
Polynomial approximation on polytopes1

Vilmos Totik

February 9, 2013

1AMS Classification: 41A10, 41A17 Keywords: polynomials, several variables, ap-
proximation, moduli of smoothness, K-functionals, strong inequalities



Contents

I The continuous case 1

1 The result 1

2 Outline of the proof 5

3 Fast decreasing polynomials 8

4 Approximation on simple polytopes 12

5 Polynomial approximants on rhombi 20

6 Pyramids and local moduli on them 22

7 Local approximation on the sets Ka 30

8 Global approximation of F = Fn on S1/32 excluding a neighbor-
hood of the apex 32

9 Global approximation of f on S1/64 34

10 Completion of the proof of Theorem 1.1 38

11 Approximation in Rd 41
11.1 Proof of A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.2 Proof of B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

12 A K-functional and the equivalence theorem 45

II The Lp-case 47

13 The Lp result 47

14 Proof of the Lp result 49

15 The dyadic decomposition 54

16 Some properties of Lp moduli of smoothness 62

17 Local Lp moduli of smoothness 70

18 Local approximation 83

1



19 Global Lp approximation excluding a neighborhood of the apex 87

20 Strong direct and converse inequalities 89

21 The K-functional in Lp and the equivalence theorem 94

2



Abstract

Polynomial approximation on convex polytopes in Rd is considered in uniform
and Lp-norms. For an appropriate modulus of smoothness matching direct
and converse estimates are proven. In the Lp-case so called strong direct and
converse results are also verified. The equivalence of the moduli of smoothness
with an appropriate K-functional follows as a consequence. The results solve
a problem that was left open since the mid 1980’s when some of the present
findings were established for special, so called simple polytopes.



Part I

The continuous case

1 The result

We consider the problem of characterization of best polynomial approximation
on polytopes in Rd. To have a basis for discussion, first we briefly review the
one-dimensional case.

Let f be a continuous function on [−1, 1]. With φ(x) =
√
1− x2 and r =

1, 2, . . . let
ωrφ(f, δ) = sup

0<h≤δ, x∈[−1,1]

∥∆r
hφ(x)f(x)∥[−1,1] (1.1)

be its so called φ-modulus of smoothness of order r, where

∆r
hf(x) =

r∑
k=0

(−1)k
(
r

k

)
f
(
x+ (

r

2
−k)h

)
(1.2)

is the r-th symmetric difference, and ∥ · ∥S denotes the supremum norm on a
set S. In (1.1) it is agreed that ∆r

hf(x) = 0 if [x− r
2h, x+ r

2h] ̸⊆ [−1, 1]. Let

En(f)[−1,1] = inf
pn

∥f − pn∥[−1,1]

be the error of best approximation of f by polynomials pn of degree at most n.
Then (see [12, Theorem 7.2.1]) for n ≥ r

En(f)[−1,1] ≤Mωrφ

(
f,

1

n

)
(1.3)

and (see [12, Theorem 7.2.4])

ωrφ

(
f,

1

n

)
≤ M

nr

n∑
k=0

(k + 1)r−1Ek(f)[−1,1], n = 1, 2, . . . , (1.4)

where M depends only on r.
(1.3)–(1.4) constitute what is usually called a characterization of the rate of

best polynomial approximation in terms of moduli of smoothness, e.g. they give

En(f)[−1,1] = O(n−α) ⇐⇒ ωrφ(f, δ) = O(δα)

for α < r. This is precisely what we want to do for multidimensional polynomial
approximation in Rd. (1.3) is usually called the direct, or Jackson-type, while
(1.4) is the converse, or Stechkin-type estimate. This latter (1.4) is a weak
converse to (1.3), but that is natural, since En(f) can tend to zero arbitrarily
fast, but ωrφ(f, 1/n) ≥ c/nr unless f is a polynomial of degree at most r − 1.
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In Rd we call a closed set K ⊂ Rd a convex polytope if it is the convex
hull of finitely many points. K is d-dimensional if it has an inner point, which
we shall always assume. The analogue of the φ-modulus of smoothness on K
was defined in [12, Chapter 12], and to recall its definition we need to consider
the function along lines in different directions. A direction e in Rd is just a
unit vector e ∈ Rd. Clearly, e can be identified with an element of the unit
sphere Sd−1, so Sd−1 is the set of all directions in Rd. Let K be a convex
polytope, x ∈ K and e ∈ Sd−1 a direction. The line le,x through x which is
parallel with e intersects K in a segment Ae,xBe,x. We call the minimum of the
distances between x and Ae,x, Be,x the distance from x to the boundary of K
in the direction of e:

dK(e, x) = min{dist(x,Ae,x), dist(x,Be,x)}, (1.5)

while

d̃K(e, x) =
√
dist(x,Ae,x) · dist(x,Be,x) (1.6)

could be called the normalized distance. Note that even if x lies on the boundary
of K, it may happen that dK(e, x), d̃K(e, x) > 0; for example, if K is a cube of
side length a, x is the midpoint of an edge and e is the direction of that edge,
then dK(e, x) = d̃K(e, x) = a/2.

If f is a continuous function on K, then we define its r-th symmetric differ-
ences in the direction of e as

∆r
hef(x) =

r∑
k=0

(−1)k
(
r

k

)
f
(
x+ (

r

2
−k)he

)
(1.7)

with the agreement that this is 0 if x + r
2he or x − r

2he does not belong to K.
Finally, define the r-th modulus of smoothness as (see [12, Section 12.2])

ωrK(f, δ) = sup
e∈Sd−1, h≤δ, x∈K

|∆r
hd̃K(e,x)e

f(x)|, (1.8)

which we shall often write in the form

ωrK(f, δ) = sup
e∈Sd−1

sup
h≤δ

∥∆r
hd̃K(e,x)e

f(x)∥K , (1.9)

i.e. ωrK(f, δ) is the supremum of the directional moduli of smoothness

ωrK,e(f, δ) := sup
h≤δ

∥∆r
hd̃K(e,x)e

f(x)∥K

for all directions. Note that when K = [−1, 1], then there is only one direction
(and its negative) and this modulus of smoothness takes the form (1.1), i.e.

ωrφ(f, δ) = ωr[−1,1](f, δ). (1.10)

2



Another way to write the modulus of smoothness (1.8) is

ωrK(f, δ) = sup
I

sup
h≤δ

∥∆r
hd̃K(e,x)e

f(x)∥I = sup
I
ωrI (f, δ), (1.11)

where I runs through all chords of K, so ωrK(f, δ) is just the supremum of all
the moduli of smoothness ωrI (f, δ) on chords of K, and here ωrI (f, δ) is just the
analogue (actually a transformed form) of the φ-modulus of smoothness ωrφ for
the segment I.

It is also immediate that

ωrφ(f, δ) ≡ ωrφ(f, 1), for all δ ≥ 1, (1.12)

and as a consequence,

ωrK(f, δ) ≡ ωrK(f, 1), for all δ ≥ 1. (1.13)

We also set
En(f)K = inf

Pn
∥f − Pn∥K ,

where the infimum is taken for all polynomials in d-variables of total degree at
most n. This is the error in best polynomial approximation and this is what we
would like to characterize.

The main result of this paper is

Theorem 1.1 Let K ⊂ Rd be a d-dimensional convex polytope and r = 1, 2, . . ..
Then, for n ≥ rd, we have

En(f)K ≤MωrK

(
f,

1

n

)
, (1.14)

where M depends only on K and r.

The matching weak converse

ωrK

(
f,

1

n

)
≤ M

nr

n∑
k=0

(k + 1)r−1Ek(f)K , n = 1, 2, . . . , (1.15)

is an immediate consequence of (1.4) if we apply it on every chord (considered
as [−1, 1]) of K. See [12, Theorem 12.2.3,(12.2.4)], which proof goes over to our
case without any change. Note also, that, exactly as in [12, Corollary 12.2.6],
we get the following consequence of (1.14)–(1.15).

Corollary 1.2 Let α > 0 and let f be a continuous function on a d-dimensional
convex polytope K ⊂ Rd. If f can be approximated with error n−α on any chord
I of K by polynomials (of a single variable on I) of degree at most n = 1, 2, . . .,
then En(f)K ≤Mn−α, where M depends only on K and α.
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This Corollary tells us that n−α rate of d-dimensional polynomial approximation
is equivalent to n−α-rate of one-dimensional polynomial approximation along
every segment of K (note that if we restrict any function/polynomial of d-
variables to a chord I of K we get a function/polynomial of a single variable on
I). This corollary is true only on polytopes, see [12, Proposition 12.2.7].

In Section 13 the same problem in Lp spaces will be considered, and in the
second part of the paper we verify a complete analogue of Theorem 1.1 for Lp-
approximation. In Lp spaces one can even do somewhat better (see Section 20),
and we shall prove a stronger form of Theorem 1.1 and its converse (1.15).

There have been many works on polynomial approximation in several vari-
ables, for some of the recent ones see e.g. [4]–[1], [6]–[8], [11], [17] and [21]–[23]
and the references there. In these works various moduli of smoothness are con-
structed for special sets like balls and spheres which solve the approximation
problem there. Often the moduli are shown to be equivalent to a K-functional,
and the approximation goes trough the use of that K-functional. These do not
work on polytopes, and precisely the absence of the relevant K-functional what
makes the problem of the present work difficult. We also mention the paper [13]
where global approximation is characterized in terms of local ones.

For special polytopes Theorem 1.1 had a predecessor: call K ⊂ Rd a simple
polytope if there are precisely d edges at every vertex of K. For example,
simplices and cubes/parallelepipeds are simple polytopes. Now it was proven in
Theorem [12, Theorem 12.2.3] that if K is a simple polytope, then

En(f)K ≤M

(
ωrK

(
f,

1

n

)
+ n−r∥f∥K

)
. (1.16)

It has been an open problem in the last 25 or so years if this is true for non-
simple polytopes (even for a single one!), and it is precisely what Theorem 1.1
claims in a slightly sharper form. The second term on the right of (1.16) is
usually dominated by the first one, so the main improvement in Theorem 1.1 is
not the dropping of this term (although we shall see that dropping that term
is an important step in the proof), but the dropping of the “simple polytope”
assumption. Why are simple polytopes easier to handle, i.e. why is (1.14) for
simple polytopes substantially weaker then for general ones? The answer is that
the crux of the matter is approximation around the vertices of the polytope.
Now a vertex of a simple polytope looks like a vertex of a cube (modulo an
affine transformation), and cubes are relatively easy to handle since they are
products of segments (therefore, approximation on cubes can be reduced to
approximation on [−1, 1], as was done in [12]). This is no longer true if there
are more than d edges at a vertex. Still, the simple polytope case will play an
important role in the proof of Theorem 1.1.

Acknowledgement. This work has been done over several years (the L∞ case
preceding considerably the Lp case) during which the research was supported by

4



the National Science Foundation DMS0968530 (Part I) and by the Europearn
Research Council grant No. 267055 (Part II).

2 Outline of the proof

The first part of this paper is devoted to the proof of Theorem 1.1. The proof
has several components, some of which are quite technical, therefore, in this
section we give an outline. Recall that a polytope in Rd is simple if there are
precisely d edges at every vertex.

Besides (1.8), we need another modulus of smoothness defined as

ωrK(f, δ) = sup
e∈E

sup
h≤δ

∥∆r
hd̃K(e,x)e

f(x)∥K , (2.1)

where E = EK is the direction of the edges of K. So the only difference in
between ωrK(f, δ) and ωrK(f, δ) is that in the former one we consider the sym-
metric differences in all directions, while in the latter only in the direction of
the edges of K. We shall use the fact that ωrK(f, δ) is invariant under affine
transformations: if Φ is an affine mapping of Rn onto Rn, if F is a continuous
function on Φ(K) and f = F (Φ), then

ωrΦ(K)(F, δ) = ωrK(f, δ), δ > 0. (2.2)

Indeed, it follows from the definitions that

∆r
hd̃Φ(K)(Φ(e),Φ(x))Φ(e)

(F (Φ(x)) = ∆r
hd̃K(e,x)e

f(x) (2.3)

for all x.
In [12, Theorem 12.1.1] it was proved that if Q is a cube then

En(f)Q ≤MωrQ

(
f,

1

n

)
, (2.4)

and [12, Theorem 12.1.1] claimed

En(f)K ≤M

(
ωrK

(
f,

1

n

)
+ n−r∥f∥K

)
(2.5)

for all simple polytopes. Our first step will be to get rid of the term n−r∥f∥K
on the right, i.e. to prove

En(f)K ≤MωrK

(
f,

1

n

)
(2.6)

for simple polytopes, and this is achieved in Section 4 with the use of (2.4),
which does not contain that term.
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It has already been observed in [12, Chapter 12] that one can get from any
polytope a simple polytope by cutting off small pyramids around every vertex,
and putting back these cut off pyramids constitutes no problem from the point
of view of approximation. So the main difficulty is proving the result (Theorem
1.1) for pyramids.

For a pyramid S with apex at P let aS be the dilation of S from P by the
factor a, and set Ka = aS \ (a/4)S. For small a this is a tiny simple polytope
close to P , and the main idea of the proof is to show that for this simple polytope
we have

ωrKa

(
f,

1

n
√
a

)
≤MωrS

(
f,

1

n

)
(2.7)

(note that on the left we have the modulus (2.1), while on the right the modulus
(1.9)). This will be done in Section 6. Now an application of (2.6) gives that
for a ≥ const/n2 there are polynomials pn

√
a of d variables of total degree at

most n
√
a such that

∥f − pn
√
a∥Ka ≤MωrKa

(
f,

1

n
√
a

)
≤MωrS

(
f,

1

n

)
,

and here M does not depend on n or a since all Ka are similar to one another.
Note that there is a huge gain here: the degree of the polynomial pn

√
a on the

left is much smaller than n, and still we get the required rate of approximation
(on the small set Ka). Once we have these local approximants in Section 7, we
will patch them together (in Section 8) by something like a polynomial partition
of unity. This system of polynomials will be constructed from non-symmetric
fast decreasing polynomials in Section 3. This patching works because even
though pn

√
a approximates f only on a tiny set Ka and outside that set they

can blow up, this blow-up can be controlled since the degree of pn
√
a is small

compared to n.
So basically everything boils down to proving (2.7). So why is (2.7) true?

Ka has edges that are parallel with the base edges of S, as well as with the
edges of S that emanate from the apex P (called apex edges). Now in the
direction of these last edges Ka is much shorter (∼ a-times shorter) than S,
and this gives d̃Ka(e, x) ≤ M

√
ad̃S(e, x) in these directions. So, when taking

the norms of the symmetric differences in (2.1) in these directions on Ka, we
automatically get the improvement stated in (2.7). However, in the direction of
the base edges of S the tiny set Ka is of the same “length” as S, and in these
directions the improvement needed in (2.7) is obtained via the observation that
any base direction is a linear combination of two apex edge directions, and, as
we have just observed, apex edge directions behave nicely. Of course, to apply
this idea somehow one needs to compare smoothness in the base edge directions
with smoothness in the corresponding apex edge directions; this will be done in
Section 5.

Unfortunately, we cannot do exactly what was described, instead the above
ideas give the necessary n-th degree approximation on a subset of S that misses
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a small strip (of width ∼ 1/n2) around the boundary of S. However, in Section 9
it will be shown that the appropriate rate of approximation on this strip around
the boundary automatically follows from the approximation on the rest of S.

The proof is the same in all dimensions, but the language is simpler in R3,
so first we prove Theorem 1.1 in R3, and in Section 11 we indicate the necessary
changes in higher dimension.

There is a K-functional related to polynomial approximation on [−1, 1],
namely

Kr,φ(f, t) = inf
g

(
∥f − g∥[−1,1] + t∥φrg(r)∥[−1,1]

)
. (2.8)

[12, Theorem 2.1.1] gives that there is an absolute constant M such that

1

M
Kr,φ(f, t

r) ≤ ωrφ(f, t) ≤MKr,φ(f, t
r) (2.9)

for all 0 < t ≤ 1 ([12, Theorem 2.1.1] is a general result and there this is
stated for 0 < t ≤ t0 with some t0, but the proof works for all t ≤ 1, when
φ(x) =

√
1− x2; or note simply that for t0 ≤ t ≤ 1 we have both Kr,φ(f, t

r) ∼
Kr,φ(f, t

r
0) and ωrφ(f, t) ∼ ωrφ(f, t0)). An analogue of (2.9) is not known for

polytopes in Rd, and precisely the lack of such a K-functional makes the proof
of Theorem 1.1 complicated. In Section 12 we shall prove an analogue of (2.9)
for polytopes, but that will actually be a consequence of Theorem 1.1.

Since
Kr,φ(f, (λt)

r) ≤ λrKr,φ(f, t
r), λ > 1, (2.10)

we can deduce from (2.9) the inequality

ωrφ(f, λt) ≤Mλrωrφ(f, t), λ > 1. (2.11)

Indeed, for λt ≤ 1 this is a consequence of (2.10) and (2.9), and for λt ≥ 1
it follows from this case and from that fact that the modulus of continuity
ωrφ(f, t) is constant on [1,∞) (see (1.12)). (2.11) can be easily transformed to
any segment I (cf. (1.10)) by linear transformation, where it takes the form

ωrI (f, λt) ≤MλrωrI (f, t), λ > 1. (2.12)

Now this and the form
ωrK(f, t) = sup

I⊂K
ωrI (f, t), (2.13)

where the supremum is taken for all chords I of K, gives

ωrK(f, λt) ≤MλrωrK(f, t), λ > 1, (2.14)

with an absolute constant M . In a similar manner, the modulus of smoothness
(2.1) can be written as

ωrK(f, t) = sup
I⊂K

ωrI (f, t), (2.15)
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where the supremum is now taken for all chords I of K that are parallel with
the edges of K, hence we obtain as before

ωrK(f, λt) ≤MλrωrK(f, t), λ > 1. (2.16)

In what follows we shall encounter inequalities where numerous constants
appear. Since in most cases we are not interested in the exact value of these
constants, we introduce the notation

A ≺ B (2.17)

for A ≤ CB with some constant C, the exact value of which is indifferent for us.
Sometimes we will indicate on what parameters the constant in ≺ is depending
on.

3 Fast decreasing polynomials

“Fast decreasing” or “pin” polynomials have been used in the past in various
contexts. Their characteristic is that they decrease fast away from a given point,
hence they are a sort of polynomial versions of Dirac deltas and they allow e.g.
to patch local approximants together to get a global one. This is precisely how
we will use them in this work; and they are one of the cornerstones of the
method of this paper. Actually, we shall use their integral forms; namely fast
decreasing polynomials go hand in hand with good polynomial approximants to
the signum function (in the sense specified below), which can be obtained from
fast decreasing polynomials by integration.

The “best” fast decreasing symmetric polynomials on [−1, 1] were found in
[14]. However, symmetric polynomials are not suitable for us, therefore below
we give a nonsymmetric construction that will suit our needs. We also men-
tion that the idea of using polynomial approximants to the signum function on
non-comparable intervals has already been proven useful in the theory of or-
thogonal polynomials with exponential weights. See [15, Theorem 7.5], where
nonsymmetric fast decreasing polynomials of the sort we are going to discuss
have been used. However, we shall need somewhat faster decrease than what is
in [15, Theorem 7.5].

I. Symmetric fast decreasing polynomials on [−1, 1]. We start from symmetric
polynomials. Let Φ, Φ(0) ≤ 0, be an arbitrary even function on [−1, 1] that is
increasing on [0, 1]; Φ may depend on parameters, as we shall see below. We
are interested in polynomials P such that P (0) = 1, P is even, P is decreasing
and nonnegative on [0, 1], and P (x) ≤ e−Φ(x), x ∈ [−1, 1] (so called “bell-
shaped” polynomials). [14, Theorems 1, 2] give very precise estimates on the
smallest possible degree nΦ of such a polynomial P . In particular, if Φ(1/2) ≥ 1,
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Φ−1(1) ≤ LΦ−1(0) and Φ(1) ≤ LΦ(1/2), then (see [14, Theorems 1, 2 and
Corollary 2])

nΦ ≤ C1

∫ 1

Φ−1(1)

Φ(u)

u2
du (3.1)

with some constant C1 that depends only on L (here, for v ≥ 0, we set

Φ−1(v) = sup{τ ∈ [0, 1] Φ(τ) ≤ v}.)

Let A ≥ 32 be a constant that will be at our disposal when we use the
construction below. For a natural number n ≥ 2 and for 1/n2 ≤ a ≤ 1/4 we set

Φ(x) = ΦAn,a(x) =

 0 for 0 ≤ |x| ≤
√
a/16,

4An
√
a log(2Ax/

√
a) for

√
a/16 ≤ |x| ≤ 1.

We have Φ−1(0) = Φ−1(1) =
√
a/16, Φ(1) ≤ 2Φ(1/2), and (integrate by parts)

∫ 1

√
a/16

4An
√
a log(2Au/

√
a)

u2
du ≤

4An
√
a
(
1 + log(2A

√
a

16 /
√
a)
)

√
a/16

≤ 64An logA.

Therefore, by (3.1), there are (bell-shaped) polynomials R
(0)
n of degree

≤ 64C1An logA (3.2)

with some absolute constant C1 such that R
(0)
n is even, R

(0)
n (0) = 1, 0 ≤ R

(0)
n ≤ 1

on [−1, 1], R
(0)
n is increasing on [−1, 0] and decreasing on [0, 1], and

R(0)
n (x) ≤ exp

(
−4An

√
a log(2Ax/

√
a)
)

for

√
a

16
≤ x ≤ 1. (3.3)

II. Symmetric fast decreasing polynomials on [−2, 2]. The polynomial R
(1)
n (x) =

R
(0)
n (x/2) has similar properties on [−2, 2], except that instead of (3.3) we have

R(1)
n (x) ≤ exp

(
−4An

√
a log(Ax/

√
a)
)

for x ∈ [−2, 2] \
[
−
√
a

8
,

√
a

8

]
.

(3.4)

III. Offsetting the peaking point. Set

R(2)
n (x) =

R
(1)
n

(
x−

√
3a
2

)
+R

(1)
n

(
x+

√
3a
2

)
1 +R

(1)
n

(
2
√

3a
2

) .

For this R
(2)
n (
√
3a/2) = 1, R

(2)
n is even, and for 0 ≤ x ≤ 1 we have

R(2)
n (x) ≤ 2R(1)

n

(
x−

√
3a

2

)
(3.5)
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Indeed, this is immediate, since, by the bell-shape form of R
(1)
n , we have for

0 ≤ x ≤ 1

R(1)
n

(
x+

√
3a

2

)
≤ R(1)

n

(
x−

√
3a

2

)
.

IV. Nonsymmetric fast decreasing polynomials on [0, 1]. Since R
(2)
n is even,

R
(3)
n (x) = R

(2)
n (

√
x) is a polynomial, R

(3)
n

(
3a
2

)
= 1 and (see (3.5)) 0 ≤ R

(3)
n ≤ 2

for x ∈ [0, 1]. If
∣∣x− 3a

2

∣∣ ≥ a
2 , then

a) either x ≥ 2a, and then∣∣∣∣∣√x−
√

3a

2

∣∣∣∣∣ ≥ x− 3a/2
√
x+

√
3a/2

≥ x/4

2
√
x
=

√
x

8
, (3.6)

b) or 0 ≤ x ≤ a, and then∣∣∣∣∣√x−
√

3a

2

∣∣∣∣∣ ≥ |x− 3a/2|
√
x+

√
3a/2

≥ a/2

2
√
a
=

√
a

4
. (3.7)

Hence, for 0 ≤ x ≤ a we get from (3.4), (3.5) and (3.7)

R(3)
n (x) ≤ 2R(1)

n

(
√
x−

√
3a

2

)
≤ 2 exp

(
−4An

√
a log

(
A

∣∣∣∣∣√x−
√

3a

2

∣∣∣∣∣/√a
))

≤ 2 exp
(
−4An

√
a log(A

√
a/4

√
a)
)
≤ 2 exp(−4An

√
a) (3.8)

since A ≥ 32. On the other hand, for 2a ≤ x ≤ 1 we get in a similar way from
(3.4), (3.5) and (3.6)

R(3)
n (x) ≤ 2 exp

(
−4An

√
a log(A

√
x/8

√
a)
)
≤ 2 exp

(
−4An

√
a log

4
√
x√
a

)
.

(3.9)

V. Approximation of a jump function. Let

γn =

∫ 1

0

R(3)
n (u)du,

and first we estimate this quantity from below. In view of (3.8) and (3.9) and
An

√
a ≥ 32, we can see that

1 = R(3)
n

(
3a

2

)
≤M := max

x∈[0,1]
R(3)
n (x)
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is attained at some x0 ∈ [a, 2a]. Now apply Bernstein’s inequality [5, Ch 4.,
Corollary 1.2] on [0, 1] to conclude that for t ∈ [a, 2a]∣∣∣∣(R(3)

n

)′
(t)

∣∣∣∣ ≤ n√
t(1− t)

M ≤ 2n√
a
M,

and so for u ∈ [x0 −
√
a/4n, x0 +

√
a/4n] ∩ [a, 2a] we have

R(3)
n (u) ≥ R(3)

n (x0)−
2n√
a
M |u− x0| ≥M − M

2
=
M

2
.

Now the interval [x0 −
√
a/4n, x0 +

√
a/4n]∩ [a, 2a] has length ≥

√
a/4n, so we

can conclude

γn ≥ M

2

√
a

4n
≥

√
a

8n
. (3.10)

Set now

R(4)
n (x) = R(4)

n,a(x) =
1

γn

∫ 1

x

R(3)
n (t)dt, x ∈ [0, 1]. (3.11)

Clearly, 0 ≤ R
(4)
n (x) ≤ 1 and R

(4)
n is decreasing on [0, 1]. We obtain from (3.9)

and (3.10) for 2a ≤ x ≤ 1 the inequality

R(4)
n (x) ≤ 16n√

a

∫ 1

x

exp

(
−4An

√
a log

4
√
t√
a

)
dt

≤ 16n√
a
a

∫ 1/a

x/a

exp
(
−4An

√
a log(4

√
u)
)
du

= 16n
√
a

∫ 1/a

x/a

(
1

16u

)2An
√
a

du ≤ 16n
√
a

2An
√
a− 1

1

(16x/a)2An
√
a−1

≤ exp
(
−An

√
a log(16x/a)

)
. (3.12)

On the other hand, for 0 ≤ x ≤ a we get from (3.8) and (3.10)

1−R(4)
n (x) =

1

γn

∫ x

0

R(3)
n (t)dt ≤ 1

γn

∫ a

0

2e−4An
√
adt ≤ 16n√

a
ae−4An

√
a

= 16n
√
a exp(−4An

√
a) ≤ exp(−An

√
a). (3.13)

The polynomials R
(4)
n of degree at most (64C1An logA)/2 + 1 ≤ C2,An are

the ones that we need. Note that, by (3.12) and (3.13), they approximate on
[0, a] ∪ [2a, 1] the function that is 1 on [0, a] and 0 on [2a, 1]. In particular, our
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construction in proving the main theorem of this work will use the estimates
(3.12) and (3.13).

For later use let us also mention the following, which can be easily obtained

from symmetric fast decreasing polynomials (e.g. from R
(0)
n if A, a are properly

chosen) by integration as in step V:

Lemma 3.1 If B ≥ 2, θ > 0 are given, then there is an l depending only on B
and θ such that for every n there are polynomials Un of degree at most ln for
which 0 ≤ Un ≤ 1 on [−1, 1], Un ≤ θn on [−1,−1/2B] and 1 − Un ≤ θn on
[1/2B, 1].

Indeed, the existence of such an Un also follows immediately from [14, Theorem
3].

4 Approximation on simple polytopes

In this section we prove Theorem 1.1 for simple polytopes in the sharper form
when ωrK(f, 1/n) is replaced by the smaller quantity ωrK(f, 1/n) from (2.1).
Recall that a polytope K ⊂ Rd is simple if at each vertex there are precisely d
edges. For example, cubes are simple polytopes.

Thus, we want to prove

En(f)K ≺ ωrK(f, n−1) (4.1)

for n ≥ rd, where ω is the modulus of smoothness (2.1) taken in edge directions
of K. Recall the ≺ notation from (2.17), so (4.1) means that En(f) is at most
a constant times ωrK(f, n−1).

The weaker inequality

En(f)K ≺ ωrK(f, n−1) + n−r∥f∥K (4.2)

was proved in [12, Theorem 12.2.3]. In general, this additional term is bounded
by the first term, but getting rid of this term is much more important than
aesthetical reasons would warrant. Indeed, we shall need to apply (4.1) to some
small pieces Ka of a general polytope S and to some small m≪ n instead of n
for which

ωrKa(f,m
−1) ≺ ωrS(f, n

−1),

and then we shall get ωrS(f, n
−1) rate of approximation on Ka by much smaller

degree polynomials than n. The weaker estimate (4.2) would completely destroy
this method, for then the additional factor m−r∥f∥Ka would be much larger
than ωrS(f, n

−1), so the improvement given in (4.1) is absolutely necessary for
the proof in this paper.

Note however, that (4.1) was proved in [12, Theorem 12.1.1] for cubes, and
hence, via an affine transformation, for all d-dimensional parallelepipeds. We

12



shall deduce (4.1) from this special case by representing K as a union of d-
dimensional parallelepipeds. We shall carry out the proof only for d = 3, the
general case is completely similar.

We may assume that K lies in the unit ball B1(0).
Fix a small ε > 0. Consider a vertex V of K and mark on each edge

emanating from V a point which is of distance ε from V . V and the marked
points generate a 3-dimensional parallelepiped TV , all edges of which are parallel
with the edges adjacent to V and all edges of TV are of length ε. Clearly, for
small ε > 0 this TV is part of K, and for sufficiently small ε > 0 the following
is also true: for every y ∈ K there is a 3-dimensional parallelepiped T (y) ⊂ K
containing y such that T (y) is a translation of one of the TV ’s. Indeed, with
some large but fixed M and small ε > 0 we do the following:

A) when y is in the Mε-neighborhood of a vertex V , then we use as T (y) a
translation of TV ,

B) when y belongs to an edge V1V2, then we use as T (y) a translation of either
TV1 or TV2 depending on which endpoint is closer to y, and the same is
the process if y is in the Mε-neighborhood of the edge V1V2 but not in
the Mε-neighborhood of V1 or V2,

C) when y belongs to a face V1 . . . Vl, then we use as T (y) a translation of either
one of TV1 , . . . , TVl depending on which endpoint is closer to y, and the
same is the process if y lies in the Mε-neighborhood of the face V1 . . . Vl
but not in the Mε-neighborhood of either of the edges of V1 . . . Vl, and,
finally,

D) when y is of distance ≥Mε from all faces, then we use as T (y) a translation
of any of the TV ’s (provided M is sufficiently large).

In addition, we also require

E) • y is not a vertex of T (y) unless y is a vertex of K,

• y does not lie on an edge of T (y) unless y lies on an edge of K, and

• y does not lie on a face of T (y) unless y lies on a face of K.

These can be easily achieved using the preceding procedure in A)–D).
Note that if, say, y is a vertex of K, then it is necessarily a vertex of T (y).
Note also that this selection of T (y) was made in such a way that for small

ε > 0 we have

F) if λT (y) is the dilation of T (y) by a factor λ made from its center, then
4T (y) ∩ K is still a parallelepiped (of side lengths in between ε and 4ε,
since T (y) ⊂ 4T (y) ∩K).

13



Call a parallelepiped T a K-parallelepiped if each edge of T is parallel
with an edge of K. Clearly, by property F, 4T (y) ∩ K and 2T (y) ∩ K are
K-parallelepipeds.

We have ∪
y∈K

T (y) = K,

so by compactness (see below) finitely many of these T (y) cover K, say

K =
k∪
j=1

T (yj). (4.3)

Indeed, it is clear that the vertices of K are covered by the T (y)’s where y
runs through the vertices of K. Next, if E is an edge with endpoints A,B,
then there is a closed segment E′ ⊂ E not containing A and B for which
E ⊂ T (A) ∪ T (B) ∪E′. By property E) the interiors of the edges of the T (y)’s
for y ∈ E′ cover E′, so by compactness we can select finitely many which cover
E′. If we do this for all edges we get a finite covering of the edges. Apply similar
reasoning (using property E)) to cover the faces, and finally all of K.

We set
T̃ (y) = 2T (y) ∩K. (4.4)

In view of F) this is a K-parallelepiped of side length in between ε and 2ε. We
claim that we can form a sequence T1, . . . , T2k2 such that each Ti is one of the
T̃ (yj), j = 1, 2, . . . , k (repetition allowed),

K =

2k2∪
i=1

Ti (4.5)

and Ti ∩ Ti+1 has non-empty interior for each i. Indeed, consider the graph G

the vertices of which are the T̃ (yj)’s, j = 1, 2, . . . , k, and T̃ (yj) and T̃ (yl) are
connected if their interior is non-empty. If this graph of k vertices is connected,
then there is a walk in it of length ≤ 2k2 going through all the points (just go
from a designated point to all the points in the graph along a path and back;
each such path is of length at most 2(k − 1)). Thus, it is sufficient to show
that G is connected. Suppose this is not the case, and let H be the union of all
the T̃ (yj)’s that can be reached from T̃ (y1), i.e. H is the union of a connected
component G1 of G. Then H cannot cover the whole interior of K, since then
every T̃ (yj) would intersect an element of this G1 so that the intersection has

non-empty interior, in which case necessarily T̃ (yj) ∈ G1, and we would get
G = G1, i.e. the connectedness of G. Hence, if G is not connected, then H
must have a boundary point Y lying in the interior of K, say Y ∈ T̃ (yj′), where

T̃ (yj′) ∈ G1. But Y also belongs to one of the T (yj)’s, say Y ∈ T (yj′′) (see

(4.3)), and then it is clear that Y belongs to the interior of T̃ (yj′′) (use property
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E) for Y ). But then T̃ (yj′) ∩ T̃ (yj′′) has non-empty interior, so T̃ (yj′′) ∈ G1,
which shows that Y is actually an interior point of

H =
∪

T̃ (yj)∈G1

T̃ (yj).

This contradiction proves the claim regarding the connectedness of G, and with
it concerning the existence of the sequence T1, . . . , T2k2 .

So each one of T1, . . . , T2k2 is a 3-dimensional K-parallelepiped with side-
lengths in between ε and 2ε, their union is K, and there is a δ > 0 such that
each Ti ∩ Ti+1 contains a ball Bi of radius δ. Now we need

Lemma 4.1 Let U ⊂ K be a set, T ⊂ K a K-parallelepiped with side-lengths
in between ε and 2ε such that U ∩ T contains a ball B of radius δ. Then there
is an l that depends only on ε, δ and K for which

Eln(f)U∪T ≤ 2En(f)U + 2En(f)2T∩K . (4.6)

In particular, if U = T1 ∪ · · · ∪ Tj and T = Tj+1, j = 1, . . . , 2k2 − 1, then l
depends only on K.

Recall that 2T is obtained from T by a dilation of factor 2 from its center.
If for j = 1, . . . , 2k2−1 we set U = T1∪· · ·Tj and T = Tj+1, then a repeated

application of the lemma gives (c.f. (4.5))

El2k2n(f)K ≤ 22k
2

2k2∑
j=1

En(f)2Tj∩K . (4.7)

We have already mentioned that (4.1) is true for each 2Tj ∩K by [12, Theorem
12.1.1]. More precisely, it was proved there that if H is a cube, then for every
n ≥ r there is a polynomial Qn of degree at most n in each variable such that

∥f −Qn∥H ≤MωrH(f, n−1), (4.8)

where M depends only on r and d. This gives

Edn(f)H ≤MωrH(f, n−1) (4.9)

because the total degree of Qn is at most dn. Then the same is true (via an
affine transformation) for all H which is a (3-dimensional) K-parallelepiped.
Here we used the affine invariance of ωrH mentioned in (2.2).

It is now important to observe that 2Tj ∩K is a K-parallelepiped, i.e. all
its edges are parallel with some edges of K, hence (4.9) yields

Edn(f)2Tj∩K ≤Mωr2Tj∩K(f, n−1). (4.10)
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Indeed, we assumed that 4T (y)∩K is a parallelepiped, so it is a K-parallelepi-
ped since its edges are parallel with the edges of T (y) and K. Now each Tj is a
2T (y) ∩K (see (4.4)), so (see below)

2Tj ∩K = 2(2T (y) ∩K) ∩K ⊆ 4T (y) ∩K, (4.11)

hence it is again a K-parallelepiped. In (4.11) we used the fact that if T̃ ⊆ T
are parallelepipeds with pairwise parallel edges, then

2T̃ ⊂ 2T. (4.12)

(Note that this is not absolutely trivial because the center of dilation for T may
be different from the center of dilation for T̃ , since these parallelepipeds can
have different centers.) To prove (4.12), let Φ be an affine map that maps T
into [−1, 1]3. Then Φ(2T ) = 2Φ(T ) = [−2, 2]3 and Φ(T̃ ) is a rectangular cuboid
with Φ(2T̃ ) = 2Φ(T̃ ), so it is enough to prove (4.12) for T = [−1, 1]3. Then

T̃ = [a1 − b1, a1 + b1]× [a2 − b2, a2 + b2]× [a3 − b3, a3 + b3]

with some ai ∈ (−1, 1) and bi ∈ (0, 1). The center of T̃ is (a1, a2, a3) and

2T̃ = [a1 − 2b1, a1 + 2b1]× [a2 − 2b2, a2 + 2b2]× [a3 − 2b3, a3 + 2b3].

So all remains to be proven is that if aj ± bj ∈ [−1, 1] then aj ± 2bj ∈ [−2, 2],
which is clear, since e.g. aj +2bj ≤ 2 if aj ≥ 0, while if aj < 0 then bj ≤ aj +1,
so aj + 2bj ≤ aj + 2(aj + 1) = 3aj + 2 < 2.

Since
ωr2Tj∩K(f, t) ≤ ωrK(f, t)

by the definition of ωK in (2.1) (recall that, as we have just seen, 2Tj ∩ K is
a K-parallelepiped), we obtain from (4.7) (applied with dn instead of n) and
(4.10)

El2k2dn(f)K ≺ ωrK(f, n−1) ≺ ωrK(f, (l2k
2

dn)−1),

where, in the last inequality, we used (2.16). In view of the monotonicity of En
and property (2.16) of ωrK(f, t), this proves (4.1) for all large n, say for n ≥ n0.
Thus, the proof of (4.1) for n ≥ n0 will be complete once we verify Lemma 4.1.

Proof of Lemma 4.1. We need two additional lemmas.

Lemma 4.2 If B is a ball of radius ρ lying in the unit ball B1(0), then for any
polynomial Qn of degree at most n

∥Qn∥B1(0) ≤ ∥Qn∥B(4/δ)n. (4.13)
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Proof. It is known (see [5, Proposition 4.2.3]) that if qn is a polynomial of a
single variable of degree at most n, then

|qn(x)| ≤ ∥qn∥[−1,1]
1

2

{(
|x|+

√
x2 − 1

)n
+
(
|x| −

√
x2 − 1

)n}
≤ ∥qn∥[−1,1](2|x|)n, x ∈ R \ [−1, 1]. (4.14)

As a consequence, for any interval I = [α− δ, α+ δ] we have for x ∈ R \ I

|qn(x)| ≤ ∥qn∥I(2 · dist(x, α)/δ)n. (4.15)

Now let B = Bδ(A), i.e. A is the center and δ is the radius of B. If X is any
point in the unit ball, then let l be the line through A and X. The polynomial
Qn in the lemma when restricted to l, is a polynomial qn of a single variable
of degree at most n, and on this line X lies from A closer than 2. Hence, on
applying (4.15) we get

|Qn(X)| ≤ ∥Qn∥B∩l(2 · dist(X,A)/δ)n ≤ ∥Qn∥B(4/δ)n, (4.16)

which proves the lemma.

Lemma 4.3 Let T ⊂ B1(0) be a 3-dimensional K-parallelepiped such that its
side-lengths lie in between some ε and 2ε and let 2T be its dilation from its
center by a factor 2. If η > 0, then there is an L depending only on η, ε and K
such that for every n there is a polynomial Rn of degree at most Ln for which
0 ≤ Rn(x) ≤ 1 if x ∈ B1(0), Rn(x) ≤ ηn if x ∈ B1(0) \ 2T and 1 − Rn(x) ≤ η
if x ∈ T .

Proof. Let Φ be an affine transformation that maps T into [−1, 1]3. Then
Φ(2T ) = [−2, 2]3, and there is an A ≥ 2 depending only on T and ε such that
Φ(B1(0)) ⊂ [−A,A]3 (recall that T is aK-parallelepiped, so its shape is dictated
by the geometry of K).

By Lemma 3.1 (with B = 2A, θ = η/6, and set Qn(x) = Un(x/2A)) there
is a polynomial Qn(x) of degree ln (with some l depending only on η and A)
such that 0 ≤ Qn(t) ≤ 1 for t ∈ [−2A, 2A], Qn(t) ≤ 1

6η
n if t ∈ [−2A,−1/2], and

1−Qn(t) ≤ 1
6η
n if t ∈ [1/2, 2A]. Then, for

Q̃n(t) = Qn(t+ 3/2)(1−Qn(t− 3/2)),

we have 0 ≤ Q̃n(t) ≤ 1 on [−A,A], for t ∈ [−1, 1]

1− Q̃n(t) = 1−Qn(t+ 3/2) +Qn(t+ 3/2)Qn(t− 3/2) ≤ ηn

6
+
ηn

6
=
ηn

3
,
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and for t ∈ [−A,A] \ [−2, 2]

Q̃n(t) = Qn(t+ 3/2)(1−Qn(t− 3/2)) ≤ ηn

6
.

Hence, for the polynomial

R̃n(X1, X2, X3) = Q̃n(X1)Q̃n(X2)Q̃n(X3)

we have 0 ≤ R̃n(X) ≤ 1 for X ∈ [−A,A]3,

R̃n(X) ≤ ηn, X ∈ [−A,A]3 \ [−2, 2]3,

and
1− R̃n(X) ≤ ηn, X ∈ [−1, 1]3.

Since Φ(B1(0)) ⊂ [−A,A]3, it is clear that then the polynomials Rn(x) =

R̃n(Φ(x)) are suitable in the lemma.

After these we return to the proof of Lemma 4.1. Let P1 and P2 be polyno-
mials of degree n such that

∥f − P1∥2T∩K ≤ En(f)2T∩K , ∥f − P2∥U ≤ En(f)U .

On the ball B ⊆ U ∩ T we have

∥P1 − P2∥B ≤ ∥f − P2∥U + ∥f − P1∥2T∩K ≤ En(f)U + En(f)2T∩K ,

hence, by Lemma 4.2

∥P1 − P2∥B1(0) ≤ (4/δ)n(En(f)U + En(f)2T∩K). (4.17)

With η = δ/4 choose the polynomials Rn as in Lemma 4.3, and set P =
RnP1 + (1− Rn)P2. This is a polynomial of degree at most Ln+ n, and for it
we have on U ∩ 2T = U ∩ (2T ∩K)

|f − P | ≤ Rn|f − P1|+ (1−Rn)|f − P2| ≤ En(f)U + En(f)2T∩K , (4.18)

on T

|f − P | = |f − P1 + (1−Rn)(P1 − P2)| ≤ |f − P1|+ (1−Rn)|P1 − P2|

≤ En(f)2T∩K + ηn(4/δ)n
(
En(f)U + En(f)2T∩K

)
≤ 2En(f)2T∩K + En(f)U (4.19)
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(see (4.17)), and on U \ 2T

|f − P | = |(f − P2 −Rn(P1 − P2)| ≤ |f − P2|+Rn|P1 − P2|

≤ En(f)U + ηn(4/δ)n
(
En(f)U + En(f)2T∩K

)
≤ 2En(f)U + En(f)2T∩K . (4.20)

Since U ∩ 2T , U \ 2T and T cover U ∪ T , (4.18)–(4.20) verify the lemma.

So far we have verified (4.1) for all sufficiently large n, say n ≥ n0. To get
(4.1) for all degree n ≥ rd all we need is to apply the above procedure and
Lemma 4.4 below (for n = rd, rd+ 1, . . . , n0 − 1) instead of Lemma 4.1.

Lemma 4.4 Let U ⊂ K be a set, T ⊂ K a K-parallelepiped with side-lengths
in between ε and 2ε such that U ∩ T contains a ball B of radius δ. Then there
is a C that depends only on ε, δ, n and K for which

En(f)U∪T ≤ C
(
En(f)U + En(f)2T∩K

)
. (4.21)

In particular, if U = T1 ∪ · · · ∪ Tj (see (4.5)) and T = Tj+1, j = 1, . . . , 2k2 − 1,
then C depends only on n and K.

Proof. Let, as before, P1 and P2 be polynomials of degree n such that

∥f − P1∥2T∩K ≤ En(f)2T∩K , ∥f − P2∥U ≤ En(f)U .

On the ball B ⊆ U ∩ T we have again

∥P1 − P2∥B ≤ ∥f − P1∥2T∩K + ∥f − P2∥U ≤ En(f)U + En(f)2T∩K .

Then, by Lemma 4.2,

∥P1 − P2∥B1(0) ≤ (4/δ)n(En(f)U + En(f)2T∩K), (4.22)

and so
∥f − P1∥U∪T ≤ C(En(f)U + En(f)2T∩K)

since
|f − P1| ≤ min (|f − P1|, |f − P2|) + |P1 − P2|.
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5 Polynomial approximants on rhombi

We start with the following result in one variable. Let g ∈ C[−1, 1] be a contin-
uous function on [−1, 1] and Pn its best approximant by polynomials of degree
n. Then, according to [12, Theorem 7.3.1], for any integer r > 0 we have

∥φrP (r)
n ∥[−1,1] ≤Mrn

rωrφ(g, n
−1), (5.1)

where φ(t) =
√
1− t2, and

ωrφ(g, δ) = sup
0<h≤δ

∥∆r
hφ(t)g(t)∥[−1,1] (5.2)

is the standard φ-modulus of smoothness (1.1) of g, and the constant Mr de-
pends only on r. If Pn is any polynomial of degree at most n, then clearly for
g = Pn the polynomial Pn is the best approximant among polynomials of degree
at most n, hence we obtain

∥φrP (r)
n ∥[−1,1] ≤Mrn

rωrφ(Pn, n
−1). (5.3)

Now if g ∈ C[−1, 1], ω is an increasing function for which ωrφ(g, n
−1) ≺ ω(n−1)

and Pn is a polynomial (not necessarily best approximating g) for which ∥g −
Pn∥[−1,1] ≺ ω(n−1), then

∥φrP (r)
n ∥[−1,1] ≺ nrω(n−1). (5.4)

Indeed, this is immediate from (5.3), since

ωrφ(Pn, n
−1) ≺ ∥g − Pn∥[−1,1] + ωrφ(g, n

−1) ≺ ω(n−1).

Recall now (1.10), that is the fact that the modulus of smoothness ωrφ(g, δ) is
the same as ωr[−1,1](g, δ) as defined in (1.8). We can transform the interval [−1, 1]

by a linear map to any interval [A,B], and via this transformation we obtain
from (5.4): if g ∈ C[A,B], ωr

[A,B]
(g, n−1) ≺ ω(n−1) and Pn is a polynomial for

which ∥g − Pn∥[A,B] ≺ ω(n−1), then for t ∈ [A,B]

|P (r)
n (t)| ≺ 1

{|t−A| · |t−B|}r/2
nrω(n−1), (5.5)

and here ≺ depends only on r and on the ≺ in the two assumptions.
Let now T = ABCD ⊂ R2 be a rhombus with diagonals AC and BD

and with side-directions e1 and e2 (see Figure 5.1). We assume dist(A,C) = 1.
Then dist(A,B) and dist(B,D) depend only on e1 and e2. Let F be a continuous
function on T , and suppose that there is a polynomial Qn of two variables of
degree at most n such that

ωrT (F, n
−1) ≺ ω(n−1), ∥F −Qn∥T ≺ ω(n−1) (5.6)

with some increasing function ω. We are going to show
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Proposition 5.1 Under the condition (5.6), if x is a point on the diagonal AC
with dist(x,A) ≤ dist(A,C)/4, then for any direction e (in R2) we have∣∣∣∣∂rQn(x)∂er

∣∣∣∣ ≺ 1

dist(x,A)r/2
nrω(n−1). (5.7)

The same is true if the length of the diagonal AC is a number in the interval
[1/2, 1], provided the side-directions are the fixed vectors e1 and e2.

Remark. This is a fairly nontrivial estimate, since the standard Bernstein
inequality [5, Ch 4., Corollary 1.2] would only give∣∣∣∣∂rQn(x)∂er

∣∣∣∣ ≺ 1

dist(x,A)r
nrω(n−1)

for example if e is the direction of the other diagonal BD. The improvement of
1/dist(x,A)r to 1/dist(x,A)r/2 is exactly what is needed below; this is one of
the key steps in the proof of Theorem 1.1.

Proof. Let E0F0 and ErFr be the two chords of T that go through x and
which are parallel with the sides AD and AB, respectively. Divide the angle
E0xEr into r equal angles by the chords EjFj , j = 1, . . . , r− 1 of T (see Figure
5.1), and let ej be the direction of EjFj . Clearly e0 = e1 and er = e2 (or vice
versa). It is clear that if d = dist(x,A), then dist(x,Ej) ≥ d/2 and

dist(x, Fj) ≥ dist(x, F0) ≥ dist(A,D)/2 ≥ (dist(A,C)/2)/2 ≥ 1/4

(recall that dist(A,C) = 1).
Now suppose (5.6), say

ωrT (F, n
−1) ≤ ω(n−1), ∥F −Qn∥T ≤ ω(n−1). (5.8)
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On applying (5.5) on the segment EjFj (the restriction of Qn to that segment
is a polynomial of a single variable of degree at most n) we obtain∣∣∣∣∂rQn(x)∂erj

∣∣∣∣ ≺ 1

dr/2
nrω(n−1). (5.9)

If ej = αje1 + βje2, then, with the agreement β0
0 = α0

r = 1 (i.e. with 00 = 1,
since β0 = 0 and αr = 0), this takes the form

r∑
i=0

(
r

i

)
αijβ

r−i
j

∂rQn(x)

∂ei1∂e
r−i
2

=: θjd
−r/2nrω(n−1) (5.10)

with some |θj | ≤ L, where L depends only on r and the angle in between e1
and e2. It is clear that αj/βj ̸= αk/βk if j ̸= k (otherwise ej and ek would
point in the same direction). Note also that β0 = αr = 0, so we can develop the
determinant of the system (5.10) according to its first and last columns and we
get that the determinant is∣∣∣∣(ri

)
αijβ

r−i
j

∣∣∣∣r
i,j=0

= (−1)r(−1)r−1

(
r−1∏
i=1

(
r

i

))r−1∏
j=1

βrj

∣∣(αj/βj)i∣∣r−1,r−1

i=1,j=1
.

Now this is not zero, since the last factor is
∏r−1

1 (αj/βj) times a Vandermonde-
determinant with different αj/βj ’s. Note also that this determinant depends
only on r, e1 and e2. Hence, we can solve the system of equations (5.10) for

∂rQn(x)
/
∂ei1∂e

r−i
2 , and we get∣∣∣∣ ∂rQn(x)∂ei1∂e

r−i
2

∣∣∣∣ ≺ d−r/2nrω(n−1),

where≺ depends only on r, e1 and e2. But if e is any direction then e = αe1+βe2
with some |α|, |β| ≺ 1, and so∣∣∣∣∂rQn(x)∂er

∣∣∣∣ =
∣∣∣∣∣
r∑
i=0

(
r

i

)
αiβr−i

∂rQn(x)

∂ei1∂e
r−i
2

∣∣∣∣∣ ≺ d−r/2nrω(n−1),

which is (5.7).
The last statement is an immediate consequence of the first one if we apply

a dilation.

6 Pyramids and local moduli on them

In this section we give an estimate on the moduli of smoothness in question
on small parts of a given pyramid. The estimates in this section are somewhat
technical, but they form a central part of the proof.
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Figure 6.1: The pyramid S and the sets Ka

As we have already mentioned, first we work in R3. For a point x ∈ R3, x1
will always denote the first coordinate of x, i.e. x = (x1, ·, ·).

Let Z be a convex polygon in a plane L lying in R3 and P a point outside
that plane. The convex hull S of Z ∪ {P} is called a pyramid with apex at P
and with base Z. P is connected by an edge to every vertex of Z, these are
called the apex edges of S; while the edges of S that are also edges of Z are
called base edges. The height of S is the segment that connects P with the
orthogonal projection of P onto L (the plane of the base), i.e. it is a segment
from P to a point on the plane of the base that is orthogonal to that plane.

We shall consider pyramids S that have the following two properties:

a) no two base edges of S are parallel,

b) the height of S lies in the interior of S (except for its two endpoints).

Without loss of generality we may assume that S is placed in R3 so that its
apex is at the origin 0, S \{0} lies in the half-space x1 > 0 and the base of S lies
in the plane {x x1 = 2}. Then the height of S is the segment {x 0 ≤ x1 ≤ 2},
i.e. the height lies on the x1-axis. For 0 < a ≤ 1 let (see Figure 6.1)

Sa = aS = S∩{x 0 ≤ x1 ≤ a}, K1 = S\S1/4, Ka = aK1 = Sa\Sa/4. (6.1)

Then K1, and hence each Ka, is a simple polytope (i.e. there are precisely 3
edges at every vertex), and K1 has the same edge directions as S has.

Let E be the direction of the base edges of S, and let e1, . . . , em be the
direction of the apex edges, where the orientation of each ej is such that it points
from the apex 0 towards the base. Note that every base edge has endpoints on
two apex edges, so every e ∈ E is a linear combination of two of the e1, . . . , em.
The direction of the edges of K1 (and hence of all Ka) are E ∪ {e1, . . . , em},
but, as we have just seen, all these directions are linear combinations of two-two
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members of the apex edge directions {e1, . . . , em}. In what follows, let e ∈ E
be a base edge direction, and, by appropriate labeling, we may assume that
e = αe1+βe2. Of course, then the base edge E with direction e lies in the plane
⟨E1, E2⟩ spanned by the apex edges E1, E2 in the direction of e1 and e2 (see
property a), according to which there is only one base edge E with direction e).

Recall now the definition of the distances dK(e, x) from (1.5). A crucial
observation is

Proposition 6.1 For 0 ≤ x1 ≤ 1, x ∈ S, we have

min{dS(e1, x), dS(e2, x)} ≥ c0dS(e, x) (6.2)

with a c0 depending only on S.

We remark that this proposition is false when there are two base edges
parallel with e. Neither is the conclusion true for x lying close to the base, i.e.
for points for which the first coordinate x1 is close to 2.

Proof. The claim is clear when x lies on the plane ⟨E1, E2⟩ spanned by E1, E2,
so in what follows we assume that this is not the case.

Let S∞ be the infinite cone with vertex at 0 determined by S (formally
S∞ = ∪∞

n=1nS). Since the base of S is on the plane {x x1 = 2}, we have for
x1 ≤ 1 the equalities

dS(e, x) = dS∞(e, x), dS(ej , x) = dS∞(ej , x), j = 1, 2,

because the line through x, which is parallel with e, intersects both ∂S and
∂S∞ in the same segment, while the line trough x that is parallel with ej has
a common intersection point Q with ∂S and ∂S∞ in the domain {u ∈ R3 0 ≤
u1 ≤ 1} and the other intersection point of this line with ∂S is of distance
≥ dist(x,Q) from x (this is due to the fact that x1 ≤ 1, while the base of S lies
on {u u1 = 2}). Therefore, by the homothecy-invariance of S∞, it is enough
to verify the claim for x1 = 1.

Let Hx be the plane through x which is parallel with the plane ⟨E1, E2⟩, and
set V∞

x = S∞ ∩Hx. Then

dS(e, x) = dV∞
x
(e, x), dS(ej , x) = dV∞

x
(ej , x), j = 1, 2,

since the lines trough x in the direction of e, e1, e2 all lie in Hx. V
∞
x is an infinite

polygon with two infinite edges parallel with E1 and E2, respectively, and since
the line of the edge E intersects E1 and E2, it follows that the line through x
in the direction of e intersects V∞

x in a segment AB (see Figure 6.2). We claim
that no edge of V∞

x is parallel with AB. Indeed, suppose to the contrary that
an edge ab of V∞

x was parallel with AB, and hence with e. Enlarge the edge
ab from the origin by a homothecy Φ so that Φ(b) becomes a point on the base
plane {u u1 = 2}. Then Φ(ab) is parallel with the edge E which lies in the
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plane {u u1 = 2}, so the whole segment Φ(ab) must lie in {u u1 = 2}. Since
a and b were lying on two apex edges of S, the same is true of Φ(a) and Φ(b),
and we can conclude that Φ(ab) is a base edge of S. But then S would have two
parallel base edges E and Φ(ab), which is not the case by property a) above,
and this contradiction proves the claim.

If y ∈ S∞\⟨E1, E2⟩ is another point in S∞ not lying on the face ⟨E1, E2⟩∩S∞

of S∞, thenHy can be obtained fromHx by a dilation from the origin, and hence
the same is true of V∞

y and V∞
x . As a consequence, the possible (smaller) angles

φ1, . . . , φm in between the edges of V∞
x and the segment AB is independent of

x ∈ S∞, and they are all different from 0. Hence, if ϕ0 is the smallest of all
these possible edges (see Figure 6.3), then 0 < ϕ0 < π0, and if draw the triangle
ABC depicted in Figure 6.3, then this triangle lies in V∞

x . Let dj , j = 1, 2 be
the length of the segment that the line through x and parallel with ej cuts out
of the triangle ABC. Then

dABC(e, x) ≤ Cmin{d1, d2} (6.3)

is clear since any line through x cuts the triangle ABC in a segment of length

≥ (sinϕ0)min{dist(x,A),dist(x,B)} = (sinϕ0)dABC(e, x).

Finally, (6.2) is a consequence of (6.3), since

dS(e, x) = dABC(e, x), dS(ej , x) ≥ dj , j = 1, 2.

We have already remarked that the set of edge directions of each Kη agrees
with E ∪{e1, . . . , em}. Let e ∈ E be a base edge direction and assume, as before,
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that e = αe1+βe2. Let x ∈ S, x1 = b ≤ 1. Consider again the planeHx through
x which is parallel with ⟨E1, E2⟩ (the plane spanned by E1 and E2, see the
previous proof), and consider (see Figure 6.4) the points Aj = x− c0dS(e, x)ej ,
j = 1, 2, where c0 is the constant from the preceding proposition. According to
that proposition these points belong to Vx := S ∩Hx, and hence, by convexity,
so does their middle point A = x− c0(dS(e, x)e1 + dS(e, x)e2)/2. Consider the
rhombus T = ABCD defined as follows (see Figure 6.4):

• A is a vertex of T ,

• T contains x,

• the direction of the sides of T are e1, e2,

• the diagonal AC of T has length 1.

Note that x lies on this diagonal and dist(x,A) ∼ dS(e, x). Furthermore,
T ⊂ V∞

x is clear, and since A lies in the half-space {u u1 ≤ 1}, which is of
distance 1 from the base of S, it follows that T ⊂ S. If F is a continuous function
on S, then, by (4.1), there are polynomials Qn of two variables of degree at most
n ≥ 2r such that

∥F −Qn∥T ≺ ωrT (F, n
−1), (6.4)

and here ≺ is independent of T (by the affine invariance of ωrT ).
Since we have ωrT (F, δ) ≤ ωrS(F, δ), with ω(δ) = ωrS(F, δ) we get

ωrT (F, n
−1) ≺ ω(n−1), ∥F −Qn∥T ≺ ω(n−1), (6.5)

i.e. (5.6) is satisfied. So we can apply Proposition 5.1 to conclude that if
dist(x,A) ≤ 1/8, then∣∣∣∣∂rQn(x)∂er

∣∣∣∣ ≺ 1

dist(x,A)r/2
nrω(n−1) ∼ 1

dS(e, x)r/2
nrω(n−1). (6.6)

26



x
CC’

D

B

A

A
1

A
2

l

e
1

e
2

e

T

Figure 6.4:

The condition dist(x,A) ≤ 1/8 certainly holds for sufficiently small b, say for
b ≤ b0 (recall that x1 = b, and A lies in the region {u 0 ≤ u1 ≤ x1}).

Let now y = x+ λe with |λ| ≤ dT (e, x)/2. Then the line through y which is
parallel with AC intersects T in a segment A′C ′ of length at least 1/2, so the
rhombus T ′ with A′C ′ as its diagonal and with side directions e1 and e2 lies
within T , see Figure 6.5. It is also clear that dist(y,A′) ≥ dist(x,A)/2, and sim-
ple geometry shows that dist(y,A′) ≤ dist(A′, C ′)/4. On applying Proposition
5.1 again, but this time to y and T ′, we can see that∣∣∣∣∂rQn(y)∂er

∣∣∣∣ ≺ 1

dist(y,A′)r/2
nrω(n−1) ∼ 1

dS(e, x)r/2
nrω(n−1). (6.7)

In what follows, we shall work with r-th central differences (see (1.7)) and
with the moduli of smoothness (1.8) and (2.1). We shall frequently use that, if
for an x ∈ S, for some d > 0 and for a direction e we have d ≤ λd̃S(e, x) (here
d̃S is the normalized distance from (1.6)), then for 0 ≤ h ≤ δ/λ

|∆r
hdeF (x)| ≤ ωrS(F, δ),

and if e is an edge-direction of S then

|∆r
hdeF (x)| ≤ ωrS(F, δ).

Consider now the normalized distance d̃S(e, x) from (1.6). For x1 = b and
for the base edge direction e we have

d̃S(e, x) ≺
√
bdS(e, x) (6.8)
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because the x1 = b cross section of S is a homothetic copy of the base with
dilation factor b/2, and x lies in that cross section. Hence, (6.7) implies

d̃S(e, x)
r

∣∣∣∣∂rQn(y)∂er

∣∣∣∣ ≺ br/2nrω(n−1) (6.9)

for all y = x+ λe with |λ| ≤ dT (e, x)/2, and note that here dT (e, x) ∼ dS(e, x),
say dT (e, x) ≥ c1dS(e, x), by the construction of the rhombus T . Since∣∣∣∆r

hd̃S(e,x)e
Qn(x)

∣∣∣ ≺ (hd̃S(e, x))
r ×

× max
y∈[x− 1

2 rhd̃S(e,x)e,x+
1
2 rhd̃S(e,x)e]

∣∣∣∣∂rQn(y)∂er

∣∣∣∣ ,
(see [12, (2.4.5)]), it follows from (6.9) that for

rhd̃S(e, x) ≤ c1dS(e, x) ≤ dT (e, x)

we have ∣∣∣∆r
hd̃S(e,x)e

Qn(x)
∣∣∣ ≺ hrbr/2nrω(n−1).

Together with this we also get∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣ ≺ hrbr/2nrω(n−1) + ω(n−1)

because of the second relation in (6.5). Thus,

sup
h≤1/n

√
b

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣ ≺ ω(n−1) = ωrS(F, n

−1) (6.10)
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provided
rd̃S(e, x)

n
√
b

≤ c1dS(e, x). (6.11)

Because of (6.8), this latter condition is satisfied whenever

dS(e, x) ≥
M

n2
(6.12)

with some sufficiently large, but fixed M .
All these under the assumption x1 = b ≤ b0, where b0 was selected after

(6.6). On the other hand, for b ≥ b0 (6.10) is automatic, since

sup
h≤1/n

√
b

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣ ≤ ωrS

(
F,

1

n
√
b0

)
≺ ωrS

(
F,

1

n

)
because of (2.14). Thus, (6.10) is true for all x ∈ S with 0 ≤ x1 ≤ 1 for which
(6.12) holds.

Let now f be a continuous function on the pyramid S. Let vn = (−L/n2, 0, 0)
with some large fixed L, and apply what we have obtained to the pyramid

S(n) = S+ vn and to the function F (x) = Fn(x) = f(x− vn) on S(n). (6.13)

Since we are translating S in the direction of its height and towards the apex,
it follows that S(n) contains S/2 (at least for n2 > 2L), and for any x ∈ S/2 its
distance from the boundary of S(n) is at least M/n2 if L is sufficiently large,
where M is the constant in (6.12). In particular, for any base edge direction e

dS(n)(e, x) ≥
M

n2
, x ∈ S/2, (6.14)

i.e. the condition (6.12) is satisfied for S(n) (i.e. dS(n)(e, x) ≥ M/n2) provided
x ∈ S, x1 = b ≤ 1/2. Hence, by (6.10),

sup
h≤1/n

√
b

∣∣∣∆r
hd̃

S(n) (e,x)e
F (x)

∣∣∣ ≺ ωrS(n)(F, n
−1)

is true. But here

ωS(n)(F, n−1) = ωS(f, n
−1) and d̃S(e, x) ≤ d̃S(n)(e, x),

and so
sup

h≤1/n
√
b

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣ ≺ ωrS(f, n

−1) (6.15)

also follows. This is true for all base direction e ∈ E and for all x ∈ S with
x1 ≤ 1/2. Note also that for such edges d̃S(e, x) = d̃Ka(e, x) provided x ∈ Ka

(see (6.1) for the definition of Ka). Therefore, (6.15) gives for x ∈ Ka, a ≤ 1/4

sup
h≤1/n

√
2a

∣∣∣∆r
hd̃Ka (e,x)e

F (x)
∣∣∣ ≺ ωrS(f, n

−1) (6.16)
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since for x ∈ Ka we have b = x1 ≤ 2a in (6.15).
On the other hand, if ej is an apex edge direction, then d̃S(ej , x) ∼

√
dS(ej , x),

while

d̃Ka(ej , x) ≺
√
adKa(ej , x) ≺

√
adS(ej , x).

As a consequence, d̃Ka(ej , x) ≤ C1
√
ad̃S(ej , x) with some C1. But then

sup
h≤1/2nC1

√
a

∣∣∣∆r
hd̃Ka (ej ,x)ej

F (x)
∣∣∣ ≤ sup

h≤1/2n

∣∣∣∆r
hd̃S(ej ,x)ej

F (x)
∣∣∣ ≤ ωrS(f, n

−1).

(6.17)
The last inequality is due to the fact that

∆r
hd̃S(ej ,x)ej

F (x) = ∆r
hd̃S(ej ,x)ej

f(x− vn),

and d̃S(ej , x) ≤ 2d̃S(ej , x−vn) since dS(ej , x) ≤ dS(ej , x−vn) (see also (6.13)).
If we take the supremum on the left of (6.16)–(6.17) for all x ∈ Ka and the

maximum for all e ∈ E (base edge directions) and for all ej , 1 ≤ j ≤ m (apex
edge directions), (6.16) and (6.17) yield (we may assume C1 ≥ 1)

ωrKa

(
F,

1

2nC1
√
a

)
≺ ωrS

(
f,

1

n

)
,

where the modulus of smoothness on the left-hand side is the one from (2.1), i.e.
it is created via r-th differences in the edge directions of Ka and the modulus
of smoothness on the right is the one from (1.8), i.e. it is created via r-th
differences in all directions. On applying (2.16) we finally obtain for a ≤ 1/4

ωrKa

(
F,

1

n
√
a

)
≺ ωrS

(
f,

1

n

)
, (6.18)

which is the main result of this section.

7 Local approximation on the sets Ka

With the notations of the preceding section, let f be a continuous function on
the pyramid S, vn = (−L/n2, 0, 0) with the large but fixed L for which (6.14)
is true, and

F (x) = Fn(x) = f(x− vn) on S(n) = S + vn. (7.1)

We have seen that for a ≤ 1/4 the inequality (6.18) holds. Recall also the
notationsK1, Sη,Kη from (6.1) which are constructed from the original pyramid
S.

Set now F ∗(x∗) = F (ax∗). Then F ∗ is a continuous function on K1 such
that

ωrKa(F, δ) ≡ ωrK1
(F ∗, δ), ωrKa(F, δ) ≡ ωrK1

(F ∗, δ),
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because both ωrK and ωrK are invariant under homothetic transformations. Since
K1 is a simple polytope (at each vertex there are 3 edges), we can apply (4.1)
from Section 4 to conclude that for n

√
a ≥ 3r, i.e. for a ≥ 9r2/n2, there are

polynomials P ∗
n
√
a
= P ∗

a,n
√
a
of 3 variables of degree at most n

√
a such that

∥F ∗ − P ∗
n
√
a∥K1 ≺ ωrK1

(
F ∗,

1

n
√
a

)
= ωrKa

(
F,

1

n
√
a

)
≺ ωrS

(
f,

1

n

)
,

where, in the last step, we used (6.18), and here ≺ is independent of n and
a ≥ 9r2/n2. With

pn
√
a(x) = pa,n

√
a(x) = P ∗

n
√
a(x/a)

this is the same as

∥F − pn
√
a∥Ka ≺ ωrS

(
f,

1

n

)
. (7.2)

For the polynomials

q = pn
√
a − pn

√
2a = pa,n

√
a − p2a,n

√
2a

of degree at most n
√
2a this yields

∥q∥Ka∩K2a ≤ ∥F − pn
√
a∥Ka + ∥F − pn

√
2a∥K2a ≺ ωrS

(
f,

1

n

)
,

and here
Ka ∩K2a = S ∩ {x a ≤ x1 ≤ 2a}.

Let now x ∈ S not lying in Ka ∩K2a, i.e. either 2a ≤ x1 ≤ 2 or 0 ≤ x1 ≤ a.
Let ℓ be the line through 0 and x, and for t ∈ ℓ let t1 be its first coordinate.
Then q̃(t1) = q(t), t ∈ ℓ, is a polynomial of degree at most n

√
2a in the variable

t1, for which, as we have just seen,

∥q̃∥[a,2a] ≤ ∥q∥Ka∩K2a ≺ ωrS

(
f,

1

n

)
.

Then (4.15) gives

|q(x)| = |q̃(x1)| ≤
(
|x1 − 3a/2|

a/2

)n√2a

∥q̃∥[a,2a] ≺
(
|x1 − 3a/2|

a/2

)n√2a

ωrS

(
f,

1

n

)
.

(7.3)
For 0 ≤ x1 ≤ a this yields

|pn√a(x)− pn
√
2a(x)| ≺ 3n

√
2aωrS

(
f,

1

n

)
≺ e3n

√
aωrS

(
f,

1

n

)
, (7.4)

while for 2a ≤ x1 ≤ 2 we obtain

|pn√a(x)− pn
√
2a(x)| ≺

(
8x1
a

)n√2a

ωrS

(
f,

1

n

)
≺ e2n

√
a log(8x1/a)ωrS

(
f,

1

n

)
.

(7.5)
All these for a ≤ 1/8 and n

√
a ≥ 3r, i.e. a ≥ 9r2/n2.

31



8 Global approximation of F = Fn on S1/32 ex-
cluding a neighborhood of the apex

We use the preceding estimates (7.4) and (7.5) with a = ak = 2k/n2, k =
9r, . . . ,m, where m is chosen so that 1/16 ≤ 2m/n2 < 1/8. Then a9r−1 ≥
9r2/n2. We combine the polynomials pn

√
a = pa,n

√
a with the fast decreasing

polynomials
Rn,a(x) := R(4)

n,a(x1) (8.1)

where R
(4)
n,a(x1) is the polynomial of the single variable x1 (the first coordinate

of x) from (3.11) with A = 4 (recall that in Section 3 the parameter A was a
free parameter), and set

Pn =

m∑
k=9r

(
Rn,ak −Rn,ak−1

)
pn

√
ak

+Rn,a9r−1pn
√
a9r+(1−Rn,am)pn√am . (8.2)

This is a polynomial of degree at most Cn with some universal constant C. We
claim that this approximates F (x) = Fn(x) = f(x− vn) (see (7.1)) in the order
ωrS(f, 1/n) on the set

S∗
n := S ∩

{
x

29r+1

n2
≤ x1 ≤ 1

16

}
. (8.3)

First of all, we have

m∑
k=9r

(
Rn,ak −Rn,ak−1

)
+Rn,a9r−1 + (1−Rn,am) = 1,

hence

Pn − F =

m∑
k=9r

(
Rn,ak −Rn,ak−1

)
(pn√ak − F )

+ Rn,a9r−1(pn
√
a9r − F ) + (1−Rn,am)(pn

√
am − F ). (8.4)

For x ∈ {x ak0 ≤ x1 ≤ ak0+1} with 9r + 1 ≤ k0 ≤ m − 1 the first sum on the
right-hand side can be written in the form

k0−1∑
k=9r

Rn,ak(pn
√
ak − pn√ak+1

) +Rn,ak0 (pn
√
ak0

− F )−Rn,a9r−1(pn
√
a9r − F )

+
m−1∑

k=k0+1

(Rn,ak − 1)(pn√ak − pn√ak+1
) + (Rn,am − 1)(pn√am − F )

−(Rn,ak0 − 1)(pn√ak0+1
− F ) =: A1 +A2 −A3 +A4 +A5 −A6. (8.5)
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Here −A3 cancels the second term, while A5 cancels the third term on the right
of (8.4). Since

{x ak0 ≤ x1 ≤ ak0+1} ∩ S ⊆ Kak0+1, Kak0
,

we obtain from (7.2)

|A2|+ |A6| ≺ ωrS

(
f,

1

n

)
. (8.6)

Now for 9r + 1 ≤ k ≤ k0 − 1 the estimate (7.5) gives

|pn√ak(x)− pn
√
2ak

(x)| ≺ e2n
√
ak log(8x1/ak)ωrS

(
f,

1

n

)
,

while, by (3.12),

Rn,ak(x) = R(4)
n (x1) ≤ e−4n

√
ak log(16x1/ak).

So

|A1| ≤
k0−1∑
k=9r+1

e−2n
√
ak log(16x1/ak)ωrS

(
f,

1

n

)
≺

(
k0−1∑
k=9r+1

e−
√
2k

)
ωrS

(
f,

1

n

)
.

(8.7)
In a similar manner, for k0 + 1 ≤ k ≤ m− 1 we get from (7.4) and (3.13)

|pn√ak(x)− pn
√
2ak

(x)| ≺ e3n
√
akωrS

(
f,

1

n

)
and

0 ≤ 1−Rn,ak(x) = 1−R(4)
n (x1) ≤ e−4n

√
ak ,

so

|A4| ≺
m−1∑

k=k0+1

e−n
√
akωrS

(
f,

1

n

)
=

(
m−1∑

k=k0+1

e−
√
2k

)
ωrS

(
f,

1

n

)
. (8.8)

Collecting the estimates from (8.4) to (8.8) we can see that for x ∈ {x ak0 ≤
x1 ≤ ak0+1} ∩ S

|Pn − F | ≺

( ∞∑
k=0

e−
√
2k

)
ωrS

(
f,

1

n

)
≺ ωrS

(
f,

1

n

)
.

Since every point of S∗
n (see (8.3)) belongs to one of the sets x ∈ {x ak0 ≤ x1 ≤

ak0+1} ∩ S, 9r + 1 ≤ k0 ≤ m− 1, we can finally conclude

∥Pn − F∥S∗
n
≺ ωrS

(
f,

1

n

)
. (8.9)

This argument works for all large n, actually for all n2 > 29r+6 + 2L, where
L ≥ 1 is the number for which (6.14) is true (cf. the discussion before (6.14)).
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9 Global approximation of f on S1/64

We saw in (8.9) that

∥Pn − Fn∥S∗
n
≺ ωrS

(
f,

1

n

)
,

where Fn(x) = f(x− vn), vn = (−L/n2, 0, 0) and S∗
n is the set in (8.3). For the

polynomial pn(x) = Pn(x+ vn) this gives

∥pn − f∥S∗
n−vn ≺ ωrS

(
f,

1

n

)
. (9.1)

This estimate is valid for sufficiently large n; actually, as we have mentioned at
the end of the preceding section, for all n2 > 29r+6 + 2L.

Note that n2 > 2L also holds, so S∗
n − vn is a subset of S, and it covers

a substantial part of S1/32 = S/32, the only points in S/32 that do not lie in
S∗
n − vn are the points lying close to the boundary ∂S ∩ (S/32). Based on this,

we are going to show that (9.1) automatically implies

∥pn − f∥S/64 ≺ ωrS

(
f,

1

n

)
(9.2)

for sufficiently large n, say for n ≥ nS , depending on S (actually, n2 > 64(29r+1+
L) will do).

Indeed, let y ∈ (S/64)\ (S∗
n−vn), see Figure 9.1. Then y ∈ S/64, and either

0 ≤ y1 ≤ 29r+1

n2
+

L

n2

(which is the case when y + vn ∈ S \ S∗
n, see (8.3)) or the segment [y + vn, y]

intersects the boundary of S. Let AB be the chord of S/32 which is parallel
with the x1-axis and which goes through the point y; i.e. y ∈ AB, A ∈ ∂S, the
first coordinate of B is 1/16 and AB is parallel with the x1-axis. Let C be the
point of intersection of the chord AB with ∂(S∗

n−vn), i.e. CB = AB∩(S∗
n−vn).

Then dist(A,B) ≥ 1/32 (this is due to the fact that the x1-coordinate of A is
at most 1/32 since y ∈ S1/64 = S/64, while the x1-coordinate of B is 1/16) and

dist(A,C) ≤ 29r+1

n2
+

L

n2
<

1

64

for n2 > 64(29r+1 + L). Hence, for such n we have dist(C,B) ≥ 1/64.
By (9.1)

∥f − pn∥[C,B] ≺ ωrS

(
f,

1

n

)
,

and clearly we also have

ωr[A,B]

(
f,

1

n

)
≤ ωrS

(
f,

1

n

)
.
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S vn n
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y

Figure 9.1: The set S∗
n − vn and the position of y,A,B,C

Therefore,
|pn(y)− f(y)| ≺ ωrS(f, 1/n),

follows from the following proposition if we make a linear transformation from
[A,B] onto [0, 1] (under this transformation ωr[A,B](f, δ) becomes ωr[0,1](g, δ) —

with the same δ! — if f
[A,B]

becomes g ∈ C[0, 1]). Since here y ∈ (S/64) \

(S∗
n − vn) is arbitrary, this will prove (9.2).

Proposition 9.1 Let g ∈ C[0, 1] and let Λ > 0 be fixed. Then for any polyno-
mial qn of a single variable and of degree at most n with n2 ≥ 2Λ, we have

∥g − qn∥[0,1] ≤ C
(
∥g − qn∥[Λ/n2,1] + ωr[0,1](g, 1/n)

)
, (9.3)

where C depends only on Λ and r.

Proof. With ψ(x) =
√
x(1− x) let

ωrψ(g, δ) = sup
h≤δ

∥∆r
hψ(x)g(x)∥

be the standard φ-modulus of smoothness (see [12]). This is the same as (1.1)
but for the interval [0, 1] rather than for [−1, 1]. Exactly as in (1.10) the two
moduli ωr[0,1](g, δ) and ω

r
ψ(g, δ) are the same:

ωr[0,1](g, δ) = ωrψ(g, δ),

hence (9.3) is equivalent to

∥g − qn∥[0,1] ≤ C
(
∥g − qn∥[Λ/n2,1] + ωrψ(g, 1/n)

)
. (9.4)
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In proving this we may assume Λ ≥ 8 (and, as assumed, n2 > 2Λ). Let

x∗ =
x− Λ/n2

1− Λ/n2
, q∗n(x

∗) := q(x), g∗(x∗) := g(x).

As x runs through [Λ/n2, 1], the point x∗ runs through the interval [0, 1]. For
x ∈ [Λ/n2, 1]

ψ(x∗) =

√
x− Λ/n2

1− Λ/n2
1− x

1− Λ/n2
≤
√
x(1− x)

1− Λ/n2
≤ 2
√
x(1− x),

and hence for 0 ≤ h ≤ 1/n∣∣∣∆r
hψ(x∗)q

∗
n(x

∗)
∣∣∣ ≤ 2r∥g∗ − q∗n∥[0,1] +

∣∣∣∆r
hψ(x∗)g

∗(x∗)
∣∣∣

≤ 2r∥g − qn∥[Λ/n2,1] + ωrψ(g, 2/n) ≺ θn,

where
θn := ∥g − qn∥[Λ/n2,1] + ωrψ(g, 1/n). (9.5)

This shows that
ωrψ(q

∗
n, 1/n) ≺ θn,

and then (5.3) (more precisely its variant for the interval [0, 1]) gives

∥ψr(q∗n)(r)∥[0,1] ≤Mrn
rωrψ(q

∗
n, n

−1) ≺ nrθn, (9.6)

and so
∥(q∗n)(r)∥[1/n2,1−1/n2] ≺ n2rθn (9.7)

(since ψ(x∗) ≥ 1/2n for x∗ ∈ [1/n2, 1− 1/n2]). It also follows from (9.6) that

∥ψr(qn)(r)∥[(Λ+1)/n2,1] ≺ nrθn, (9.8)

since for x ∈ [(Λ + 1)/n2, 1] we have ψ(x) ∼ ψ(x∗). Use now Remez’ inequality
[16] (cf. (14.24) in Section 14) or the first inequality in (4.14) to conclude from
(9.7)

∥(q∗n)(r)∥[−Λ/n2,1] ≺ n2rθn,

i.e.
∥q(r)n ∥[0,1] ≺ n2rθn.

This gives
∥ψrq(r)n ∥[0,(Λ+1)/n2] ≺ nrθn,

then (see (9.8))
∥ψrq(r)n ∥[0,1] ≺ nrθn,
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and finally (see [12, (2.4.4)] or apply (2.9))

ωrψ(qn, 1/n) ≺ θn.

Together with this
ωrψ(g − qn, 1/n) ≺ θn

also follows (see the definition of θn in (9.5)), and then

ωrψ(g − qn,Λ/n) ≺ θn (9.9)

is an immediate consequence (see (2.14)).
For an x ∈ [0,Λ/n2] let now the point y ∈ [0, 1] be defined by

y − r

2

Λ

n
ψ(y) = x.

Since

Λ

n2
− r

2

Λ

n

√
Λ

n2

(
1− Λ

n2

)
< 0

for Λ ≥ 8, we have y ≥ Λ/n2, and then ψ(y) ≥ 1/n, (Λ/n)ψ(y) > Λ/n2. Hence,
for j ≥ 1 we have

y −
(r
2
− j
) Λ

n
ψ(y) ≥ x+

Λ

n
ψ(y) ≥ x+

Λ

n2
≥ Λ

n2
.

As a consequence, for j = 1, 2, . . . , r∣∣∣(g − qn

)(
y − (r/2− j)(Λ/n)ψ(y)

)∣∣∣ ≤ ∥g − qn∥[Λ/n2,1].

Therefore,

|g(x)− qn(x)| =∣∣∣∣∣∣∆r
(Λ/n)ψ(y)(g − qn)(y)−

r∑
j=1

(−1)r+j
(
r

j

)(
g − qn

)(
y − (r/2− j)(Λ/n)ψ(y)

)∣∣∣∣∣∣
≤ ωrψ(g − qn,Λ/n) + 2r∥g − qn∥[Λ/n2,1] ≺ θn,

where, in the last step we used (9.9) and the definition of θn in (9.5). This
proves (9.4).

The preceding proof for (9.2) covers all n with n ≥ nS . We still need to
prove (9.2) for 3r ≤ n ≤ nS . First of all, we mention that the following variant
of Proposition 9.1 is the Λ = n2/2 special case of the proposition itself.
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Proposition 9.2 Let g ∈ C[0, 1]. Then for any polynomial qn of a single vari-
able and of degree at most n = 1, 2, . . . we have

∥g − qn∥[0,1] ≤ C
(
∥g − qn∥[1/2,1] + ωr[0,1](g, 1/n)

)
, (9.10)

where C depends only on n and r.

Now for 3r ≤ n ≤ nS we can do the following: fix a cube Q inside S. For
this we know

∥pn − f∥Q ≺ ωrS

(
f,

1

n

)
(9.11)

with some polynomials pn of degree at most n (this is weaker than (4.1), and,
as we have already mentioned, it was proved in [12, Theorem 12.1.1]; recall
also that ωrQ(f, δ) ≤ ωrS(f, δ)). Application of Proposition 9.2 (more precisely
its scaled version as was discussed before Proposition 9.1) along lines going
through the center of Q gives an estimate similar to (9.11) but on 2Q (obtained
by enlarging Q from its center):

∥pn − f∥(2Q)∩S ≺ ωrS

(
f,

1

n

)
.

Repeating this process we obtain

∥pn − f∥(2kQ)∩S ≺ ωrS

(
f,

1

n

)
,

where ≺ depends on S, Q and k. If k is such that 2kQ covers S, then (9.2)
follows.

Thus, (9.2) has been verified for all n ≥ 3r = 3d.

10 Completion of the proof of Theorem 1.1

Let K ⊂ R3 be an arbitrary convex polytope with vertices V1, . . . , Vm. We cut
off from K a small pyramid with apex Vj by a plane σj in the following way.
Let Σj be a supporting plane to K at Vj and let ℓj be the line perpendicular to
Σj and going through Vj . Let σj be a plane parallel with Σj intersecting K. If
σj lies sufficiently close to Vj , then σj intersects all the edges of K emanating
from Vj . Consider the pyramid Sj spanned by Vj (as apex) and σj∩S (as base).
It is clear that

ωrSj (f, δ) ≤ ωrK(f, δ), δ > 0.

We want to apply the approximation result (9.2) proven in Section 9 to Sj , but
the whole consideration for pyramids used the two assumptions that
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a) no two base edges of Sj are parallel,

b) the height of Sj lies in the interior of Sj (except for its two endpoints).

We claim that Σj , σj can be chosen so that these two properties are satisfied.
Indeed, any base edge E of Sj lies in σj and it is obtained by intersecting σj
by a face F of K (necessarily containing Vj). Now if the base edges E and E′

of Sj are parallel, then they must be parallel with the line ℓF,F ′ obtained by
intersecting the planes of F and F ′, and then ℓF,F ′ ⊂ Σj . Thus, if Σj does not
contain any of the lines ℓF,F ′ where F, F ′ run through the different faces of K
containing Vj , then property a) holds. Property b) is also easy to fulfill, since
all we need is that the line ℓj (which goes through Vj and is perpendicular to
Σj) contains an interior point of K.

Let Sj/64 be the pyramid obtained by shrinking Sj from Vj by a factor 64.
According to (9.2), for every n ≥ 3r there are polynomials pn,j of degree at
most n such that

∥pn,j − f∥Sj/64 ≺ ωrSj

(
f,

1

n

)
≤ ωrK

(
f,

1

n

)
. (10.1)

Also, since

K∗ = K \
m∪
j=1

(Sj/128)

is a simple polytope (obtained by cutting off all the pyramids Sj/128), by (4.1)
there is a polynomial Qn of degree at most n such that

∥Qn − f∥K∗ ≺ ωrK∗

(
f,

1

n

)
≤ ωrK

(
f,

1

n

)
. (10.2)

Now we put back one-by-one the cut off pyramids Sj/128 and apply the following
lemma to conclude that there is a polynomial Pn of degree ≺ n with

∥Pn − f∥K ≺ ωrK

(
f,

1

n

)
. (10.3)

This is enough to conclude the theorem, since to make Pn to have degree at
most n all we have to do is to apply what we have just discussed to n/C with
some appropriate C instead of n, and make use (2.14).

Lemma 10.1 Let H be a polytope lying in {x 0 ≤ x1 ≤ b} with some b > 0,
and assume that for some 0 ≤ a ≤ b/2 for both

H1 = H ∩ {x 0 ≤ x1 ≤ 2a} and H2 = H ∩ {x a ≤ x1 ≤ b}

there are polynomials Pn,1 and Pn,2 of degree at most Ln such that

∥f − Pn,j∥Hj ≤ θn, j = 1, 2
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with some numbers θn. Then there is an M depending only on L,H, a, b such
that there is a polynomial Pn of degree at most Mn for which

∥f − Pn,j∥H ≤ 2θn. (10.4)

Recall that x1 is the first coordinate of x.

Proof. There is a C (see Lemma 4.2) such that for any polynomial qn of
degree at most Ln we have

∥qn∥H ≤ Cn∥qn∥H1∩H2
. (10.5)

Consider
Rn,a(x) := R(4)

n,a(x1) (10.6)

where R
(4)
n,a(x1) is the polynomial of the single variable x1 (the first coordinate

of x) from (3.11) with some big A (recall that A was a free parameter in Section
3). If A is sufficiently big, then (cf. (3.12)–(3.13))

|Rn,a(x)| ≤
1

2Cn
, x1 ∈ [2a, b] (10.7)

and

|1−Rn,a(x)| ≤
1

2Cn
, x1 ∈ [0, a] (10.8)

Set now
Qn = Rn,aQn,1 + (1−Rn,a)Qn,2.

On H1 ∩H2 we have

|f −Qn| ≤ |f −Qn,1|+ |f −Qn,2| ≤ 2θn.

On H2 \H1 (which lies in {x 2a ≤ x1 ≤ b}

|f −Qn| = |(f −Qn,2) +Rn,a(Qn,2 −Qn,1)| ≤ θn + ∥Qn,2 −Qn,1∥H |Rn,a|

≤ θn + Cn(2θn)
1

2Cn
= 2θn,

where we used (10.7) and (10.5) for qn = Qn,2 − Qn,1 together with the fact
that

∥qn∥H1∩H2 ≤ ∥f −Qn,1∥H1 + ∥f −Qn,2∥H2 ≤ 2θn.

In a similar way (10.8) gives on H1 \H2

|f −Qn| = |(f −Qn,1) + (1−Rn,a)(Qn,1 −Qn,2)|

≤ θn + ∥Qn,2 −Qn,1∥H |1−Rn,a| ≤ θn + Cn(2θn)
1

2Cn
= 2θn.

The last three estimates prove the lemma.
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11 Approximation in R
d

In this section we prove Theorem 1.1 in Rd. Above we gave the proof for R3,
and in the Rd case we follow that proof.

In Rd a k-dimensional affine subspace is a translation of a k-dimensional
subspace. Any set H ⊂ Rd generates a minimal affine subspace ⟨H⟩ which is
a subset of all affine subspaces containing H. Indeed, if P ∈ H is any point
then clearly ⟨H⟩ = Span(H − P ) + P (where Span denotes linear span). The
dimension of Span(H − P ) is called the dimension of ⟨H⟩.

In Rd a convex polytope S is called a (d-dimensional) pyramid if S is the
convex hull of a (d−1)-dimensional convex polytope B lying in some hyperplane
L and of a point V ̸∈ L. B is called the base of S and V is its apex. V is
connected to every vertex of B by an edge — these are called the apex edges of
S. Besides these the edges of B are also edges of S — these are called the base
edges.

A hyperplane L is called a supporting hyperplane to S if L∩S ̸= ∅ and S lies
in one of the two (closed) half-spaces determined by L. F is called a face of S
if there is a supporting hyperplane L with F = L ∩ S. If ⟨F ⟩ is of k-dimension,
then we say that F is a k-dimensional face of S.

Every base edge E has its endpoints on two apex edges E1, E2, and EE1E2

forms a 2-dimensional face of S. For us it will be crucial (just as it was in
R3) that then for the directions e, e1, e2 of E,E1, E2 the vector e is a linear
combination of the vectors e1 and e2.

A base edge E and a base face F are called parallel if F contains a segment
which is parallel with E. We shall work with pyramids in Rd satisfying the
following two properties:

a) no base edge is parallel with any (d−2)-dimensional base face not containing
E,

b) the height of S lies in the interior of S (except for its two endpoints).

Of course, just as in R3, the height of S is the segment from the apex to the base
which is perpendicular to the base. In R3 these are precisely the two conditions
a), b) set forth for S in Rd (see the beginning of Section 6), namely in R3 a
(d− 2)-dimensional base face is a base edge.

Let now K be a convex polytope in Rd for which we want to prove Theorem
1.1. The proof in R3 was based on the following two facts:

A) We can cut off around every vertex Vj of K a d-dimensional pyramid Sj
with properties a)–b).

B) Suppose S ⊂ Rd is a d-dimensional pyramid with apex at the origin and
with base lying in the hyperplane {x x1 = 2} such that a)–b) hold for S.
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Then for any f ∈ C(S) and for any n ≥ rd there is a polynomial pn (of
x = (x1, . . . , xd)) of degree at most n such that

∥Fn − pn∥S∗
n
≺ ωrS

(
f,

1

n

)
,

where Fn(x) = f(x− vn),

vn = (−L/n2, 0, . . . , 0), and S∗
n = S ∩

{
x

29r+1

n2
≤ x1 ≤ 1

16

}
.

If we can show that A) and B) holds (perhaps with a larger constant than

29r+1, say with 2d
2r+1 in the definition of S∗

n), then the 3-dimensional proof
goes over to any Rd with minor changes.

11.1 Proof of A)

Let K be a convex polytope (with interior point) in Rd and V a vertex of S.
We may assume that V = 0 and that K lies in the half-space {x x1 > 0}
except for its vertex 0. Let Σ be a supporting hyperplane to K at 0, and cut off
a small pyramid S from K by the hyperplane σ = Σ + (b, 0, . . . , 0) with some
small b > 0 (the apex of S is 0). If b is sufficiently small, then σ intersects all
edges of S emanating from 0, so S is a d-dimensional pyramid with base K ∩σ.
We claim that Σ (and a small b) can be selected so that properties a) and b)
above hold for S.

Consider first property a). What does it mean that a) is not true, i.e. there
is a base edge E of S which is parallel with a (d − 2)-dimensional base face F
of S such that E ̸⊆ F? The very definition of a face gives that if E ∩ F ̸= ∅
and E ̸⊆ F , then E cannot be parallel with F (if it was, then E ⊆ ⟨F ⟩,
so E ⊆ S ∩ ⟨F ⟩, but the latter set is F ). Hence, E and F are disjoint and
F contains a segment I parallel with E. Let ℓ be the line through 0 which
is parallel with E. If E1, E2 are the two adjacent apex edges to E, then ℓ
lies in the 2-dimensional plane ⟨E1, E2⟩, as well as in the (d − 1)-dimensional
hyperplane L = ⟨0, F ⟩: indeed, if we translate F by a vector u so that 0 ∈ I+u,
then clearly ℓ ⊆ ⟨F + u⟩. Hence, ℓ = ⟨E1, E2⟩ ∩ L (note that since E and
F are disjoint, L does not contain ⟨E1, E2⟩, but both contain the origin, so
their intersection is a line through the origin since ⟨E1, E2⟩ is 2-dimensional
and L is (d − 1)-dimensional). Note also that Σ + (b, 0, . . . , 0) contains E, so
Σ must contain ℓ. In other words, if property a) is not true, then Σ contains a
line ℓ which is the intersection of a 2-dimensional plane ⟨E1, E2⟩ determined by
two apex edges E1 and E2 and of a (d − 1)-dimensional affine subspace ⟨0, F ⟩
generated by a (d − 1)-dimensional face of K not containing ⟨E1, E2⟩. There
are only finitely many such lines ℓ1, . . . , ℓm, and if Σ does not contain any one
of them then property a) holds for the cut off S. Now it is clear that if Σ is any
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supporting hyperplane through 0 to K, then we can change its normal a little
so that the changed Σ′ will still be a supporting hyperplane and Σ′ does not
contain any of the lines ℓ1, . . . , ℓm (the prohibited normals are on the union of
m main hypercircles on the unit ball, so they form a nowhere dense set there).
It is also clear that by appropriately choosing the original Σ and change it only
little, the changed Σ′ will also satisfy property b), i.e. the height lies inside S.

11.2 Proof of B)

The proof follows the R3 case in sections 4–9. First of all, as we have already
proved in Section 4, Theorem 1.1 holds for simple polytopes.

Next, let S be a pyramid as in part B), and consider the pieces Ka, a =
ak = 2k/n2, k = d2r, r + 1, . . . ,m where 1/16 ≤ 2m/n2 < 1/8, of S determined
by (6.1). These are simple polytopes, and if we can get the local estimate (7.2)
on Ka, then the rest is the same as in the R3-case. In (7.2) the main thing was
the bound (6.18), i.e.

ωrKa

(
F,

1

n
√
a

)
≺ ωrS

(
f,

1

n

)
(11.1)

for the ω-modulus of smoothness on Ka (taken in the direction of edges of Ka),
since this allows ≺ ωrS(f, 1/n) rate of approximation on Ka by polynomials of
degree at most n

√
a as in (7.2). In the proof of (11.1) the key was the inequality

(5.7) in Proposition 5.1 on the rhombus T described there, and this is at our
disposal in Rd (i.e. Proposition 5.1 is still used on plane rhombi). Besides that,
the proof of (11.1) depended solely on the inequality

min{dS(e1, x), dS(e2, x)} ≥ c0dS(e, x) (11.2)

in Proposition 6.1. Therefore, if we can prove the following proposition, which
is the complete analogue of Proposition 6.1, then the rest of the proof remains
the same.

Proposition 11.1 If a base edge E is adjacent to the apex edges E1, E2 of S
and e, e1, e2 are their respective directions, then for x ∈ S, x1 = 1 (and hence
by similarity also for all x ∈ S, 0 ≤ x1 ≤ 1) we have

min{dS(e1, x), dS(e2, x)} ≥ c0dS(e, x) (11.3)

with a c0 depending only on S.

Proof. For x lying on the 2-dimensional plane ⟨E1, E2⟩ (spanned by E1 and
E2) this is clear, so from now on let x ∈ S\⟨E1, E2⟩. Consider the 2-dimensional
plane Hx that is parallel with ⟨E1, E2⟩ and goes through x, and set Vx = S∩Hx.
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Let AB be the chord of Vx that contains x and which is parallel with E. Let
S∞ = ∪n>0(nS) be the infinite cone with vertex at 0 generated by the apex
edges (more precisely, by their one-way infinite extensions) of S, and let V∞

x =
S∞ ∩Hx. It is no longer true (as was in the 3-dimensional case) that all these
V∞
x ’s (which depend on the location of x) are similar. However, any edge of V∞

x

lies on the boundary of S∞, hence it lies on a (d−1)-dimensional face of S∞. In
other words, any edge E′ of V∞

x is the intersection of the 2-dimensional plane
Hx with a (d− 1)-dimensional face F ′ of S∞, so the line ⟨E′⟩ is the intersection
of Hx with ⟨F ′⟩: ⟨E′⟩ = Hx ∩ ⟨F ′⟩. Now changing x means a translation of Hx,
which, for its intersection with ⟨F ′⟩ results in a translation of Hx ∩ ⟨F ′⟩, so the
corresponding edge E′′ will be parallel with E′ (see below). As a consequence,
these edges E′ can form only finitely many angles φ1, . . . , φk with AB (which
is parallel with E). Here we have used that if Hy = Hx + v is a translation of
Hx, then Hy ∩ ⟨F ′⟩ is a translation of Hx ∩ ⟨F ′⟩. Indeed, the translation vector
v can be written as v = v0 + v1, where v1 is parallel with ⟨F ′⟩ and v0 is parallel
with Hx, i.e. with ⟨E1, E2⟩ (this is due to the fact that Hx and ⟨F ′⟩ span the
whole space Rd). Now

Hy ∩ ⟨F ′⟩ = (Hx + v) ∩ ⟨F ′⟩ = (Hx + v1) ∩ ⟨F ′⟩ =
(
Hx ∩ (⟨F ′⟩ − v1)

)
+ v1

= (Hx ∩ ⟨F ′⟩) + v1.

We claim that neither of the angles φ1, . . . φk is 0. Indeed, a zero angle
would mean that E and E′ are parallel. Enlarge E′ from 0 so that one of its
points becomes a point on the hyperplane {u u1 = 2} (the hyperplane of the
base of S). Let this dilation be Φ. Since F ′ is invariant under Φ, the segment
Φ(E′) lies in the intersection F ′ ∩ Φ(Hx). Let P ∈ Φ(E′) ∩ {u u1 = 2}, and
F = F ′ ∩ {u u1 = 2}. Then F is a (d − 2)-dimensional base face of S and
we claim that Φ(E′) ⊆ F . Since Φ(E′) ⊆ F ′, to this end all we have to show
is that Φ(E′) ⊂ {u u1 = 2}. But this follows, since Φ(E′) is parallel with
E′ so also with E, E lies in {u u1 = 2} and Φ(E′) has a common point (P )
with {u u1 = 2}. However, Φ(E′) ⊆ F means that the base edge E and
the (d− 2)-dimensional base face F are parallel (and E ̸⊆ F , for otherwise ⟨F ′⟩
would contain ⟨E1, E2⟩ and then it could not intersect Hx, which is a translation
of ⟨E1, E2⟩, in a line). But this is not possible by property a) of S, and this
contradiction shows that all the angles φj are different from 0.

Thus, if ϕ0 > 0 is their minimum, then the triangle ABC depicted in Figure
11.1 lies inside V∞

x and S. Now

dS(e, x) = dABC(e, x), dS(ej , x) ≥ dABC(ej , x), j = 1, 2, (11.4)

and it is clear that

dABC(e, x) ≤
1

sinϕ0
min
j=1,2

dABC(ej , x). (11.5)

Now (11.3) is an immediate consequence of (11.4) and (11.5).
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12 A K-functional and the equivalence theorem

K-functionals are important tools in functional analysis and approximation the-
ory. Very often they are equivalent with some kind of moduli of smoothness, and
that allows one to prove direct and converse theorems not directly through the
moduli of smoothness, but through the K-functionals, see [12] for a systematic
treatment, and e.g. [1]–[4], [11] and [17] for various K-functionals and moduli
of smoothness in several variables related to polynomial approximation.

As a typical example, consider the φ-modulus of smoothness (1.1) and its
equivalence given in (2.9) to the K-functional (2.8). We did not follow that
path, since a direct proof of the equivalence of the moduli of smoothness (1.8)
with a K-functional seems to be quite hard. Remarkably, however, Theorem
1.1 does give this equivalence.

Let K be a polytope in Rd, and consider the relative distances (1.6). The
K-functional we need is

Kr(f, t) = Kr(f, t)K = inf
g

(
∥f − g∥K + t sup

e∈Sd−1

∥∥∥∥d̃K(e, ·)r ∂
rg

∂er

∥∥∥∥
K

)
, (12.1)

where the infimum is taken for all g that are in Cr(K) (all partial derivatives
of order at most r are continuous on K) and the supremum is taken for all
directions e ∈ Sd−1 in Rd.

Theorem 12.1 Let K be a convex polytope in Rd. There is a constant M
depending only on r and K such that for all f ∈ C(K) and for all 0 < δ ≤ 1 we
have

1

M
Kr(f, δr) ≤ ωrK(f, δ) ≤MKr(f, δr). (12.2)
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Proof. Let Pn be polynomials of degree at most n (≥ rd) such that

∥f − Pn∥K ≺ ωrK(f, n−1),

the existence of which is given by Theorem 1.1. Now apply (5.5) on any chord
AB of K with ω(δ) = ωrK(f, δ) to conclude that if e is the direction of the chord
AB, then for x ∈ AB we have∣∣∣∣d̃K(e, x)r

∂rPn(x)

∂er

∣∣∣∣ ≺ nrωrK(f, n−1),

with ≺ independent of the chord AB and the point x ∈ AB. On taking supre-
mum for all x ∈ AB and for all chords AB of K we can conclude that for all
n ≥ rd

Kr(f, n−r) ≤ ∥f − Pn∥K + n−r sup
e∈Sd−1

∥∥∥∥d̃K(e, ·)r ∂
rPn
∂er

∥∥∥∥
K

≺ ωrK(f, n−1).

Using simple monotonicity properties of Kr and ωrK (see in particular (2.11)),
this is enough to conclude

Kr(f, δr) ≺ ωrK(f, δ)

for all 0 < δ ≤ 1.
The converse inequality is more classical, and it follows from (2.9). Indeed,

again if I is a chord of K, then (2.9) (more precisely its transformed form to
AB) yields

ωrI (f, δ) ≺ Kr(f, δr)I ≤ Kr(f, δr),

and if we take here the supremum for all chords I of K and apply (1.11), then
we get

ωrK(f, δ) ≺ Kr(f, δr).
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Part II

The Lp-case

13 The Lp result

In the second part of the paper we prove a complete analogue of Theorem 1.1
in Lp, 1 ≤ p <∞. We shall be content to do the R3 case.

Thus, in what follows we shall assume that K is a polytope in R3 and f ∈
Lp(K), where the Lp spaces are taken with respect to 3 dimensional Lebesgue
measure on K. We shall always assume that 1 ≤ p <∞.

The Lp modulus we are going to use is

ωrK(f, δ)p := sup
e∈S2

sup
h≤δ

(∫
K

|∆r
hd̃K(e,x)e

f(x)|pdx
)1/p

(13.1)

with the usual agreement that

∆r
hd̃K(e,x)e

f(x) = 0

if [
x− r

2
hd̃K(e, x)e, x+

r

2
hd̃K(e, x)e

]
̸⊆ K,

i.e. if one of the arguments in ∆r is outside K. As always in this paper, d̃K(e, x)
is the normalized distance (1.6), and supe∈S2 means that we take the supremum
for all directions in R3.

With this we have the complete analogue of Theorem 1.1.

Theorem 13.1 Let K ⊂ R3 be a 3-dimensional convex polytope and r =
1, 2, . . .. Then, for n ≥ 3r and f ∈ Lp(K), we have

En(f)Lp(K) ≤MωrK

(
f,

1

n

)
p

, (13.2)

where M depends only on K, r and p.

Naturally, on the left-hand side En(f)Lp(K) is the error of best polynomial
approximation of f in Lp(K)-norm by polynomials of degree at most n.

The weak converse

ωrK

(
f,

1

n

)
p

≤ M

nr

n∑
k=0

(k + 1)r−1Ek(f)Lp(K), n = 1, 2, . . . , , (13.3)

can be proven along standard lines, see [12, Theorem 12.2.3,(12.2.4)], which
covers (13.3).

One can easily get from Theorems 13.1 and (13.3), as well as from (16.1)
and (16.9) below the following analogue of Corollary 1.2.
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Corollary 13.2 Let K be a convex polytope, f ∈ Lp(K), 1 ≤ p <∞ and α > 0.
Assume also that for all directions e we have(∫

En(f)
p
Lp(I)dI

)1/p

≤ n−α, (13.4)

where the integration is with respect to all chords I of K in the direction of e.
Then

En(f)Lp(K) ≤
C

nα
, (13.5)

where C is independent of f .

“Integration with respect to all chords in the direction of e” means the following:
let e⊥ be the hyperplane through the origin which is perpendicular to e. Then,
for each point y of e⊥, there is a line y + λe, λ ∈ R, through that point which
is parallel with e. Now that line intersects K in a (possibly empty) segment
I = Ie,y, and integration with respect to I = Ie,y means integration with respect
to y on e⊥.

Again, this corollary says that in some sense n−α rate of approximation
along chords in a given direction implies for global approximation the rate n−α.
To prove it consider a direction e and a chord I in that direction. The inequality
(1.4) is also true in Lp, see [12, Theorem 7.2.4]. When the Lp version of (1.4)
is transformed to I, it takes the form

ωrI

(
f,

1

n

)
p

≤ C

nr

n∑
k=0

(k + 1)r−1Ek(f)Lp(I).

Now apply Jensen’s inequality to get

ωrI

(
f,

1

n

)p
p

≤ C1

n(r−1)p+1

n∑
k=0

(k + 1)(r−1)pEk(f)
p
Lp(I).

If we integrate this for all chords I in the direction e and use (13.4), then we
obtain ∫

ωrI

(
f,

1

n

)p
p

dI ≤ C1

n(r−1)p+1

n∑
k=0

(k + 1)(r−1)p−αp.

If r − 1 > α, then the right-hand side is O(n−αp), while the supremum of the
left-hand side for all directions e is clearly at least as large as ωrK(f, 1/n)pp, so
ωrK(f, 1/n)p = O(n−α) follows. Now (13.5) is a consequence of Theorem 13.1.

In Section 20 we shall prove stronger versions of (13.2) and (13.3). In that
stronger version the following fact will play an important role. Let E∗ be a set
of directions in R3, and define the corresponding moduli of smoothness

ωrK,E∗(f, δ)p := sup
e∈E∗

sup
h≤δ

(∫
K

|∆r
hd̃K(e,x)e

f(x)|pdx
)1/p

, (13.6)
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i.e now we take the supremum of the directional moduli of smoothness only for
the directions e that lie in E∗. Besides Theorem 13.1, the proof we give below
verifies the following stronger statement.

Theorem 13.3 Let K ⊂ R3 be a 3-dimensional convex polytope and r =
1, 2, . . .. Then there is a finite set E∗ of directions that depends only on K,
such that for n ≥ 3r and f ∈ Lp(K) we have

En(f)Lp(K) ≤MωrK,E∗

(
f,

1

n

)
p

, (13.7)

where M depends only on K, r and p.

In fact, the proof yields an E∗ consisting of at (r+1)v(v−1)/2 directions, where
v is the number of edges of K.

Note also that if E∗ = E is the set of the directions of the edges of K, then

ωrK,E∗(f, t)p = ωrK(f, t)p

is the modulus of smoothness that will play a significant role in the proof (see
(14.1) below), but we do not know if Theorem 13.3 is true with E∗ = E . Never-
theless, the proof starts by claiming that Theorem 13.3 is true with E∗ = E for
simple polytopes, see the next section.

14 Proof of the Lp result

The proof in the Lp case follows the proof given for the continuous case, but at
some points there are substantial differences due to the fact that the Lp moduli
of smoothness are much more difficult to handle than their continuous cousins.
In fact, it would be grossly misleading to state that the Lp proof is the same as
the continuous one.

In this section we shall sketch the proof. We shall quickly pass through
those steps that are very similar to the continuous case, and elaborate more on
parts where some non-trivial change is needed. There is a substantial part of
the proof which is totally different in the Lp case, that part will be handled in
the sections to follow.

We may always assume that the functions appearing below are Borel-measu-
rable, and then no measurability problems appear when we restrict them to
submanifolds.

Let E be the direction of edges of K, and define the analogue of (2.1) as

ωrK(f, δ)p := sup
e∈E

sup
h≤δ

(∫
K

|∆r
hd̃K(e,x)e

f(x)|pdx
)1/p

. (14.1)
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Recall also that K is a simple polytope if at every vertex of K there are precisely
3 edges. For cubes

En(f)Lp(K) ≤MωrK

(
f,

1

n

)
p

, n ≥ 3r (14.2)

was proved in [12, Theorem 12.1.1]. More precisely, [12, Theorem 12.1.1] con-
tains the inequality in (14.2) for all n ≥ r if the best approximation En(f) is
considered for polynomials of degree at most n in each variables. Since we are
working with total degree at most n, we wrote in (14.2) n ≥ 3r. From (14.2) on
cubes we get the validity of (14.2) for parallelepipeds by affine transformation.
Now a first major step in the proof is to verify

Proposition 14.1 For all simple polytopes (14.2) is true.

Proof of Proposition 14.1. The proposition can be proven with the method
of Section 4, once (14.2) is known for parallelepipeds, as we have just seen. The
only difference in the Lp case is that now we have to use the Lp version of
Lemma 4.1:

Lemma 14.2 Let U ⊂ K be a set, T ⊂ K a K-parallelepiped with side-lengths
in between ε and 2ε such that U ∩ T contains a ball B of radius δ. Then there
is an l that depends only on ε, δ and K, and there is a C that depends only on
p, for which

Eln(f)Lp(U∪T ) ≤ C
(
En(f)Lp(U) + En(f)Lp(2T∩K)

)
. (14.3)

Recall that 2T is obtained from T by a dilation about its center by a factor 2.
The original Lemma 4.1 was based on Lemma 4.2, the Lp version of which

is

Lemma 14.3 If B is a ball of radius ρ lying in the unit ball B1(0), then for
any polynomial Qn of degree at most n

∥Qn∥B1(0) ≤ C∥Qn∥Lp(B)

(
17

δ

)n+1

, (14.4)

∥Qn∥Lp(B1(0)) ≤ C∥Qn∥Lp(B)

(
17

δ

)n+1

(14.5)

with some constant C that depends only on p.

Proof. It is enough to prove (14.4). Let B = Bδ(A) (δ is the radius and A is
the center of B), and set B′ = Bδ(A) \Bδ/2(A). In the proof of Lemma 4.2 we
verified

|qn(x)| ≤ ∥qn∥[α−δ,α+δ](2 · dist(x, α)/δ)n (14.6)
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for any qn which is a polynomial of a single variable of degree at most n. Now
if X is any point in the unit ball, then let l be the line through A and X. The
polynomial Qn in the lemma when restricted to l, is a polynomial qn of a single
variable of degree at most n, and on this line X lies from A closer than 2. Also,
this line intersects B′ in two segments of length δ/2, and the center of one of
these segments, call it I, is closer to X than 2. Hence, on applying (14.6) to
this last segment I we obtain

|Qn(X)| ≤ ∥Qn∥I(2 · dist(X,A)/(δ/4))n ≤ ∥Qn∥I(16/δ)n. (14.7)

Next, we need Nikolskii’s inequality [5, Theorem 4.2.6]: if pn is a polynomial
of degree at most n, then

∥pn∥[−1,1] ≤ Cn2/p∥pn∥Lp[−1,1]. (14.8)

When applied on an interval I this changes to

∥pn∥I ≤ C
n2/p

|I|1/p
∥pn∥Lp(I). (14.9)

Thus, (14.7) gives

|Qn(X)| ≤ C
n2/p

(δ/2)1/p
∥Qn∥Lp(I)(16/δ)n ≤ C∥Qn∥Lp(I)(17/δ)n+1 (14.10)

with a possibly larger C on the right.

Next, we indicate the changes needed in the proof of Lemma 14.2.

Proof of Lemma 14.2. Let P1 and P2 be polynomials of degree n such that

∥f − P1∥Lp(2T∩K) ≤ En(f)Lp(2T∩K), ∥f − P2∥Lp(U) ≤ En(f)Lp(U).

On the ball B ⊆ U ∩ T we have

∥P1 − P2∥Lp(B) ≤ ∥f − P2∥Lp(U) + ∥f − P1∥Lp(2T∩K)

≤ En(f)Lp(U) + En(f)Lp(2T∩K),

hence, by Lemma 14.3,

∥P1 − P2∥B1(0) ≤ C(17/δ)n+1
(
En(f)Lp(U) + En(f)Lp(2T∩K)

)
. (14.11)

With η = δ2/18 choose the polynomials Rn as in Lemma 4.3, and set P =
RnP1 + (1−Rn)P2. This is a polynomial of degree at most Ln+ n (with some
L which is independent of n), and for it we have on U ∩ 2T = U ∩ (2T ∩K)

|f − P | ≤ Rn|f − P1|+ (1−Rn)|f − P2|, (14.12)
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so∫
U∩(2T∩K)

|f − P |p ≤ 2p−1

(∫
U∩(2T∩K)

|f − P1|p +
∫
U∩(2T∩K)

|f − P2|p
)

≤ En(f)
p
Lp(U) + En(f)

p
Lp(2T∩K). (14.13)

On T

|f − P | = |f − P1 + (1−Rn)(P1 − P2)| ≤ |f − P1|+ (1−Rn)|P1 − P2|

≤ |f − P1|+ Cηn(17/δ)n+1
(
En(f)Lp(U) + En(f)Lp(2T∩K)

)
≤ |f − P1|+ C

(
En(f)Lp(U) + En(f)Lp(2T∩K)

)
, (14.14)

which gives∫
T

|f − P |p ≤ C

(∫
T

|f − P1|p + En(f)
p
Lp(U) + En(f)

p
Lp(2T∩K)

)
. (14.15)

Similarly, on U \ 2T

|f − P | = |(f − P2 −Rn(P1 − P2)| ≤ |f − P2|+Rn|P1 − P2|

≤ |f − P2|+ Cηn(17/δ)n+1
(
En(f)Lp(U) + En(f)p(2T∩K)

)
≤ |f − P2|+ C

(
En(f)Lp(U) + En(f)p(2T∩K)

)
, (14.16)

from which we get∫
U\2T

|f − P |p ≤ C

(∫
U\2T

|f − P2|p + En(f)
p
Lp(U) + En(f)

p
Lp(2T∩K)

)
.

(14.17)
Since U ∩ 2T , U \ 2T and T cover U ∪ T , (14.13)–(14.17) verify the lemma.

To handle all n ≥ 3r not just large n, in Section 4 we used Lemma 4.4, the
Lp variant of which is

Lemma 14.4 Let U ⊂ K be a set, T ⊂ K a K-parallelepiped with side-lengths
in between ε and 2ε such that U ∩ T contains a ball B of radius δ. Then there
is a C that depends only on ε, δ, n, p and K for which

En(f)Lp(U∪T ) ≤ C
(
En(f)Lp(U) + En(f)Lp(2T∩K)

)
. (14.18)
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For the proof just follow the proof of Lemma 4.4, and use the just proven Lemma
14.3 instead of Lemma 4.2.

This completes the discussion on simple polytopes, and with these changes
the proof of Section 4 goes over, and it follows that (14.2) is true for all simple
polytopes. Thus, Proposition 14.1 holds.

The case of general polytope is reduced to the simple polytope case and
that of a pyramid as in Section 10 by cutting off small pyramids around the
vertices. That argument remains valid in the present Lp situation (use Lemma
14.3 instead of Lemma 4.2).

Thus, it is enough to consider pyramids S with the properties set forth in
Sections 6 and 10, and it is enough to find an appropriate polynomial approx-
imant on some Sη/4 instead of on S1/64 as was done in Section 9, (9.2) (recall
that Sη is obtained from S by a dilation with a factor η from the apex of S).
Instead of (8.3) consider now

S∗
n := S ∩

{
x

Ξ

n2
≤ x1 ≤ η

}
(14.19)

with some fixed Ξ and η > 0. In the following sections we are going to show
(see (19.10)) that for appropriate Ξ, η and L and for sufficiently large n there
are polynomials Pn of degree at most n such that

∥Pn − F∥Lp(S∗
n)

≺ ωrS

(
f,

1

n

)
p

, (14.20)

where Fn(x) = f(x − vn), vn = (−L/n2, 0, 0), which is the analogue of (8.9).
Once this is done, we can invoke the technique of Section 9 to show that (14.20)
automatically implies

∥pn − f∥Lp(Sη/4) ≺ ωrS

(
f,

1

n

)
p

, (14.21)

which will complete the proof of Theorem 13.1. The argument in Section 9 was
based on Lemma 9.1, the Lp-version of which is

Proposition 14.5 Let g ∈ Lp[0, 1] and let Λ > 0 be fixed. Then, for any
polynomial qn of a single variable and of degree at most n, n2 ≥ 2Λ, we have

∥g − qn∥Lp[0,1] ≤ C
(
∥g − qn∥Lp[Λ/n2,1] + ωr[0,1](g, 1/n)p

)
, (14.22)

where C depends only on Λ, r and p.
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Proof. Just follow the original proof in Lemma 9.1 with the modification,
that instead of (9.6) we use its Lp-version

∥φr(q∗n)(r)∥Lp[0,1] ≤Mrn
rωrφ(q

∗
n, n

−1)p ≺ nrθn, (14.23)

see [12, Theorem 7.3.1] or (17.4)–(17.5) below. The only step from that proof
that needs to be explained for Lp is the use of Remez’ inequality. The L∞

version of Remez’ inequality, that was used in Lemma 9.1 is this: for every λ
there is a Cλ such that if hn is a polynomial of a single variable of degree at
most n, then

∥hn∥[−1−λ/n2,1+λ/n2] ≤ Cλ∥hn∥[−1,1]. (14.24)

This is a very simple form of Remez’s inequality [16], and actually it is a simple
consequence of the inequality (4.14). Instead of it, in Proposition 14.5 we need
to use its Lp-variant:

∥hn∥Lp[−1−λ/n2,1+λ/n2] ≤ Cλ∥hn∥Lp[−1,1]. (14.25)

To prove this note first of all that, by Nikolskii’s inequality (14.8), and by the
L∞ Remez inequality (14.24), we have

∥hn∥L∞[−1−λ/n2,1+λ/n2] ≤ Cλn
2/p∥hn∥Lp[−1,1].

Hence, (∫ −1

−1−λ/n2

+

∫ 1+λ/n2

1

)
|hn|p ≤ 2

(
λ

n2

)
Cpλn

2∥hn∥pLp[−1,1],

and if we add to both sides to the integral of |hn|p over [−1, 1], then we obtain
(14.25).

With these modifications the proof of Theorem 13.1 reduces to the verifica-
tion of (14.20), which will be done in Sections 15–19. Indeed, this part of the
proof is much more difficult than in the L∞ case, and it proceeds along quite a
different path.

15 The dyadic decomposition

Consider a pyramid S as in Section 6 with apex at 0 and with base in the
hyperplane {x = (x1, x2, x3) x1 = 2}, and let S∞ be the infinite cone with
apex at 0 determined by S: S∞ = ∪∞

n=1nS. Recall that about S we assumed

a) no two base edges of S are parallel,
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Figure 15.1: The (ξ1, ξ2) coordinate system

b) the height of S lies in the interior of S.

We keep these properties here, as well.
Consider a base edge E and the two apex edges E1 and E2 such that E lies

in the plane ⟨E1, E2⟩ spanned by E1 and E2. Let e1 and e2 be the directions
of the edges E1, E2. Without loss of generality we may assume that E1 and E2

are orthogonal to each other. Indeed, this can always be achieved by an affine
transformation (an alternative to handle the non-orthogonality case would be
to use dyadic rhombi instead of dyadic squares below).

Let H be a translate of the plane ⟨E1, E2⟩ so that V = V (H) := H ∩S ̸= ∅,
and let τ be the distance of H and ⟨E1, E2⟩. We can parametrize these H’s
by τ . If V∞ = V∞(H) = H ∩ S∞, then all these V∞(H) are similar to one
another, and on the boundary of V∞ there are two infinite edges (half-lines) ℓ1
and ℓ2 parallel with E1 and E2, respectively. Let Y1 and Y2 be the endpoints
of ℓ1 and ℓ2, and let us place a (ξ1, ξ2) coordinate system on H in the following
way (see Figure 15.1):

• the positive direction of ξj is −ej , j = 1, 2,

• Y1 lies on the ξ2-axis and Y2 lies on the ξ1-axis.

In what follows all reference (like positive quadrant) is made to this coordinate
system, but remember, that we also have the (x1, x2, x3) coordinate system in
R3. It is clear that the origin, as well as the whole negative quadrant lies in
V∞, and for small τ , say for 0 ≤ τ ≤ τ0, the origin also lies in S1/2 (which is
S dilated from its apex by a factor 1/2), so it lies within V = H ∩ S. Let U
be the intersection of V with the positive quadrant (see Figure 15.1). Then the
boundary of V∞ consists of three parts: ℓ1, ℓ2 and the part of the boundary of
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U that does not lie on the (ξ1, ξ2) coordinate axis. Note that, by the assumption
that no two base edges are parallel to one another, this boundary does not have
an edge parallel with the base edge E we started with (see the discussion in
Section 6). Note also that, by the similarity of the infinite polygons V∞ and by
the way we placed the (ξ1, ξ2) coordinate system on H, all these U (for different
H’s) are similar to one another.

For an integer j consider the vertical lines ξ1 = k/2j , k = 0,±1,±2, . . . and
the horizontal lines ξ2 = l/2j , l = 0,±1,±2, . . ., which give the j-th level dyadic
division of H. A j-th level dyadic square T is

T =

{
(ξ1, ξ2)

k

2j
≤ ξ1 <

k + 1

2j
,

l

2j
≤ ξ2 <

l + 1

2j

}
.

We call the lower left corner (k/2j , l/2j) the main vertex of T , and we denote by
2dT the side-length of T , i.e. dT = 1/2j+1. Clearly, two dyadic squares (from
any levels) are either disjoint or one of them contains the other.

In this section we make a dyadic decomposition of part of V = S ∩H which
is similar to dyadic decompositions used in harmonic analysis, and discuss some
geometric properties of them.

For a λ > 0 let λT be the dilation of T from its center by a factor λ. Fix a
small β > 0 so that

Sβ ⊂
∪

0≤τ≤τ0

V (Hτ ). (15.1)

For x ∈ V∞ let T (x) by the largest dyadic square T containing x for which
4T ⊆ V∞. If β is sufficiently small, then for x ∈ Sβ this is also the largest
dyadic square T containing x for which 4T ⊆ V . The set

T = T (H) = {T (x) x ∈ V ∩ Sβ} (15.2)

is the dyadic decomposition of V∞ we are going to use, see Figure 15.2. Note
that 4T ⊂ V for T ∈ T . Simple geometry shows that if T is a dyadic square at
level j, then the square 9T contains a 4T ′ where T ′ is a dyadic square at level
(j−1), therefore we get from the definition of T (x) that 9T (x) ̸⊆ V∞, so 9T (x)
must contain a point on the boundary of V∞. Furthermore, if x lies sufficiently
close to the apex of S, then this means that 9T (x) must contain a point on the
boundary of V∞ that lies in V := H ∩ S, i.e. a point of ∂V∞ ∩ ∂V . It is also
clear that the union ∪

T∈T

T

of the dyadic squares in this decomposition covers (the interior of) V ∩Sβ . Thus,
when we take the union of all these unions (with respect to Hτ with 0 ≤ τ ≤ τ0),
then they cover Sβ .

Fix a large number M , and for a large integer n consider

Tn = Tn(H) =

{
T T ∈ T , dist(T, ∂S) ≥ M

n2

}
. (15.3)
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Then, there is an M1 such that for sufficiently large n{
x ∈ V ∩ Sβ dist(x, ∂S) ≥ M1

n2

}
⊆
∪
T∈Tn

T, (15.4)

i.e. the union of the squares in Tn covers that part of V ∩Sβ that lies of distance
≥M1/n

2 from the boundary ∂S of S.
Since for all T = T (x) we must have dist(T, ∂V∞ ∩ ∂V ) ≤ 8

√
2dT ≤ 12dT

(otherwise 9T ⊂ V ), and since dist(T, ∂V ) ≥ dist(T, ∂S), we must have (by the
definition of Tn in (15.3))

dT ≥ M

12n2
, T ∈ Tn. (15.5)

The next lemmas summarize the most important properties of the dyadic
decomposition. In them we write A ∼ B for A ≺ B and B ≺ A.

Recall from (1.5) that dS(e, x) is the distance from x to the boundary of S
in the direction of e.

Lemma 15.1 If T ∈ T and y ∈ T , then either dS(e1, y) ∼ dT or dS(e2, y) ∼
dT . Furthermore, if L is some number and if dist(T,U) ≤ LdT , then dS(ej , y) ∼L
dT , j = 1, 2.

Of course, here ∼L means that the constants in ∼ depend on L.
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Proof. We have dS(ej , y) ≥ dT because 4T ⊆ V ⊂ S. We know that 9T has a
point P on ∂V∞ ∩ ∂V . If P lies on ℓ1, then dT ≤ dS(e2, y) ≤ 10dT . Similarly,
if P lies on ℓ2, then dT ≤ dS(e1, y) ≤ 10dT . Finally, consider the case when P
lies on ∂U ∩ ∂V . Then it lies on a boundary segment IP of U . IP has negative
slope which can only take finitely many values (here we use that all the U ’s for
different H are similar). Let P1 and P2 be as in Figure 15.3. If PT is the main
(lower left) vertex of T , then dist(PT , Pj) ≤ AdT with some A that depends
only on the finitely many slopes in question, and so

dT ≤ dS(ej , y) ≤ AdT , j = 1, 2. (15.6)

If dist(T,U) ≤ LdT , then (L+ 1)T contains a point Y ∈ U , and

dT (Y ) ≤ dist(Y, ∂V∞).

If z is the center of T , then

dist(Y, ∂V∞) ≤ (L+ 1)
√
2dT + dist(z, ∂V∞) ≤ (L+ 1)

√
2dT + 9

√
2dT

= (L+ 10)
√
2dT .

Therefore,
dT (Y ) ≤ (L+ 10)

√
2dT .

Since T (Y ) lies in the positive quadrant, we have (in view of 9T (Y )∩(∂U∩∂V ) ̸=
∅)

dist(Y, ∂U ∩ ∂V ) ≤ 10
√
2dT (Y ),
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so there is a point P on ∂U ∩ ∂V of distance

≤
(
(L+ 2)

√
2 + 10

√
2(L+ 10)

√
2
)
dT

from y. Now repeat the proof of (15.6) with this P and T .

We shall need to use the directions ej , j = 0, 1, . . . , r, (e0 = e1, er = e2)
that cut the angle in between e1 and e2 into r equal parts (see Figure 15.4 and
the proof of Proposition 5.1).

Lemma 15.2 If T ∈ T and y ∈ T , then for all 1 ≤ j ≤ r − 1 we have
dS(ej , y) ∼ dT .

The lemma is not true for j = 0 and j = r—these cases were discussed in the
preceding lemma.
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Proof. Note first of all, that the line through the origin (in the (ξ1, ξ2) co-
ordinate system) in the direction ej has strictly positive and finite slope. Let
P ∈ ∂V∞ be the closest point on the boundary of V∞ to y, see Figure 15.5.
Then P belongs to a segment IP of the boundary ∂V and the segment yP is
perpendicular to IP . ej cannot be parallel with IP (the latter has either nega-
tive, 0 or ∞ slope) and ej and IP can form only finitely many angles. Hence, if
P ′ is the intersection of the line of IP with the line through y in the direction
of ej , then we have for some constant A

dT ≤ dS(ej , y) ≤ dist(y, P ′) ≤ A · dist(y, P ) ≤ A · 10
√
2dT .

Recall now that we have started this section with a base edge E with direc-
tion e, which was the linear combination of e1 and e2. The next lemma is about
this direction.

Lemma 15.3 If T ∈ T and y ∈ T , then dS(e, y) ∼ dT .

This lemma is true because of the basic assumption that no two base edges are
parallel (if we had parallel base edges the lemma would be false for them).

Proof. The line ℓ through y in the direction e has negative slope (it must
intersect the horizontal and vertical sides ℓ1 and ℓ2 of V ). Now follow the
preceding proof, see also Figure 15.6. If IP is horizontal or vertical, then we are
done as before. If IP lies on the boundary of U , and so it has a negative slope,
then, using that no two base edges are parallel, we get that ℓ is not parallel with
IP , and they can form only finitely many angles, so

dT ≤ dS(e, y) ≤ dist(y, P ′) ≤ A · dist(y, P ) ≤ A · 10
√
2dT

for some A that depends only on S.

Lemma 15.4 (a) If Tj , Tk ∈ T and Tk ⊆ 7
2Tj, then dTk ≥ dTj/16.

(b) If Tj , Tk ∈ T and 3Tj ∩ 3Tk ̸= ∅, then dTk ≥ dTj/16.

(c) No y ∈ V can belong to more than 802 of the 3Tk’s, Tk ∈ T .
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Proof. (a) If we had dTk < dTj/16 then dTk ≤ dTj/32, in which case 8Tk ⊆ 4Tj
would be true, since the side-length of 8Tk would be ≤ dTj/2 (and recall that
Tk ⊆ 7

2Tj). But, by the definition of the dyadic decomposition, 8Tk ̸⊆ V∞,
while 4Tj ⊆ V∞, and this is a contradiction.

(b) If Tk ⊆ 7
2Tj , then we can use part (a). If Tk ̸⊆ 7

2Tj and dTk ≤ dTj/32,
then Tk ⊆ 4Tj \ 7

2Tj (note that
7
2Tj is the union of dyadic squares of side-length

dTj/2), hence 3Tk cannot intersect 3Tj (the distance from 3Tj to 4Tj \ 7
2Tj is

≥ dTj/2 > 3dTk). So this last assumption is impossible.

(c) Suppose y ∈ 3Tk, 3Tj , and assume that dTj ≥ dTk . According to (b)
we have dTj/16 ≤ dTk ≤ dTj , and Tk ⊆ 5Tj (otherwise Tk ∩ 5Tj = ∅ and then
3Tk ∩ 3Tj ̸= ∅). Finally, there are at most 802 such Tk, since the area of 5Tj is
102d2Tj , while the area of each such Tk is 4d2Tk ≥ 4(dTj/16)

2.

Recall now the sets Ka = Sa \ Sa/4 from (6.1).

Lemma 15.5 If T ∈ T and T ∩Ka ̸= ∅, then 3T ⊆ K̃a, where

K̃a = Ka/8 ∪Ka/4 ∪Ka/2 ∪Ka ∪K2a ∪K4a. (15.7)

Proof. What we need to show is that if there is a y = (y1, ·, ·) ∈ T for which
a/2 ≤ y1 ≤ 2a and w = (w1, ·, ·) ∈ 3T , then a/16 ≤ w1 ≤ 8a. Let v1 ∈ 4T have
smallest x1-coordinate. Then v1 ≥ 0 (because 4T ⊂ V ⊂ S and S lies in the
half-space {x x1 ≥ 0}).
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Through each endpoint of the appropriate diagonal (which has longer pro-
jection onto the x1-axis) of the squares T, 2T, 3T and 4T draw a line parallel
with e (these are the lines in H for which the x1-coordinate is fixed since e is
parallel with the base which lies in the hyperplane x1 = 2), see Figure 15.7.
Since w is a point in 3T , simple consideration based on parallel lines (see Figure
15.7, and note that the two extremal cases are when y ∈ L4 and w ∈ L8, resp.
when y ∈ L6 and w ∈ L2) gives that

w1 ≥ y1 −
y1 − v1

5
4 =

y1
5

+
4

5
v1 ≥ y1

5
≥ a

10
,

and similarly

w1 ≤ y1 +
4

3
(y1 − v1) ≤

7

3
y1 ≤ 14

3
a.

16 Some properties of Lp moduli of smoothness

One of the most important properties of Lp moduli of smoothness ωrK (see
(13.1)) that will be frequently used below is

ωrK(f, δ)pp ∼ sup
e∈S2

1

δ

∫ δ

0

(∫
K

|∆r
ud̃K(e,x)e

f(x)|pdx
)
du, (16.1)
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and (see (14.1) for the definition of ωrK)

ωrK(f, δ)pp ∼ max
e∈E

1

δ

∫ δ

0

(∫
K

|∆r
ud̃K(e,x)e

f(x)|pdx
)
du. (16.2)

As before, E is the direction of the edges of K.
Recall the agreement that in the integral∫

K

|∆rf |p

the integrand is considered to be zero if one of the arguments of ∆rf lies outside
the set K. Sometimes, however, we shall have integrals of the form∫

V

|∆rf |p

in which the integrand may have meaning even if some of the arguments in
∆rf lie outside the set V of integration. Therefore, for clearer notation and for
further emphasis we introduce the
Agreement. The notation ∫ ∗

U

|∆rf |p (16.3)

means that the integrand is considered to be zero if one of the arguments of ∆rf
lies outside the set U .

Thus, in this sense, the integrals in (16.1) and (16.2) (as well as the integrals
in the definition of the modulus of smoothness) are actually

∫ ∗
.

Define the directional modulus of smoothness in the direction e as

ωrK,e(f, δ)
p := sup

u≤δ

∫ ∗

K

|∆r
ud̃K(e,x)e

f(x)|pdx. (16.4)

Instead of (16.1) and (16.2) we only need to show that

ωrK,e(f, δ)
p ∼ 1

δ

∫ δ

0

∫ ∗

K

|∆r
ud̃K(e,x)e

f(x)|pdxdu. (16.5)

Proof of (16.5). (16.5) follows from its variant on segments: if I is a segment
and e is its direction, then for δ ≤ 1

sup
u≤δ

∫ ∗

I

|∆r
ud̃I(e,x)e

f(x)|pdx ∼ 1

δ

∫ δ

0

(∫ ∗

I

|∆r
ud̃I(e,x)e

f(x)|pdx
)
du, (16.6)

where ∼ is universal, it does not depend on δ ≤ 1 or I. Clearly, it is enough to
do this for I = [a, b], in which case it takes the form

sup
u≤δ

∫ ∗

I

|∆r

u
√

(x−a)(b−x)
f(x)|pdx ∼ 1

δ

∫ δ

0

(∫ ∗

I

|∆r

u
√

(x−a)(b−x)
f(x)|pdx

)
du,

(16.7)
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For I = [0, 1] this was proven in [12, Sec. 2.3], see particularly formulae (2.3.2)–
(2.3.3). The general case is obtained by a linear transformation: assume that
Φ is a linear transformation mapping I = [a, b] into Φ(I) = [Φ(a),Φ(b)]. Since,
with y = Φ(x), F (y) = f(x), we have

∆r

u
√

(x−a)(b−x)
f(x) = ∆r

u
√

(y−Φ(a))(Φ(b)−y)
F (y),

which implies with β = |Φ′|∫ ∗

I

|∆r

u
√

(x−a)(b−x)
f(x)|pdx =

1

β

∫ ∗

Φ(I)

|∆r

u
√

(y−Φ(a))(Φ(b)−y)
F (y)|pdy,

it follows that (16.7) is true for an I precisely if it is true for Φ(I). Since, as
we have just mentioned, (16.7) is true for [0, 1], its validity for all segments I
follows.

We are going to integrate (16.6) for all chords of K in the direction of e.
What we are doing precisely is the following: let e⊥ be the hyperplane through
the origin which is perpendicular to e. Then for each point y of e⊥, there is
a line y + λe, λ ∈ R, through that point which is parallel with e, and that
line intersects K in a (possibly empty) chord Ie,y. Now we apply (16.6) on this
chord, and integrate the resulting inequality on e⊥ for all y:∫

y∈e⊥

(
sup
u≤δ

∫ ∗

Ie,y

|∆r
ud̃K(e,y+λe)e

f(y + λe)|pdλ

)
dy ∼

∼
∫
y∈e⊥

(
1

δ

∫ δ

0

∫ ∗

Ie,y

|∆r
ud̃K(e,y+λe)e

f(y + λe)|pdλdu

)
dy.

This implies

sup
u≤δ

(∫
y∈e⊥

∫ ∗

Ie,y

|∆r
ud̃K(e,y+λe)e

f(x+ λe)|pdλdy

)
≺

≺ 1

δ

∫ δ

0

(∫
y∈e⊥

∫ ∗

Ie,y

|∆r
ud̃K(e,y+λe)e

f(y + λe)|pdλdy

)
du.

On the other hand, the right-hand side is clearly smaller than the left-hand side,
so we can write ∼ instead of ≺:

sup
u≤δ

(∫
y∈e⊥

∫ ∗

Ie,y

|∆r
ud̃K(e,y+λe)e

f(y + λe)|pdλdy

)
∼

∼ 1

δ

∫ δ

0

(∫
y∈e⊥

∫ ∗

Ie,y

|∆r
ud̃K(e,y+λe)e

f(y + λe)|pdλdy

)
du, (16.8)
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and this is precisely (16.5).

In the preceding proof we have also verified the following. For a direction e
and for y ∈ e⊥ let

ωre,y(f, δ)
p
p = sup

u≤δ

∫ ∗

Ie,y

|∆r
ud̃K(e,y+λe)e

f(y + λe)|pdλ

be the Lp modulus of smoothness of f on the segment that the line through y
in the direction of e cuts out of K. Then

ωrK,e(f, δ)
p
p ∼

∫
e⊥
ωre,y(f, δ)

p
pdy, (16.9)

i.e. the (p-th power of the) Lp modulus of smoothness in the direction of e is
equivalent to the integral of the (p-th power of the) moduli of smoothness on
all segments of K in the direction of e.

We shall also need that

ωrK(f, δ)p ≤ C∥f∥Lp(K) (16.10)

with a C that depends only on r and p. Indeed, for [−1, 1], i.e. whenK = [−1, 1],
this follows from the inequality (see [12, (1.2.1)])∫ ∗

(a,b)

|g(x± h
√
1− x2)| ≤ C

∫ b

a

|g|, (a, b) ⊂ [−1, 1], (16.11)

which is an immediate consequence of the fact that for x± h
√
1− x2 ∈ [−1, 1]

we have (
x± h

√
1− x2

)′
≥

√
2− 1√
2

(16.12)

see [12, (1.2.1)]. Now, (16.11) clearly gives for I = [−1, 1], and then by a linear
transformation for all segments I, the inequality

ωrI (f, δ)
p
p ≤ C∥f∥pLp(I). (16.13)

From here we get
ωrK,e(f, δ)

p ≤ C∥f∥pLp(K) (16.14)

by integration with respect to all chords of K in the given direction e. Finally,
to get (16.10) take the supremum of both sides for all directions.

Actually, this proof gives a little more that we shall also need: if K1 ⊂ K2

are convex sets and e is a direction, then∫ ∗

K1

|∆ud̃K2 (e,x)e
f(x)|pdx ≤ C

∫
K1

|f(x)|pdx. (16.15)
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Next, we note that, by [12, Theorem 2.1.1], the equivalence (2.9) is true in
all Lp spaces, and then the argument leading to (2.11) shows that the Lp-version
of (2.11) is also true:

ωr[−1,1](f, λt)p ≤Mλrωr[−1,1](f, t)p, λ > 1, t ≤ 1. (16.16)

This now gives the same estimate on all segments, and then by the (by now)
usual argument (via integrating for all chords of K in a given direction) we
obtain

ωrK,e(f, λt)p ≤MλrωrK,e(f, t)p, λ > 1, t ≤ 1; (16.17)

and
ωrK(f, λt)p ≤MλrωrK(f, t)p, λ > 1, t ≤ 1; (16.18)

just use (16.16) and (16.9).

Next, we discuss a few results which allow us to replace a function φ1 in
∆r
uφ1

f with another one. Most of these are based on the equivalence of a φ-
modulus of smoothness with the appropriate K-functional, see [12, Theorem
2.1.1].

Lemma 16.1 Suppose I is an interval, and for ξ ∈ I we have

0 <
1

A
φ2(ξ) ≤ φ1(ξ) ≤ φ2(ξ)

with some constant A. Then, for all δ > 0,∫ δ

0

∫
I

|∆r
uφ1(ξ)

g(ξ)|pdξdu ≤ A

∫ δ

0

∫
I

|∆r
uφ2(ξ)

g(ξ)|pdξdu. (16.19)

This is [12, Lemma 2.2.1], but for completeness we present the simple proof.

Proof. Substitution gives∫ δ

0

|∆r
uφ1(ξ)

g(ξ)|pdu =
1

φ1(ξ)

∫ δφ1(ξ)

0

|∆r
vg(ξ)|pdv

≤ A

φ2(ξ)

∫ δφ2(ξ)

0

|∆r
vg(ξ)|pdv = A

∫ δ

0

|∆r
uφ2(ξ)

g(ξ)|pdu,

and we obtain (16.19) by Fubini’s theorem.

Often we shall be using Corollary 1.2 in the following form.

66



Corollary 16.2 Let K0 ⊆ K be convex sets, e a direction, and assume that for
all x ∈ K0 we have with some constants τ and A the inequality

τ ≤ d̃K(e, x) ≤ Aτ.

Then, for all δ > 0,∫ δ

0

∫
K0

|∆r
uτeg(x)|pdxdu ≤ A

∫ δ

0

∫
K0

|∆r
ud̃K(e,x)e

g(x)|pdxdu. (16.20)

Indeed, just apply Lemma 16.1 on every chord of K0 in the direction of e
and then integrate the so obtained inequalities on the plane perpendicular to e.

Lemma 16.3 Suppose that I = [a, b] ⊂ R is an interval of length ≤ D. Then,
for Dδ ≤ |I|,

1

δ

∫ δ

0

∫ ∗

I

|∆r

u
√

(ξ−a)(b−ξ)
g(ξ)|pdξdu ≤ C

1

δ

∫ δ

0

∫ ∗

I

|∆r
uDg(ξ)|pdξdu, (16.21)

where C is a constant that depends only on r and p.

Proof. Write the right-hand side as

1

δD/|I|

∫ δD/|I|

0

∫ ∗

I

|∆r
v|I|g(ξ)|

pdξdv.

According to [12, Theorem 2.1.1] and (16.1), for any F ∈ Lp[0, 1] and σ ≤ 1 we
have

1

C
K(F, σr) ≤ 1

σ

∫ σ

0

∫ ∗

[0,1]

|∆r
vF (ξ)|pdξdv ≤ CK(F, σr), (16.22)

with some constant C (that may depend on r and p), where

K(F, σr) = inf
Q

(∫
[0,1]

|F −Q|p + σrp
∫
[0,1]

|Q(r)|p
)
.

With ψ(ξ) =
√
ξ(1− ξ) we have, again by [12, Theorem 2.1.1] and (16.1),

1

C
K̃(F, δr) ≤ 1

δ

∫ δ

0

∫ ∗

[0,1]

|∆r
uψ(ξ)F (ξ)|

pdξdu ≤ CK̃(F, δr), (16.23)

with some constant C, where

K̃(F, δr) = inf
Q

(∫
[0,1]

|F −Q|p + δrp
∫
[0,1]

ψrp|Q(r)|p
)
. (16.24)
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We set in (16.22) σ = δD/|I|. Since δD/|I| ≥ δ and ψ(ξ) ≤ 1, this gives

K̃(F, δr) ≤ K(F, (δD/|I|)r), and the I = [0, 1] case of the lemma is an immedi-
ate consequence.

The general case follows from this by a linear transformation. Indeed, let Φ
be a linear transformation mapping I into [0, 1]. Then |Φ′| = 1/|I| =: β, and
with F = g(Φ−1), Φ(ξ) = ζ we have∫ ∗

I

|∆r
uDg(ξ)|pdξ =

1

β

∫ ∗

[0,1]

|∆r
uDβF (ζ)|pdζ,

while ∫ ∗

I

|∆r

u
√

(ξ−a)(b−ξ)
g(ξ)|pdξ = 1

β

∫ ∗

[0,1]

|∆r

u
√
ζ(1−ζ)

F (ζ)|pdζ.

Thus, under this linear transformation |I| changes to 1 and D changes to Dβ =
D/|I|, so the condition δD ≤ |I| is unchanged. Therefore, we can use the
I = [0, 1] case and the lemma follows.

Lemma 16.4 Suppose that J ⊂ I = [a, b] ⊂ R are intervals, and for ξ ∈ J
we have for some constant τ the inequality τ |J | ≤

√
(ξ − a)(b− ξ). Then, for

δ ≤ 1,

1

δ

∫ δ

0

∫ ∗

J

|∆r
uτ |J|g(ξ)|

pdξdu ≤ C
1

δ

∫ δ

0

∫ ∗

I

|∆r

u
√

(ξ−a)(b−ξ)
g(ξ)|pdξdu, (16.25)

where C depends only on r and p.

Proof. The inner integral on the left is invariant under linear transformation,
i.e. if Φ is a linear transformation, then∫ ∗

J

|∆r
uτ |J|g(ξ)|

pdξ =
1

β

∫ ∗

Φ(J)

|∆r
uτ |Φ(J)|g(Φ

−1(ζ))|pdζ,

where β = |Φ′| is the Jacobian of Φ. The same is true on the right-hand side
because∫

I

|∆r

u
√

(ξ−a)(b−ξ)
g(ξ)|pdξ = 1

β

∫
Φ(I)

|∆r

u
√

(ζ−Φ(a))(Φ(b)−ζ)
g(Φ−1(ζ))|pdζ.

Therefore, by choosing Φ so that Φ(I) = [0, 1], we may assume that I = [0, 1],
and in this case

√
(ξ − a)(b− ξ) =

√
ξ(1− ξ) =: ψ(ξ).

In view of (16.23) we can choose an r-times continuously differentiable func-
tion G such that∫

[0,1]

|g −G|p + δrp
∫ ∗

[0,1]

ψrp|G(r)|p ≤ C
1

δ

∫ δ

0

∫
[0,1]

|∆r
uψ(ξ)g(ξ)|

pdξdu. (16.26)
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By assumption∫
J

|g −G|p + δrp
∫
J

(τ |J |)rp|G(r)|p ≤
∫
[0,1]

|f −G|p + δrp
∫
[0,1]

ψrp|G(r)|p,

hence

inf
q

(∫
J

|g − q|p + (δτ |J |)rp
∫
J

|q(r)|p
)

≤ C
1

δ

∫ δ

0

∫
[0,1]

|∆r
uψ(ξ)g(ξ)|

pdξdu.

(16.27)
Next, let Ψ be the linear transformation that maps [0, 1] into J . (16.22)

under Ψ changes to

1

C
KJ (g, (σ|J |)r) ≤ 1

σ

∫ σ

0

∫ ∗

J

|∆r
u|J|g(ξ)|

pdξdu ≤ CKJ (g, (σ|J |)r), σ ≤ 1,

(16.28)
(with the same constant C as in (16.22)), where

KJ(g, (σ|J |)r) = inf
q

(∫
J

|g − q|p + (σ|J |)rp
∫
J

|q(r)|p
)
.

With σ = δτ the expression in the middle of (16.28) is

1

δτ

∫ δτ

0

∫ ∗

J

|∆r
u|J|g(ξ)|

pdξdu =
1

δ

∫ δ

0

∫ ∗

J

|∆r
uτ |J|g(ξ)|

pdξdu. (16.29)

Now if we put (16.27)–(16.29) together, we obtain (16.25).

Lemma 16.5 Suppose that J = [α, β] ⊂ I = [a, b] are intervals. Then, for
δ ≤ 1,

1

δ

∫ δ

0

∫ ∗

J

|∆r

u
√

(ξ−α)(β−ξ)
g(ξ)|pdξdu ≤ C

1

δ

∫ δ

0

∫ ∗

I

|∆r

u
√

(ζ−a)(b−ζ)
g(ζ)|pdζdu,

(16.30)
where C depends only on r and p. Furthermore, if

(ζ − α)(β − ζ) ≤ τ(ζ − a)(b− ζ), ζ ∈ (α, β)

with some constant τ , then for δ ≤ τ

√
τ

δ

∫ δ/
√
τ

0

∫ ∗

J

|∆r

u
√

(ξ−α)(β−ξ)
g(ξ)|pdξdu ≤ C

1

δ

∫ δ

0

∫ ∗

I

|∆r

u
√

(ζ−a)(b−ζ)
g(ζ)|pdζdu,

(16.31)
where C depends only on r and p.
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Precisely as in Corollary 16.2, we get from this

Corollary 16.6 Let K0 ⊂ K1 be convex sets, and let e be any direction. Then,
for δ ≤ 1,

1

δ

∫ δ

0

∫ ∗

K0

|∆r
ud̃K0

(e,x)
g(x)|pdxdu ≤ C

1

δ

∫ δ

0

∫ ∗

K1

|∆r
ud̃K1

(e,x)
g(x)|pdxdu (16.32)

and
ωrK0,e(f, δ)p ≤ CωrK,e(f, δ)p, (16.33)

where C depends only on r and p.

Note that (16.32) and (16.33) are equivalent in view of (16.5).
This corollary says that the (directional) Lp moduli of smoothness are es-

sentially monotone functions of the underlying sets. Note that, while this is
absolutely trivial in the L∞ case, in the Lp-case it needs verification.

Proof. Just follow the proof of the preceding lemma. The inequality (16.23)
is transformed by a linear transformation into

1

C
K̃I(g, δr) ≤ 1

δ

∫ δ

0

∫ ∗

I

|∆r

u
√

(ζ−a)(b−ζ)
g(ζ)|pdζdu ≤ CK̃I(g, δr), (16.34)

with the same constant C as in (16.23), where

K̃I(g, δr) = inf
Q

(∫
I

|g −Q|p + δrp
∫
I

((ζ − a)(b− ζ))rp/2|Q(r)(ζ)|pdζ
)
.

(16.35)
Now write this up also for J instead of I and use that J ⊂ I and (ζ−α)(β−ζ) ≤
(ζ−a)(b−ζ) for ζ ∈ J to conclude first K̃J(g, δr) ≤ K̃I(g, δr), and then (16.30).

The proof of (16.31) is identical, only in this case first conclude with the
above argument K̃J(g, (δ/

√
τ)r) ≤ K̃I(g, δr), and then from this (16.31).

17 Local Lp moduli of smoothness

In this section we verify the analogue of (6.18), but due to the fact that Lp

moduli are integrals, we shall need to prove a more complicated form.
We use the notations and setup from Section 15. Recall that there we worked

with a pyramid S with base on the hyperplane {x x1 = 2} and with apex at
the origin such that the height of S is the segment 0 ≤ x1 ≤ 2. We were
also working in Section 15 with a base edge direction e and two apex edges
E1, E2 with directions e1, e2 such that e is their linear combination. Exactly
as in Section 15, we may assume e1 and e2 to be perpendicular to each other.
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Besides these, we shall also need the directions ej , j = 0, 1, . . . , r, e0 = e1,
er = e2 that divide the angle in between e1 and e2 into r equal parts, see Figure
15.4.

Let H be a translate of the plane ⟨E1, E2⟩ with the (ξ1, ξ2) coordinate sys-
tem as discussed in Section 15, V = V (H) = H ∩ S, and consider the dyadic
decomposition T = T (H) of V from (15.2). Let n be a fixed large integer and
T ∈ T (H) be a dyadic square from the decomposition lying from the boundary
of S of distance ≥ M/n2 with some large and fixed M . These formed the set
Tn = Tn(H) in Section 15. Recall that 2dT is the side-length of a square T in
this decomposition. Then dT ≥M/12n2 by (15.5). Furthermore, the union∪

dist(T,∂S)≥M/n2

T

of these squares cover the set

{x ∈ V dist(x, ∂S) ≥M1/n
2, x1 ≤ 2β} (17.1)

for some M1, see (15.4).
Let F be a Borel function on S. With an integer m ≥ 5r to be specified

later and with 3T (the 3 times enlarged T from its center) we apply Proposition
14.1 and (16.1), according to which there are polynomials Qm of degree at most
m such that∫∫

3T

|F −Qm|p ≺
2∑
j=1

m

∫ 1/m

0

∫∫ ∗

3T

|∆r
ud̃3T (ej ,x)ej

F (x)|pdxdu (17.2)

(recall that here
∫∫ ∗
3T

|∆r|p means that the integrand is 0 if any of the arguments
in ∆r is outside 3T ). Since the side-length of 3T is 6dT and 10dT /m ≤ 6dT , we
can employ Lemma 16.3 on every horizontal and every vertical segment of 3T
in replacing the integrand on the right-hand side by

|∆r
u10dT ejF (x)|

p,

and then the substitution u10d
1/2
T = v gives that∫∫

3T

|F −Qm|p ≺
2∑
j=1

m

10d
1/2
T

∫ 10d
1/2

T
/m

0

∫∫ ∗

3T

|∆r

vd
1/2

T
ej
F (x)|pdxdv

=:
2∑
j=1

J (T,m, ej , F ). (17.3)

Next, we need the analogue of (5.3), namely

∥φrH(r)
m ∥Lp[−1,1] ≤Mrm

rωrφ(Hm,m
−1)p (17.4)
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for any polynomial Hm of a single variable and of degree at most m (here
ωrφ(f, t)p = ωr[−1,1](f, t)p is the modulus of smoothness from (1.1) and (5.2),

with the supremum norms there replaced by the Lp[−1, 1]-norm). Indeed, just
follow the proof of (5.3), and use that, by [12, Theorem 7.3.1], (5.1) is true in
Lp spaces, as well. By the usual linear transformations we get from (17.4) on
any segment I ∥∥∥∥d̃I(e, x)r ∂rHm(x)

∂er

∥∥∥∥
Lp(I)

≤Mrm
rωrI (Hm,m

−1)p, (17.5)

where e is the direction of I.
Consider now one of the directions ej from the beginning of this section,

and all chords of 3T in that direction that intersect 2T . Let the union of these
chords be T0. Then 2T ⊂ T0 ⊂ 3T . If, for Hm = Qm, we apply on each chord
of T0 in the direction of ej the inequality (17.5), then we can conclude (use also
(16.1)) ∫∫

T0

d̃3T (ej , x)
rp

∣∣∣∣∂rQm(x)

∂erj

∣∣∣∣p dx
≺ mrpm

∫ 1/m

0

∫∫ ∗

T0

|∆r
ud̃3T (ej ,x)ej

Qm(x)|pdxdu, (17.6)

and call here the right-hand side mrpJ (Qm). Now

J (Qm) ≤ 2p−1(J (F ) + J (F −Qm)),

and here

J (F −Qm) ≤ m

∫ 1/m

0

∫∫ ∗

3T

|∆r
ud̃3T (ej ,x)ej

(F −Qm)(x)|pdxdu.

In view of (16.10) the right-hand side increases if we replace the inner integrals
by the corresponding integrals of F −Qm over 3T , and so

J (F −Qm) ≺ m

∫ 1/m

0

(∫∫
3T

|F −Qm|p
)
du =

∫∫
3T

|F −Qm|p, (17.7)

for which (17.3) can be applied.
Next, consider

J (F ) = m

∫ 1/m

0

∫∫ ∗

T0

|∆r
ud̃3T (ej ,x)ej

F (x)|pdxdu.

Note now that each segment of T0 in the direction of ej is of length ≤ 6
√
2dT ≤

10dT and ≥ 2dT ≥ 10dT /m, so we can apply Lemma 16.3 (with D = 10dT ) on
every such segment to replace on the right

|∆r
ud̃3T (ej ,x)ej

F (x)|p
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by
|∆r

u10dT ejF (x)|
p,

and then the substitution u10d
1/2
T = v gives, as in (17.3),

J (F ) ≺ J (T,m, ej , F ). (17.8)

Note also that,

rud̃3T (ej , x)/2 ≤ r

2m
5dT ≤ dT ,

so the integral
∫ ∗
T0

on the left of (17.6) is at least as large as the integral
∫
2T

(there is no ∗ here!) with the same integrand, and on 2T we have

d̃3T (ej , x) ∼ dT .

So we obtain from (17.6)–(17.8)∫∫
2T

∣∣∣∣∂rQm∂erj

∣∣∣∣p ≺ mrp

drpT

r∑
j=0

J (T,m, ej , F ),

where

J (T,m, ej , F ) =
m

10d
1/2
T

∫ 10d
1/2

T
/m

0

∫∫ ∗

3T

|∆r

ud
1/2

T
ej
F (x)|pdxdu, (17.9)

and where we have also used that e1 = e0 and e2 = er.
Now, exactly as in the proof of Proposition 5.1, the r-th directional derivative

in the direction e (the base edge direction we are interested in) can be bound
by the r-th directional derivatives in the direction of ej , j = 0, 1, . . . , r, hence∫∫

2T

∣∣∣∣∂rQm(x)

∂er

∣∣∣∣p ≺ mrp

drpT

r∑
j=0

J (T,m, ej , F ) (17.10)

also follows.
Next, recall the sets Ka = Sa \ Sa/4 from (6.1), and let us assume that

x ∈ T ∩Ka for some a ≤ β/2 with the β from (15.4) or (17.1). To estimate the
r-th symmetric difference in the direction of e we use

∣∣∣∆r
hd̃S(e,x)e

Qm(x)
∣∣∣ ≺ (hd̃S(e, x))

r−1

∫ rhd̃S(e,x)/2

−rhd̃S(e,x)/2

∣∣∣∣∂rQm(x+ te)

∂er

∣∣∣∣ dt (17.11)

(see [12, (2.4.5)]). Lemma 15.3 gives that dS(e, x) ≺ dT , so in the limits of
integration we get

rd̃S(e, x)/2 ≤M2(dTa)
1/2 (17.12)
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with some fixedM2. Recall also that dT ≥M/12n2 by (15.5), so forM ≥ 12M2
2

and for h ≤ 1/n
√
a we have

rhd̃S(e, x)/2 ≤M2h(dTa)
1/2 ≤

M2d
1/2
T

n
≤ dT .

For this choice we get for x ∈ T ∩Ka∣∣∣∆r
hd̃S(e,x)e

Qm(x)
∣∣∣p ≺ (hM2(dTa)

1/2)(r−1)p ×

×

(∫ hM2(dT a)
1/2

−hM2(dT a)1/2

∣∣∣∣∂rQm(x+ te)

∂er

∣∣∣∣ dt
)p

.

Now apply Hölder’s inequality on the right-hand side and integrate the obtained
inequality for x ∈ T ∩Ka. Noting that

t ∈ [−hM2(dTa)
1/2, hM2(dTa)

1/2] ⊂ [−dT , dT ],

and so for x ∈ T
x+ te ∈ 2T, (17.13)

we obtain this way∫∫
T∩Ka

∣∣∣∆r
hd̃S(e,x)e

Qm(x)
∣∣∣p dx

≺ (hM2(dTa)
1/2)rp−1

∫ hM2(dT a)
1/2

−hM2(dT a)1/2

∫∫
2T

∣∣∣∣∂rQm(y)

∂er

∣∣∣∣p dydt
≺ (h(dTa)

1/2)rp
∫∫

2T

∣∣∣∣∂rQm∂er

∣∣∣∣p .
To the right-hand side we can apply (17.10) (see also (17.9)) to get∫∫

T∩Ka

∣∣∣∆r
hd̃S(e,x)e

Qm(x)
∣∣∣p dx ≺ (h(dTa)

1/2)rp
mrp

drpT

r∑
j=0

J (T,m, ej , F ).

(17.14)
Now if we replace in a similar integral for |∆rF | the difference ∆rF by ∆r(F −
Qm) + ∆r(Qm) and apply∫∫

T∩Ka

∣∣∣∆r
hd̃S(e,x)e

(F −Qm(x))
∣∣∣p dx ≺

∫∫
2T

|F −Qm|p (17.15)
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(see (16.10) with K1 = 2T and K2 = S, and use also (17.13)), then we can
conclude from (17.3) and (17.14)∫∫

T∩Ka

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣p dx ≺

2∑
j=1

J (T,m, ej , F )

+ (h(dTa)
1/2)rp

mrp

drpT

r∑
j=0

J (T,m, ej , F ).

Up to this point m was arbitrary, and h ≤ 1/n
√
a. Now if m = ⌈n10d1/2T ⌉

and h ≤ 1/n
√
a, then

h(dTa)
1/2 m

dT
≺ 1,

and we obtain ∫∫
T∩Ka

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣p dx ≺

r∑
j=0

J (T,m, ej , F ) (17.16)

(recall that e1 = e0 and e2 = er).
The following observation will be important. The argument from (17.11)

to (17.16) shows that (17.16) is true when, on the left-hand side, d̃S(e, x) is
replaced by some smaller quantity δ(x) = d̃S0(e, x) ≤ d̃S(e, x), S0 ⊂ S:∫∫

T∩Ka

∣∣∣∆r
hδ(x)eF (x)

∣∣∣p dx ≺
r∑
j=0

J (T,m, ej , F ), (17.17)

and here ≺ does not depend on δ(x) = d̃S0(e, x) ≤ d̃S(e, x). Indeed, this follows
from two facts:

• the right-hand side of (17.11) is decreasing in d̃S(e, x) in the sense that
if we replace it with δ(x) = d̃S0(e, x) ≤ d̃S(e, x), then the right-hand side
decreases,

• by (16.15), if δ(x) = d̃S0(e, x), S0 ⊂ S, then∫ ∗

2T

|∆r
uδ(x)eg(x)|

pdx ≤ C

∫ ∗

2T

|g(x)|pdx.

If, instead of (17.15), we use the latter fact with g = F − Qm and follow the
proof from (17.11) to (17.16), then we obtain (17.17).

On the right-hand side in (17.16)–(17.17) we have the sum of

J (T,m, ej , F ) ≺ n

∫ 1/n

0

∫∫
3T

|∆r

ud
1/2

T
ej
F (x)|pdxdu (17.18)
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(no ∗ in the integral!) for j = 0, 1 . . . , r. In what follows we are going to
estimate these terms for j = 0, 1, . . . , r, and to this end we mention first of all
the following. Consider the line through a point x lying sufficiently close to the
apex, say x is lying in Sβ with the small β from (17.1). As in (1.5)–(1.6), this line
intersects S in a segment Aej ,xBej ,x. The minimum of the distances between
x and Aej ,x, Bej ,x is dS(ej , x), for which Lemmas 15.1, 15.2 can be applied.
However, the other distance between x and Aej ,x, Bej ,x, say dist(x,Bej ,x), is
bounded by a number depending only on S, and (more importantly), it is at
least 1, since x lies in the half-space {x x1 ≤ 1}, while Bej ,x lies on the base of
S, which is in the hyperplane {y y1 = 2}. Therefore, if j = 1, 2, . . . , r− 1, then
Lemma 15.2 gives that for x ∈ 3T we have

d
1/2
T ≤ d̃S(ej , x) ≺ d

1/2
T , (17.19)

hence, for such j, Lemma 16.1 (cf. also its Corollary 16.2) shows that

n

∫ 1/n

0

∫∫
3T

|∆r

ud
1/2

T
ej
F (x)|pdxdu ≺ n

∫ 1/n

0

∫∫
3T

|∆r
ud̃S(ej ,x)ej

F (x)|pdxdu.

(17.20)
When j = 0 or j = 1, then this is not necessarily true, since then dT can be
much smaller than dS(ej , x). Consider e.g. the case j = 0, the j = r case is
completely parallel. Then e0 = e1, and if T ∈ T is a small square close to the
side ℓ1 of V and far from U (see Figure 17.1), then dT is much smaller than

dS(e0, x), and care should be exercised when we want to replace d
1/2
T by d̃S(e0, x)

like in (17.20). Indeed, (17.20) may not be true in such cases. Note however,
that (17.20) is still true if dist(T,U) ≤ 20dT or dist(T, ℓ1) ̸= dist(T, ∂V ), since
then, by Lemma 15.1, we have (17.19).

So let T 1 = T 1
n (H) be the collection of all T ∈ Tn(H) for which dist(T,U) >

20dT and dist(T, ℓ1) = dist(T, ∂V ). These are the squares in Tn that lie much
closer to ℓ1 than to the rest of the boundary of V (see Figure 17.1). In a
similar manner, let T 2 = T 2

n (H) be the collection of all T ∈ Tn(H) for which
dist(T,U) > 20dT and dist(T, ℓ2) = dist(T, ∂V ). These are the squares in Tn
that lie much closer to ℓ2 than to the rest of the boundary of V .

Let now a ≤ β/2 with the β from (15.1) or (17.1). We take the sum of both
sides in (17.16) for all T with T ∩Ka ̸= ∅, apply (17.18) and (17.20), and use
that, by Lemma 15.5, for all T in question the relation 3T ⊂ K̃a is true with
K̃a in that lemma. If we recall that, by (15.4) (see also (17.1)) the union of all
such T ∩Ka cover the set

Ka,n := {x ∈ Ka dist(x, ∂S) ≥M1/n
2}, (17.21)

then we obtain this way the estimate

sup
h≤1/n

√
a

∫∫
H∩Ka,n

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣p dx ≺ Θ0(a,H) + Θ1(a,H) + Θ2(a,H),

(17.22)

76



U

V

T

e
1 l

1

l
2

x
1

x
2

e
2

Figure 17.1: Squares in the dyadic decomposition lying closer to ℓ1 than to the
rest of the boundary of V

where

Θ0(a,H) + Θ1(a,H) + Θ2(a,H) := (17.23)

≺
r∑
j=0

n

∫ 1/n

0

∫∫
H∩K̃a

|∆r
ud̃S(ej ,x)ej

F (x)|pdxdu

+
∑

T∈T 1(H), T∩Ka ̸=∅

n

∫ 1/n

0

∫∫
3T

|∆r

ud
1/2

T
e1
F (x)|pdxdu

+
∑

T∈T 2(H), T∩Ka ̸=∅

n

∫ 1/n

0

∫∫
3T

|∆r

ud
1/2

T
e2
F (x)|pdxdu.

This estimate depends on H = Hτ , and recall that Hτ was a translate of the
plane ⟨E1, E2⟩ spanned by apex edges E1 and E2 by τn, where n is a normal
vector to that plane. In what follows we shall need to take the integrals of these
estimates for all H = Hτ by which we mean integration with respect to the
parameter τ from τ = 0 to τ = τ0 (here τ0 is from (15.1)).

We shall apply (17.22) with

a = bk =
2k + L

n2

for k satisfying
L

n2
≤ 2k

n2
≤ β

4
,
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where L is some large number to be specified later. If we integrate the left-hand
side of (17.22) with respect to H = Hτ , 0 ≤ τ ≤ τ0 and sum for all such k
(which is the same as summing for all such k and integrating with respect to
H), then we get a quantity that is at least as large as∑

k

sup
h≤1/n

√
bk

∫∫
Kbk,n

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣p dx. (17.24)

At the same time, the same operation (i.e integration with respect to H and
summation with respect to k) when applied to Θ0(H, bk) gives a quantity that
is bounded by the sum of the directional moduli of smoothness:∑

k

∫
Θ0(H, bk)dH (17.25)

=
∑
k

∫  r∑
j=0

n

∫ 1/n

0

∫∫
H∩K̃bk

|∆r
ud̃S(ej ,x)ej

F (x)|pdxdu

 dH

≺
r∑
j=0

n

∫ 1/n

0

∫ (∫∫
S∩H

|∆r
ud̃S(ej ,x)ej

F (x)|pdx
)
dHdu

≺
r∑
j=0

n

∫ 1/n

0

∫
S

|∆r
ud̃S(ej ,x)ej

F (x)|pdxdu ≺ ωrS(F, 1/n)
p
p,

where we used that, for 2k ≥ L, no point can lie in more than 8 of the sets K̃bk .
Indeed, if x belongs to K̃bk (see (15.7) for the definition of the set K̃bk), then
for its first coordinate (in the (x1, x2, x3) coordinate system of R3) we have

2k + L

16n2
≤ x1 ≤ 8

2k + L

n2
< 16

2k

n2
,

and for an x1 there are at most 8 such k.
It is clear that∑

k

∫
Θ1(H, bk)dH (17.26)

≺
∫ n∫ 1/n

0

∑
T∈T 1(H)

∫∫
3T

|∆r

ud
1/2

T
e1
f(x)|pdxdu

 dH

where we used that no T can intersect more than 8 of the sets Kbk . Indeed, by
Lemma 15.5 if T intersects Kbk , then 3T ⊂ K̃bk , and we have just seen that this
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can only happen for at most 8 of the k’s. In what follows we are going to show
that

n

∫ 1/n

0

∑
T∈T 1(H)

∫∫
3T

|∆r

ud
1/2

T
e1
F (x)|pdxdu

≺ n

∫ 1/n

0

∫
S∩H

|∆r
ud̃S(e1,x)e1

F (x)|pdxdu. (17.27)

Then this and (17.26) imply (via integration with respect to dH)

∑
k

∫
Θ1(H, bk)dH ≺ n

∫ 1/n

0

∫
S

|∆r
ud̃S(e1,x)e1

F (x)|pdxdu ≺ ωrS(F, 1/n)
p
p.

(17.28)
A similar procedure yields∑

k

∫
Θ2(H, bk)dH (17.29)

≺ n

∫ 1/n

0

∫
S

|∆r
ud̃S(e2,x)e2

F (x)|pdxdu ≺ ωrS(F, 1/n)
p
p,

which, together with the preceding estimates imply∑
k

sup
h≤1/n

√
bk

∫∫
Kbk,n

∣∣∣∆r
hd̃S(e,x)e

F (x)
∣∣∣p dx ≺ ωrS(F, 1/n)

p
p. (17.30)

Recall that here the summation is for all k with

L

n2
≤ 2k

n2
≤ β

4
. (17.31)

If we start out with (17.17) instead of (17.16), then we get instead of (17.30)
the estimate∑

k

sup
h≤1/n

√
bk

∫∫
Kbk,n

∣∣∣∆r
hδ(x)eF (x)

∣∣∣p dx ≺ ωrS(F, 1/n)
p
p, (17.32)

for any δ(x) = d̃S0(e, x) ≤ d̃S(e, x), S0 ⊂ S (recall also (17.21) for the definition
of the sets Kbk,n).

To complete the proof of (17.30)–(17.32), we still need to prove (17.27). Let
T ∈ T 1, and note that if (in the (ξ, ξ2) coordinate system) we shift T to the
left into a dyadic square, then the shifted square also belongs to T 1 unless it
gets outside the set Sβ (see (15.2) and Figure 17.1). Thus, if we introduce the
equivalence relation T1 ∼ T2 on T 1 meaning that T1 and T2 can be obtained
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from each other by a horizontal shift, then the equivalence classes are consisting
of continuous chains of dyadic squares of equal side-length lying in a horizontal
strip. Let A be an equivalence class and

A = A(A) =
∪
T∈A

3T.

Then A is a rectangle with horizontal and vertical sides and with vertical side-
length equal to 6dT , where T ∈ A is an arbitrary element; say A = [α, β]× [γ, δ]
where δ − γ = 6dT . Note that even though the different equivalence classes are
disjoint, the sets A(A) need not be disjoint, but it follows from Lemma 15.4,(c)
that any point can belong to at most 802 such A(A). By the same lemma every
x ∈ A(A) can belong to at most 802 squares 3T with T ∈ A(A) (actually only
to 6 such 3T , but that is indifferent), therefore it follows that∑

T∈A

∫∫
3T

|∆r

ud
1/2

T
e1
F (x)|pdx ≺

∫∫
A

|∆r

ud
1/2

T
e1
F (x)|pdx (17.33)

=

∫ δ

γ

∫ β

α

|∆r

ud
1/2

T
e1
F (ξ1, ξ2)|pdξ1ξ2,

where, on the plane H, we identified a point x by its (ξ1, ξ2)-coordinates. For
ξ2 ∈ (γ, δ) let Iξ2 = {x = (ξ1, ξ2) ∈ V } be the chord of V consisting of those
points for which the second coordinate is ξ2. We are going to show that

n

∫ 1/n

0

∫ β

α

|∆r

ud
1/2

T
e1
F (ξ1, ξ2)|pdξ1du ≺ n

∫ 1/n

0

∫ ∗

Iξ2

|∆r
ud̃S(e1,x)e1

F (ξ1, ξ2)|pdξ1du.

(17.34)
If we integrate this inequality with respect to ξ2 on [γ, δ], then we obtain (see
also (17.33))

n

∫ 1/n

0

(∑
T∈A

∫∫
3T

|∆r

ud
1/2

T
e1
F (x)|pdx

)
du

≺ n

∫ 1/n

0

∫∫ ∗

V ∩ Strip(A)

|∆r
ud̃S(e1,x)e1

F (x)|pdxdu,

where Strip(A) is the strip {x = (ξ1, ξ2) ξ2 ∈ [γ, δ]}. Now if we sum this up
for all equivalence classes A and take into account that no point can belong to
more than 802 such strips Strip(A) (see Lemma 15.4,(c)), we obtain (17.27),
pending the proof of (17.34).

To prove (17.34), note first of all that [α−dT , β+dT ] ⊂ Iξ2 , and for u ≤ 1/n

we have rud
1/2
T /2 ≤ dT (cf. (15.5)), so

n

∫ 1/n

0

∫ ∗

[α−dT ,β+dT ]
|∆r

ud
1/2

T
e1
F (ξ1, ξ2)|pdξ1du
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≺ n

∫ 1/n

0

∫ ∗

Iξ2

|∆r
ud̃S(e1,x)e1

F (ξ1, ξ2)|pdξ1du. (17.35)

is a stronger inequality than (17.34). Finally, since d̃S(e1, x) = d̃Iξ2 (e1, x), and

on [α − dT , β + dT ] we have d
1/2
T ≤ d̃Iξ2 (e1, x), (17.35) follows from Lemma

16.4 with the choice I = Iξ2 , J = [α − dT , β + dT ], τ = d
1/2
T /|J |, δ = 1/n and

g(ξ) = F (ξ, ξ2).
This completes the proof of (17.30). Note that since e is a base edge direction,

in (17.30) we have d̃S(e, x) = d̃Kbk (e, x) for x ∈ Kbk . So in (17.32) we can set

S0 = Kbk,n, δ(x) = d̃Kbk,n(e, x) (see (17.21) for the definition of the sets Kbk,n),
and we get from (17.32)∑

k

sup
h≤1/n

√
bk

∫∫
Kbk,n

∣∣∣∣∆r
hd̃Kbk,n

(e,x)e
F (x)

∣∣∣∣p dx ≺ ωrS(F, 1/n)
p
p. (17.36)

Since e was any base edge direction, this completes the discussion on base edge
directions.

We still need to prove an analogue for apex edge directions, for example for
the direction e1 we need to prove∑

k

sup
h≤1/n

√
bk

∫ ∗

Kbk,n

∣∣∣∣∆r
hd̃Kbk,n

(e1,x)e1
F (x)

∣∣∣∣p dx ≺ ωrS(F, 1/n)
p
p. (17.37)

Once this is done, we get from (17.36) and (17.37) (as well as from the analogue
of (17.37) for all other apex edge directions) the estimate∑

k

max
e∈E

sup
h≤1/n

√
bk

∫ ∗

Kbk,n

∣∣∣∣∆r
hd̃Kbk,n

(e,x)e
F (x)

∣∣∣∣p dx ≺ ωrS(F, 1/n)
p
p, (17.38)

where E is the direction of all edges of S, which is the same as the edge directions
of each Kbk (see the definition (6.1) of the sets Kη). This is the analogue of
(6.18) we have been seeking.

In view of (16.1), it is enough to prove the version of (17.37) when, on the
left-hand side, the supremum is replaced by integrals, i.e. to prove

∑
k

n
√
bk

∫ 1/n
√
bk

0

∫ ∗

Kbk,n

∣∣∣∣∆r
ud̃Kbk,n

(e1,x)e1
F (x)

∣∣∣∣p dxdu ≺ ωrS(F, 1/n)
p
p. (17.39)

The proof of this uses the technique employed so far. Since for x ∈ Kbk,n we
have

d̃Kbk,n(x, e1) ≤ 2
√
bkd̃S(x, e1),

Lemma 16.5, (16.31) easily gives (see the argument below) that each individual
term on the left of (17.39) is bounded by the right-hand side. However, we
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need the stronger statement that the sum of these terms is also bounded by the
right-hand side.

Consider again the segment Iξ2 from the preceding proof. Its intersection
with the set of points that lie of distance ≥ M1/n

2 from the boundary of S is
some interval, say

Iξ2 ∩
{
z dist(z, S) ≥ M1

n2

}
=: [Z,W ],

where (if this intersection is not empty) the point W lies on the base of S, so
it has 2 as its first coordinate (in the (x1, x2, x3) coordinate system of R3), and
where M1 is from (17.1) (see also (17.21)). Let Z1 be the first coordinate of Z.
Then the projection of the intersection Iξ2 ∩Kbk,n for the definition of the sets
Ka,n) onto the x1-axis is

[Z1, 2] ∩
[
bk
2
, 2bk

]
,

and typically this has length 3bk/2. However, if bk/2 < Z1 < 2bk(≤ β), i.e.
when

1

2

2k + L

n2
≤ Z1 ≤ 2

2k + L

n2
,

then this intersection is of length smaller than 3bk/2. In view of 2k ≥ L, the
preceding inequality implies

1

4
Z1n

2 ≤ 2k < 2Z1n
2,

and there are at most 3 such k. In a similar fashion, unless bk/2 lies closer
to Z1 than bk/4, the distance from any point of [bk/2, 2bk] to Z1 is at least
bk/4, and there are at most four k’s for which this is not the case (i.e. when
bk/2 < Z1 + bk/4).

Thus, the x1-axis (in the (x1, x2, x3) coordinate system of R3) intersects the
set Kbk,n in a segment of length 3bk/2 or less, hence the sets Kbk,n divide the
segment Iξ2 into overlapping subsegments Jk of length α(3/2)bk or less (only the
first three of these segments lying closest to the ξ2 axis may be shorter), where
α = 1/ sin θ, with θ the angle between the direction e1 and the base x1 = 2.
Furthermore, according to what has just been said, except maybe for the first
four of these segments (for which the following argument is valid in view of
Lemma 16.5, (16.31)), we have on Jk the relations

d̃Kbk,n(e1, x) ≤ αbk,
√
αbk/4 ≤ d̃S(e1, x) ≤ C

√
αbk,

hence, first∫ 1/n
√
bk

0

∫ ∗

Jk

∣∣∣∣∆r
ud̃Kbk,n

(e1,x)e1
F (x)

∣∣∣∣p dxdu ≺
∫ 1/n

√
bk

0

∫ ∗

Jk

∣∣∆r
u2αbke1

F (x)
∣∣p dxdu
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by Lemma 16.3, and then by Lemma 16.1∫ 1/n
√
bk

0

∫ ∗

Jk

∣∣∆r
u2αbke1

F (x)
∣∣p dxdu ≺

∫ 1/n
√
bk

0

∫
Jk

∣∣∣∆r
u4

√
αbkd̃S(e1,x)e1

F (x)
∣∣∣p dxdu

(no ∗ in the integral on the right!). Therefore,

n
√
bk

∫ 1/n
√
bk

0

∫ ∗

Jk

∣∣∣∣∆r
ud̃Kbk,n

(e1,x)e1
F (x)

∣∣∣∣p dxdu
≺ n

√
bk

∫ 1/n
√
bk

0

∫
Jk

∣∣∣∆r
u4

√
αbkd̃S(e1,x)e1

F (x)
∣∣∣p dxdu

=
n

4
√
α

∫ 4
√
α/n

0

∫
Jk

∣∣∣∆r
vd̃S(e1,x)e1

F (x)
∣∣∣p dxdv.

If we integrate for ξ2 (recall that ∪Jk = Iξ2) and then for dH = dHτ (i.e. for
dτ), then we get

n
√
bk

∫ 1/n
√
bk

0

∫ ∗

Kbk,n

∣∣∣∣∆r
hd̃Kbk,n

(e1,x)e1
F (x)

∣∣∣∣p dx
≺ n

4
√
α

∫ 4
√
α/n

0

∫
Kbk

∣∣∣∆r
vd̃S(e1,x)e1

F (x)
∣∣∣p dxdv.

Now sum this up for all k with the property (17.31) to obtain

∑
k

n
√
bk

∫ 1/n
√
bk

0

∫ ∗

Kbk,n

∣∣∣∣∆r
hd̃Kbk,n

(e1,x)e1
F (x)

∣∣∣∣p dx ≺ ωrS(F, 4
√
α/n)pp,

and, in view of (16.18), on the right-hand side we can replace ωrS(F, 4
√
α/n)pp

by ωrS(F, 1/n)
p
p.

This completes the proof of (17.39), and with it also the proof of (17.38).

18 Local approximation

Here we use the notations and setup from Section 7. So let f be an Lp function
on the pyramid S, vn = (−L/n2, 0, 0) with a large but fixed L, and

F (x) = Fn(x) = f(x− vn) on S = S(n) = S + vn. (18.1)
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In what follows we are going to use again the notations K1, Sη, Kη from (6.1),
but when we apply them to S, then we denote them by K1, Sη, Kη. Note that
the edge directions for the polytopes S, K1, Sη, Kη is the same as that for S,
i.e. it is E . We apply (17.38) on the pyramid S = S(n) to the function F = Fn,
for which it takes the form∑

k

max
e∈E

sup
h≤1/n

√
bk

∫
Kbk,n

(M1/n2)

∣∣∣∣∆r
hd̃Kbk,n

(e,x)e
F (x)

∣∣∣∣p dx ≺ ωrS(F, 1/n)
p
p, (18.2)

where the summation is taken for all k for which (17.31) is true. Recall that
here the polytope Kbk was cut out of S by two hyperplanes L1 and L2 that
are parallel with the base and are of distance bk/2 and 2bk, bk = (2k + L)/n2,
resp. from the apex vn of S, and Kbk,n is the part of Kbk that lies of distance
≥M1/n

2 from the boundary of S. If L is sufficiently large (and this is the only
requirement on L), then this set includes the portion of S (the original pyramid)
that are cut out of S by L1 and L2. Now the distance of L1 resp. L2 from the
origin (which is the ape of S) is

bk
2

− L

n2
=

2k + L

2n2
− L

n2
≤ 2k−1

n2
:=

ak
2

resp.

2bk −
L

n2
= 2

2k + L

n2
− L

n2
≥ 2k+1

n2
:= 2ak,

so the polytope Kbk,n includes Kak with ak = 2k/n2. But then we can invoke
Corollary 16.6 and (16.5) to conclude from (18.2)∑

k

max
e∈E

sup
h≤1/n

√
bk

∫
Kak

∣∣∣∣∆r
hd̃Kak

(e,x)e
F (x)

∣∣∣∣p dx ≺ ωrS(F, 1/n)
p
p, (18.3)

i.e. ∑
k

ωrKak

(
F,

1

n
√
bk

)p
p

≺ ωrS(F, 1/n)
p
p, (18.4)

where ω is the modulus of smoothness (14.1). Since 2k ≥ L, here bk = (2k +
L)/n2 ≤ 2 · 2k/n2 = 2ak, so an application of (16.18) gives∑

L≤2k≤βn2/4

ωrKak

(
F,

1

n
√
ak

)p
p

≺ ωrS(F, 1/n)
p
p. (18.5)

For a > 0 set now F ∗(x∗) = F (ax∗). Then F ∗ is an Lp function on K1 such
that

∆r
hd̃K1

(e,x∗)e
F ∗(x∗) = ∆r

hd̃Ka (e,x)e
F (x), x ∈ Ka.

Since K1 is a simple polytope (at each vertex there are 3 edges), we can apply
Proposition 14.1 from Section 14 to conclude that for n

√
a ≥ 3r, i.e. for a ≥
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9r2/n2, there are polynomials P ∗
n
√
a
= P ∗

a,n
√
a
of 3 variables of degree at most

n
√
a such that

∥F ∗ − P ∗
n
√
a∥Lp(K1) ≺ ωrK1

(
F ∗,

1

n
√
a

)
p

= ωrKa

(
F,

1

n
√
a

)
p

.

With
pn

√
a(x) = pa,n

√
a(x) = P ∗

n
√
a(x/a)

this is the same as

∥F − pn
√
a∥Lp(Ka) ≺ ωrKa

(
F,

1

n
√
a

)
p

. (18.6)

For the polynomials

q = pn
√
a − pn

√
2a = pa,n

√
a − p2a,n

√
2a (18.7)

of degree at most n
√
2a this yields

∥q∥Lp(Ka∩K2a) ≤ ∥F − pn
√
a∥Lp(Ka) + ∥F − pn

√
2a∥Lp(K2a),

and here
Ka ∩K2a = S ∩ {x a ≤ x1 ≤ 2a}.

Consider the polar coordinates (r, φ, ψ) in R3, and let ℓ = ℓφ,ψ be the half-
line {(r, φ, ψ) r ≥ 0}. We have∫

Ka

|q|p ∼ a2
∫∫ (∫

ℓφ,ψ∩Ka
|q|p
)
dφdψ, (18.8)

and a similar formula holds when Ka is replaced by Ka ∩K2a. We have seen in
(7.3) that for x ∈ ℓ

|q(x)| = |q̃(x1)| ≤
(
|x1 − 3a/2|

a/2

)n√2a

∥q̃∥[a,2a],

where x1 is the first coordinate of x ∈ ℓ and q̃(t1) = q(t), t ∈ ℓ, is a polynomial
of degree at most n

√
2a in the variable t1. By Nikolskii’s inequality (14.9), on

the right

∥q̃∥[a,2a] ≺
(n
√
2a)2/p

a1/p
∥q̃∥Lp[a,2a].

For 0 ≤ x1 ≤ a this yields (cf. (7.4))

|q(x)| ≺ 3n
√
2a (n

√
2a)2/p

a1/p
∥q̃∥Lp[a,2a] ≺

e4n
√
a

a1/p
∥q̃∥Lp[a,2a], (18.9)
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while for 2a ≤ x1 ≤ 2 we obtain (cf. (7.5))

|q(x)| ≺
(
8x1
a

)n√2a
(n
√
2a)2/p

a1/p
∥q̃∥Lp[a,2a] ≺

e3n
√
a log(8x1/a)

a1/p
∥q̃∥Lp[a,2a].

(18.10)
On the right we have

∥q̃∥Lp[a,2a] ∼ ∥q∥Lp(Ka∩K2a∩ℓ),

and since a similar formula holds when a is replaced by 2la with an arbitrary
integer l, we obtain for l ≤ 0 from (18.9)

∥q∥Lp(K
2la

∩ℓ) ≺ 2l/pe4n
√
a∥q∥Lp(Ka∩K2a∩ℓ),

while for l ≥ 0 from (18.10)

∥q∥Lp(K
2la

∩ℓ) ≺ 2l/pe3n
√
a log(16·2l)∥q∥Lp(Ka∩K2a∩ℓ).

Raising these to the p-th power and integrating with respect to dφdψ we get
from (18.8)

∥q∥Lp(K
2la

) ≺ 23l/pe4n
√
a∥q∥Lp(Ka∩K2a),

when l ≤ 0 and (using a ≥ 9r2/n2)

∥q∥Lp(K
2la

) ≺ 23l/pe3n
√
a log(16·2l)∥q∥Lp(Ka∩K2a) ≺ e4nl

√
a∥q∥Lp(Ka∩K2a)

when l ≥ 0 (and n is sufficiently large). Recall that here q = pn
√
a − pn

√
2a

is the polynomial from (18.7), and it has degree at most n
√
2a. All this is for

a ≥ 9r2/n2.
We shall use these with a = ak and 2la = 2lak = ak0 , i.e. with l = k0 − k,

for which they take the form

∥pn√ak − pn
√
2ak

∥Lp(Kak0 ) ≺ e3(k0−k)/pe4n
√
ak∥pn√ak − pn

√
2ak

∥Lp(Kak∩K2ak
),

(18.11)
when k0 ≤ k and

∥pn√ak − pn
√
2ak

∥Lp(Kak0 ) ≺ e4n(k0−k)
√
ak∥pn√ak − pn

√
2ak

∥Lp(Kak∩K2ak
)

(18.12)
when k0 ≥ k. Here the restriction on k is that 2k/n2 = ak ≥ 9r2/n2, i.e.
2k ≥ 9r2, and on k0 is that ak0 ≤ 1/2, i.e. 2k0 ≤ n2/2.

Moreover, (18.5) and (18.6) give∑
L≤2k≤βn2/4

∥F − pn√ak∥
p
Lp(Kak )

≺ ωrS(F, 1/n)
p
p. (18.13)
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19 Global Lp approximation excluding a neigh-
borhood of the apex

We shall see in this section how the argument of Section 8 changes in the Lp

case.
We use the preceding estimates (18.11) and (18.12) with k = L, . . . ,m, where

m is chosen so that β/8 ≤ 2m/n2 < β/4 (see (15.1) for the definition of β). We
also assume that 2L−1 > 9r2. We combine the polynomials pn

√
a = pa,n

√
a with

the fast decreasing polynomials

Rn,a(x) := R(4)
n,a(x1), (19.1)

where R
(4)
n,a(x1) is the polynomial of the single variable x1 (the first coordinate

of x) from (3.11) with some large A, and set, as in (8.2)

Pn =
m∑
k=L

(
Rn,ak −Rn,ak−1

)
pn

√
ak

+Rn,aL−1
pn√aL+(1−Rn,am)pn√am . (19.2)

This is a polynomial of degree at most Cn with some constant C that depends
only on A. We shall estimate the Lp distance of this polynomial from F (x) =
Fn(x) = f(x− vn) (see (18.1)) on the set (cf. (8.3))

S∗
n := S ∩

{
x

2L+1

n2
≤ x1 ≤ β

8

}
. (19.3)

Exactly as in Section 8

Pn − F =

m∑
k=L

(
Rn,ak −Rn,ak−1

)
(pn√ak − F )

+ Rn,aL−1
(pn√aL − F ) + (1−Rn,am)(pn

√
am − F ), (19.4)

and for x ∈ {x ak0 ≤ x1 ≤ ak0+1} with L + 1 ≤ k0 ≤ m − 1 the first sum on
the right-hand side can be written in the form

k0−1∑
k=L

Rn,ak(pn
√
ak − pn√ak+1

) +Rn,ak0 (pn
√
ak0

− F )−Rn,aL−1
(pn√aL − F )

+
m−1∑

k=k0+1

(Rn,ak − 1)(pn√ak − pn√ak+1
) + (Rn,am − 1)(pn√am − F )

−(Rn,ak0 − 1)(pn√ak0+1
− F ) =: A1 +A2 −A3 +A4 +A5 −A6. (19.5)

Here −A3 cancels the second term, while A5 cancels the third term on the right
of (19.4). Since

{x ak0 ≤ x1 ≤ ak0+1} ∩ S ⊆ Kak0+1
, Kak0

,
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we obtain from (18.6)

∥A2∥Lp(Kak0 ) + ∥A6∥Lp(Kak0 ) ≺ ∥pn√ak0 − F∥Lp(Kak0 )

+ ∥pn√ak0+1
− F∥Lp(Kak0+1

). (19.6)

In A1 we have
∑
k<k0

Rn,ak(x) ≺ 1 on the set x ∈ {x ak0 ≤ x1 ≤ ak0+1}
(see (19.8) below), so by Jensen’s (or Hölder’s) inequality

Ap1 ≺
k0−1∑
k=L

Rn,ak |pn√ak − pn√ak+1
|p. (19.7)

For L+ 1 ≤ k ≤ k0 − 1 and ak0 ≤ x1 ≤ ak0+1 we get from (3.12),

Rn,ak(x) = R(4)
n (x1) ≤ e−An

√
ak log(16x1/ak) ≤ e−An

√
ak log(8ak0/ak)

≤ e−An
√
ak(k0−k)/2. (19.8)

So, in view of (18.12) (the summations
∑
k0

below are for L+ 1 ≤ k0 ≤ m− 1)

∑
k0

∫
Kak0

|A1|p ≺
∑
k0

k0−1∑
k=L

e−An
√
ak(k0−k)/2e4np(k0−k)

√
ak ×

×∥pn√ak − pn
√
2ak

∥pLp(Kak∩K2ak
)

Here, for large A,

e−An
√
ak(k0−k)/2e4np(k0−k)

√
ak ≤ e−n

√
ak(k0−k) ≤ e−

√
2k(k0−k),

therefore∑
k0

∫
Kak0

|A1|p ≺
∑
k

∥pn√ak −pn√2ak
∥pLp(Kak∩K2ak

) ≺
∑
k

∥F −pn√ak∥
p
Lp(Kak )

.

In a similar manner, for k0 + 1 ≤ k ≤ m− 1 and ak0 ≤ x1 ≤ ak0+1

0 ≤ 1−Rn,ak(x) = 1−R(4)
n (x1) ≤ e−An

√
ak ,

so we obtain from (18.11) for A4 via another use of Jensen’s inequality as in
(19.7) (note that in A4 we have

∑
k>k0

(1 − Rn,ak) ≺ 1 for x ∈ {x ak0 ≤ x1 ≤
ak0+1})∑

k0

∫
Kak0

|A4|p ≺
∑
k0

m−1∑
k=k0+1

e3(k0−k)p∥pn√ak − pn
√
2ak

∥pLp(Kak )

≺
∑
k

∥pn√ak − pn
√
2ak

∥pLp(Kak∩K2ak
)

≺
∑
k

∥F − pn√ak∥
p
Lp(Kak )

.
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Collecting the estimates in this section we can conclude∑
L+1≤k0≤m−1

∥Pn − F∥pKk0 ≺
∑

L≤k≤m

∥F − pn√ak∥
p
Lp(Kak )

. (19.9)

Since the union of the sets Kk0 , L + 1 ≤ k0 ≤ m − 1, include the set S∗
n from

(19.3), it follows from here and from (19.9) and (18.13) that

∥Pn − F∥Lp(S∗
n)

≺ ωrS(F, 1/n)p.

But
ωrS(F, 1/n)p = ωrS(f, 1/n)p,

so we get
∥Pn − F∥Lp(S∗

n)
≺ ωrS(f, 1/n)p. (19.10)

This is the inequality that we wanted to prove and that was used in Section
14 in the proof of Theorem 13.1, see (14.20).

20 Strong direct and converse inequalities

When 1 < p <∞, the inequalities (13.2) and (13.3) have a sharper form.

Theorem 20.1 Let K ⊂ R3 be a 3-dimensional convex polytope, 1 < p < ∞,
f ∈ Lp(K), and r = 1, 2, . . .. With s = max(2, p) we have for n ≥ 3r

1

nr

(
n∑

k=3r

ksr−1Ek(f)
s
p

)1/s

≤MωrK

(
f,

1

n

)
p

, (20.1)

where M depends only on K, r and p.

Here we used the notation En(f)p = En(f)Lp(K).

Theorem 20.2 Let K ⊂ R3 be a 3-dimensional convex polytope, 1 < p < ∞,
f ∈ Lp(K), and r = 1, 2, . . .. With q = min(2, p) we have for n = 1, 2, . . .

ωrK

(
f,

1

n

)
p

≤M
1

nr

(
n∑
k=0

(k + 1)qr−1Ek(f)
q
p

)1/q

(20.2)

where M depends only on K, r and p.

(20.1) is clearly stronger than (13.2), and one can easily see that (20.2) is
stronger than (13.3), see the discussion in the papers [9], [10].

The history of such strong inequalities is briefly as follows. It was M. F.
Timan [18], [19] who found them for trigonometric approximation. The case
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for approximation on an interval by algebraic polynomials was done in [2] and
[20]. The papers [9] and [10] provide a very general framework for such strong
inequalities, and they also established an important connection to Banach space
geometry.

We shall obtain (20.1) and (20.2) from the analogous results for [−1, 1] using
their equivalence to strong inequalities (so called strong Marchaud inequalities)
connecting different orders of moduli of smoothness, see [9] and [10].

Proof of Theorem 20.1. Without loss of generality we may assume f to be
a Borel-function, so no measurability problems will appear below.

For simpler notation we shall drop the subscript p in ωrK(f, δ)p, since all
moduli of smoothness are Lp moduli in this section.

We are going to show that

tr
(∫ 1

t

ωr+1
K (f, u)s

usr+1
du

)1/s

≤ CωrK(f, t), t ≤ 1. (20.3)

Using the monotonicity of ωr this is easily seen to be equivalent to

1

nr

(
n∑
k=1

ksr−1ωr+1
K (f, 1/k)s

)1/s

≤ CωrK(f, 1/n), n = 1, 2, . . . , (20.4)

and then an application of

Ek(f)p ≺ ωr+1
K (f, 1/k), k ≥ 3r

(see Theorem 13.1) gives (20.1).
Thus, it is enough to prove (20.3). TheK = [−1, 1] case of this is [2, Theorem

2.1,(2.2)], and from it we get the validity of (20.3) for all intervals/segments
(with a constant independent of the segment in question).

Let e be a direction, and I a chord of K in the direction of e. According to
what we have just said,

trs
∫ 1

t

ωr+1
I (f, u)s

usr+1
du ≤ CωrI (f, t)

s, t ≤ 1. (20.5)

First let p ≥ 2. Then s = p, and we have

trp
∫ 1

t

ωr+1
I (f, u)p

upr+1
du ≤ CωrI (f, t)

p, t ≤ 1.

Now integrate this inequality for all chords of K in the direction of e, and use
that, by (16.9),

ωrK,e(f, δ)
p := sup

u≤δ

∫ ∗

K

|∆r
ud̃K(e,x)e

f(x)|p ∼
∫
ωrI (f, t)

pdI, (20.6)
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where dI indicates integration with respect to all chords of K in the direction
of e (in the notations of (16.9) dI is actually dy over e⊥). Thus,

trp
∫ 1

t

ωr+1
K,e (f, u)

p

upr+1
du ≤ CωrK,e(f, t)

p ≤ CωrK(f, t)p. (20.7)

Recall now that, by Theorem 13.3, there is a finite set E∗ of directions (depend-
ing only on K) such that

ωr+1
K (f, u)p ≺ max

e∈E∗
ωr+1
K,e (f, u)

p ≤
∑
e∈E∗

ωr+1
K,e (f, u)

p. (20.8)

Now if we take the sum of (20.7) for all e ∈ E∗ and use the preceding inequality,
then we obtain (20.3).

Next, let 1 < p < 2, in which case s = 2, and (20.5) takes the form

t2r
∫ 1

t

ωr+1
I (f, u)2

u2r+1
du ≤ CωrI (f, t)

2, (20.9)

while we want to prove

t2r
∫ 1

t

ωr+1
K,e (f, u)

2

u2r+1
du ≤ CωrK,e(f, t)

2. (20.10)

Indeed, if we can show (20.10), and we take the sum of (20.10) for all e ∈ E∗

and use (20.8), then we obtain (20.3). But(
t2r
∫ 1

t

ωr+1
K,e (f, u)

2

u2r+1
du

)p/2
=

(
t2r
∫ 1

t

(∫
ωr+1
I (f, u)p

u(2r+1)(p/2)
dI

)2/p

du

)p/2
.

On the right we use Minkowskii’s inequality (“the norm of an integral is at most
as large as the integral of the norms”; here the integral is taken with respect to
dI, and the L2/p-norm with respect to du) to continue the preceding displayed
formula as

≤
∫ (

t2r
∫ 1

t

(
ωr+1
I (f, u)p

u(2r+1)(p/2)

)2/p

du

)p/2
dI =

∫ (
t2r
∫ 1

t

ωr+1
I (f, u)2

u2r+1
du

)p/2
dI

For the inner integral on the right we can apply (20.9) and we can continue as

≤ C

∫
ωrI (f, t)

pdI = CωrK,e(f, t)
p,

and this proves (20.10).
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Proof of Theorem 20.2. First we show that

ωrK(f, t) ≤ Ctr
(∫ 1

t

ωr+1
K (f, u)q

uqr+1
du+ ∥f∥qLp(K)

)1/q

(20.11)

with a C that is independent of f and t ≤ 1. The K = [−1, 1] case was proved
in [20]. Indeed, there, in Theorem 1, the K = [−1, 1] case of (20.2), namely

ωr[−1,1]

(
f,

1

n

)
p

≤ C
1

nr

(
n∑
k=0

(k + 1)qr−1Ek(f)
q
Lp[−1,1]

)1/q

(20.12)

was verified. For k ≥ r+1 we know from (1.3) (apply it with r+1 instead of r)

Ek(f)Lp[−1,1] ≤ Cωr+1
[−1,1]

(
f,

1

k

)
Lp[−1,1]

.

For k < r we can only write

Ek(f)Lp[−1,1] ≤ C∥f∥Lp[−1,1].

If put these into (20.12), then we obtain

ωr[−1,1]

(
f,

1

n

)
p

≤ C
1

nr

(
n∑
k=1

kqr−1ωr+1
[−1,1]

(
f,

1

k

)q
Lp[−1,1]

+ ∥f∥qLp[−1,1]

)1/q

,

which is equivalent to (20.11) for K = [−1, 1].
By the usual linear transformation we obtain from the K = [−1, 1] case of

(20.11) the inequality (20.11) for all segments K = I.
Let e be a direction, and let first p ≤ 2. Then q = p and (20.11) for a chord

I of K takes the form

ωrI (f, t)
p ≤ Ctrp

∫ 1

t

ωr+1
I (f, u)p

uqr+1
du+ ∥f∥pLp(I).

If we integrate this for all chords I of K in the direction of e we get (with the
notation (20.6))

ωrK,e(f, t)
p ≤ Ctrp

(∫ 1

t

ωr+1
K,e (f, u)

p

uqr+1
du+ ∥f∥pLp(K)

)

≤ Ctrp
(∫ 1

t

ωr+1
K (f, u)p

uqr+1
du+ ∥f∥pLp(K)

)
.

Now if we take the supremum of the left-hand side for all directions e we obtain
(20.11).
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Next, let p > 2, in which case q = 2, and (20.11) for a chord I of K (that
has been verified above) takes the form

ωrI (f, t)
2 ≤ Ct2r

(∫ 1

t

ωr+1
I (f, u)2

uqr+1
du+ ∥f∥2Lp(I)

)
. (20.13)

Now

ωrK,e(f, t)
2 =

(∫
ωrI (f, t)

pdI

)2/p

,

where dI indicates integration with respect to all chords I of K that is in the
direction of e. On the right-hand side we can apply (20.13) to get

ωrK,e(f, t)
2 ≺

(∫ (
t2r
∫ 1

t

ωr+1
I (f, u)2

uqr+1
du+ t2r∥f∥2Lp(I)

)p/2
dI

)2/p

≤

(∫ (
t2r
∫ 1

t

ωr+1
I (f, u)2

uqr+1
du

)p/2
dI

)2/p

+

(∫ (
t2r∥f∥2Lp(I)

)p/2
dI

)2/p

The second term on the right is

t2r∥f∥2Lp(K).

For the first term on the right we can apply again Minkowskii’s inequality (“the
norm of an integral is at most as large as the integral of norm”, where now the
norm is the Lp/2(dI) norm, and the integral is with respect to du), from which
we get the bound

t2r
∫ 1

t

(∫
ωr+1
I (f, u)2(p/2)dI

)2/p
uqr+1

du = t2r
∫ 1

t

ωr+1
K,e (f, u)

2

uqr+1
du

≤ t2r
∫ 1

t

ωr+1
K (f, u)2

uqr+1
du

for that first term. Thus,

ωr+1
K,e (f, t)

2 ≺ t2r
∫ 1

t

ωr+1
K (f, u)2

uqr+1
du+ t2r∥f∥2Lp(K),

and all we have to do to get (20.11) is to take the supremum of the left-hand
side for all directions e. Thus, (20.11) has been fully verified.
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Now let us get back to (20.2). We can rewrite (20.11) in the form

ωrK

(
f,

1

n

)q
≤ C

1

nrq

(
n∑
k=1

kqr−1ωr+1
K (f, 1/k)q + ∥f∥qLp(K)

)
, n = 1, 2, . . . ,

(20.14)
and here we apply (13.3), according to which

ωr+1
K

(
f,

1

k

)
≤ M

kr+1

k∑
j=0

(j + 1)rEj(f)p.

Write this into (20.14) and apply Jensen’s inequality:

ωrK

(
f,

1

n

)q
≺ 1

nrq

n∑
k=1

kqr−1

 1

kr+1

k∑
j=0

(j + 1)rEj(f)p

q

+
1

nrq
∥f∥qLp(K)

≺ 1

nrq

n∑
k=1

kqr−1 1

krq+1

k∑
j=0

(j + 1)rqEj(f)
q
p +

1

nrq
∥f∥qLp(K).

If we interchange here the order of the two summations we obtain

ωrK

(
f,

1

n

)
≤M

1

nr

 n∑
j=0

(j + 1)qr−1Ej(f)
q
p + ∥f∥qLp(K)

1/q

. (20.15)

Finally, replace here f by f −P0, where P0 is the constant which minimizes the
Lp-norm of f − Pn:

E0(f)p = ∥f − Pn∥Lp(K).

In this substitution the left-hand side in (20.15) does not change, and on the
right of (20.15) we can write E0(f)p instead of ∥f∥, and we obtain (20.2).

21 The K-functional in Lp and the equivalence
theorem

Just as in Section 12, Theorem 13.1 allows us to prove the equivalence of the
moduli of smoothness ωrK with a K-functionals.

In Lp the form of the K-functional is

Kr,p(f, t)K = inf
g

(
∥f − g∥Lp(K) + t sup

e∈S2

∥∥∥∥d̃K(e, ·)r ∂
rg

∂er

∥∥∥∥
Lp(K)

)
, (21.1)
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where the infimum is taken for all g that are in Cr(K) (all partial derivatives
of order at most r are continuous on K) and the supremum is taken for all
directions e ∈ S2 in R3.

Theorem 21.1 Let K be a 3-dimensional convex polytope in R3. There is a
constant M depending only on r,K and 1 ≤ p <∞ such that for all f ∈ Lp(K)
and for all 0 < δ ≤ 1 we have

1

M
Kr,p(f, δr)K ≤ ωrK(f, δ)p ≤MKr,p(f, δr)K . (21.2)

Proof. Let Pn be polynomials of degree at most n (≥ 3r) such that

∥f − Pn∥Lp(K) ≺ ωrK(f, n−1)p, (21.3)

the existence of which is given by Theorem 13.1. Let e be a direction, and apply
to Hm = Pn the inequality (17.5) on every chord I of K in the direction e:∫

I

d̃I(e, x)
rp

∣∣∣∣∂rPn∂er
(x)

∣∣∣∣p dx ≺ nrpωrI (Pn, n
−1)pp

with ≺ independent of the chord I. On integrating this for all chords I in the
direction e and using (16.9) we obtain n ≥ 3r(

1

n

)r ∥∥∥∥d̃K(e, ·)r ∂
rPn
∂er

∥∥∥∥
Lp(K)

≺ ωrK,e(Pn, n
−1)p, (21.4)

where ωrK,e(Pn, δ) is the directional modulus of smoothness from (16.4) and
(16.5). But, by (16.14), here

ωrK,e(Pn, n
−1)p ≺ ∥f − Pn∥Lp(K) + ωrK,e(f, n

−1)p ≺ ωrK(f, n−1)p,

and so

∥f − Pn∥Lp(K) +

(
1

n

)r ∥∥∥∥d̃K(e, ·)r ∂
rPn
∂er

∥∥∥∥
Lp(K)

≺ ωrK(f, n−1)p, (21.5)

which implies the first inequality in (21.2) for t = 1/n. Using simple mono-
tonicity properties of Kr,p and ωrK (see in particular (16.17)), this is enough to
conclude

Kr,p(f, δr)K ≺ ωrK(f, δ)p

for all 0 < δ ≤ 1.
The converse inequality

ωrK(f, δ)p ≺ Kr,p(f, δr)K (21.6)
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is an easy consequence of (16.34)–(16.35). Indeed, let h be an r-times differen-
tiable function such that

∥f − h∥Lp(K) + δr sup
e∈S2

∥∥∥∥d̃K(e, ·)r ∂
rh

∂er

∥∥∥∥
Lp(K)

≤ 2Kr,p(f, δr). (21.7)

On applying (16.34)–(16.35) to g = f and Q = h on a chord I of K in a given
direction e we obtain

1

δ

∫ δ

0

∫ ∗

I

|∆r
ud̃K(e,x)e

f(x)|pdxdu ≺
∫
I

|f − h|p + δrp
∫
I

d̃K(e, x)rp
∣∣∣∣∂rh(x)∂er

∣∣∣∣p dx.
If we integrate this for all chords I in the direction e, apply (16.5) and (21.7),
then we obtain

ωrK,e(f, δ)p ≺ Kr,p(f, δr)K ,

where ≺ is independent of e. Now (21.6) is a consequence of we take the supre-
mum on the left hand-side for all directions.

The following corollary may be of interest.

Corollary 21.2 There is a finite set E∗ of directions such that

ωrK(f, δ)p ≤MωrK,E∗(f, δ)p, δ > 0, (21.8)

where
ωrK,E∗(f, δ)p := max

e∈E∗
ωrK,e(f, δ)p

is the restricted modulus of smoothness from (13.6), and where M depends only
on r, p and K.

Indeed, by Theorem 13.3 there is a finite set E∗ of directions such that for n ≥ 3r
there are polynomials Pn of degree at most n for which

∥f − Pn∥Lp(K) ≺ ωrK,E∗(f, n−1)p. (21.9)

Now instead of (21.3) use this in the preceding proof to conclude

Kr,p(f, δr)K ≺ ωrK,E∗(f, δ)p,

and then the corollary follows from the second inequality in (21.2).
Exactly as in Theorem 13.3, there is such an E∗ consisting of at (r+1)v(v−

1)/2 directions, where v is the number of edges of K.
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