k∈Sj

|∆ak| ≥ |amj − amj+νj | ≥
Bn

4λn
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by the choice of the νj ’s (for j = κn this property may not be true). It is easy to see that (1.1)

implies
λn∑

k=n/λ

|∆ak| ≤
Mλ3

n

λ2n∑
k=n/λ2

|ak| =
Mλ3

n
B∗

n,

from which

Mλ3

n
B∗

n ≥
λn∑

k=n/λ

|∆ak| ≥
κn−1∑
j=1

∑
k∈Sj

|∆ak| ≥
κn−1∑
j=1

Bn

4λn
= (κn − 1)

Bn

4λn
,

i.e.

κn ≤ 4Mλ4B
∗
n

Bn
+ 1 ≤ 5Mλ4B

∗
n

Bn
(3.5)

follows.

Note now that all ak for k ∈ Sj are of the same sign, therefore it follows from (3.2) upon

substituting x = π/(2nλ) and using that for n/λ ≤ k ≤ λn we have

sin
kπ

2nλ
≥ 2

π

kπ

2nλ
≥ 1

λ2

that

1

λ2

∑
k∈Sj

|ak| ≤

∣∣∣∣∣∣
∑
k∈Sj

ak sin
kπ

2nλ

∣∣∣∣∣∣ < ε,

provided n/λ > N , where N is the threshold for (3.2). On summing up for all 1 ≤ j ≤ κn and

using (3.5) it follows that ∑
k∈An

|ak| ≤
κn∑
j=1

∑
k∈Sj

|ak| < ε5Mλ6B
∗
n

Bn
.

From here, in view of the definition of the set An in (3.3) and in view of the bound (3.4), we

can infer
1

8λ2M

B2
n

B∗
n

≤ ε5Mλ6B
∗
n

Bn
.

This shows that B3
n/(B

∗
n)

2 tends to zero as n → ∞.

Apply this with n = λm. Set qm = Bλm , m = 1, 2, . . .. Then B∗
n ≤ qm−1 + qm+1, hence for

these qm we can conclude that

q3m/(qm−1 + qm+1)
2 → 0 as m → ∞. (3.6)

We show that this implies qm → 0. Once this is done, the claim Bn → 0 follows, since

Bn ≤ qm + qm+1 with λm ≤ n < λm+1.

To prove qm → 0 note that (3.6) implies for any Λ > 0 and for some m ≥ mΛ

qm−1 + qm+1 ≥ Λq3/2m , m ≥ mΛ. (3.7)

Therefore,

2 lim sup
m→∞

qm ≥ Λ(lim sup
m→∞

qm)3/2.

Since this is true for any Λ, we can conclude that this limsup is either 0 (which is what we

want to prove) or it is infinity. In the latter case there is an m ≥ m3λ for which qm is larger
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than all previous qj , and it is larger than 1. Then (3.7) with Λ = 3λ gives qm+1 ≥ 2λqm. In

particular, qm+1 is larger than any previous qj . Now applying again (3.7) (with m replaced

by m + 1) we get in the same fashion that qm+2 ≥ 2λqm+1 ≥ (2λ)2qm, and so on, in general

qm+j ≥ (2λ)jqm > 2jλj for all j ≥ 1. However, that is impossible, since (3.2) implies an → 0,

therefore definitely qm+j ≤ o(λm+j). Hence lim sup qm → 0, and the proof is complete. �
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