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Preliminary results

Every 2-colored complete graph has a monochromatic spanning tree.

Every 2-colored complete graph K3n−1 contains a monochromatic
matching Mn and this is not true for K3n−2.
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Preliminary geometric results

Károlyi, Pach and Tóth generalized both results to geometric graphs, that
are graphs drawn in the plane with straight-line segments as edges.

Theorem (KPT)

Every 2-colored complete geometric graph has a monochromatic plane
spanning tree.

Theorem (KPT)

Every 2-colored complete geometric graph K3n−1 contains a
monochromatic plane matching Mn.

Here a plane subgraph is one, whose edges in the embedding do not have
common internal points.
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Our starting point

Conjecture: Every 2-colored complete simple drawing has a
monochromatic plane spanning tree.

OPEN

GOAL: Show it for the twisted drawing (Harborth, Mengersen ’92)
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Ordered graphs

An ordered graph G is a simple graph with V (G ) = [m] = {1, 2, . . . ,m}.
We also use [i , j ] = {i , i + 1, . . . , j}
The vertex set is considered with the natural ordering and the edges are
denoted by (i , j), where we always assume i < j .
The length of (i , j) is j−i .
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Independent edges

Independent edges in ordered graphs can be classified as follows

Edges (a, b) and (c , d) are crossing if either a < c < b < d or
c < a < d < b.

Edges (a, b) and (c , d) are nested if either a < c < d < b or
c < a < b < d .

Edges (a, b) and (c , d) are separated if either a < b < c < d or
c < d < a < b.

1 2 3 4 5 6

3 41 232 542

an ordered graph

5 63
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6 types of questions

length of the longest cycle

lower bound upper bound

nested 3 3

crossing ? n/2

separated 3 3

non−nested ? 2n/3 → twisted drawing

non−crossing
√
n/2

√
n → convex drawing

non−separated n/4 2n/3
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Monochromatic spanning trees

Theorem (JB, AGy, GT)

In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.
(ii) a monochromatic non-nested spanning tree.
(iii) a monochromatic non-separated spanning tree.

(i) Bialostocki and Dierker.
(ii) connection to twisted drawings
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Non-crossing spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(i) a monochromatic non-crossing spanning tree.

If all edges (i , i + 1), i = 1, . . . , n − 1 have the same color, then we are
done, they form the desired spanning tree.
Otherwise there is an i , 1 < i < n such that (i − 1, i) and (i , i + 1) have
different colors.
Delete vertex i . Use induction.
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Non-nested spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(ii) a monochromatic non-nested spanning tree.

Let c be any 2-coloring of the edges. (1, 2) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,
Otherwise, let s be the smallest number such that (1, s) is red. We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s−1] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.
Suppose first that we find a blue spanning tree B without nested edges.
Delete the edges in B induced by [2, s − 1]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, 2), (1, 3), . . . , (1, s−1).
Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [2, s−1] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).
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Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

Let c be any 2-coloring of the edges. (1, n) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,
Otherwise, let s be the largest number such that (1, s) is red. We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.
Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, s + 1), . . . , (1, n).
Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 12 / 23



Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

Let c be any 2-coloring of the edges. (1, n) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,
Otherwise, let s be the largest number such that (1, s) is red. We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.
Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, s + 1), . . . , (1, n).
Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 12 / 23



Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

Let c be any 2-coloring of the edges. (1, n) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,

Otherwise, let s be the largest number such that (1, s) is red. We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.
Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, s + 1), . . . , (1, n).
Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 12 / 23



Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

Let c be any 2-coloring of the edges. (1, n) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,
Otherwise, let s be the largest number such that (1, s) is red.

We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.
Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, s + 1), . . . , (1, n).
Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 12 / 23



Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

Let c be any 2-coloring of the edges. (1, n) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,
Otherwise, let s be the largest number such that (1, s) is red. We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.

Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, s + 1), . . . , (1, n).
Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 12 / 23



Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

Let c be any 2-coloring of the edges. (1, n) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,
Otherwise, let s be the largest number such that (1, s) is red. We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.
Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, s + 1), . . . , (1, n).

Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 12 / 23



Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

Let c be any 2-coloring of the edges. (1, n) is blue. If (1, i) is blue for
every i , 2 ≤ i ≤ n, then we are done,
Otherwise, let s be the largest number such that (1, s) is red. We now
change the coloring c to c̃ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring c̃ on [2, n] and
apply the induction hypothesis.
Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c . Now add the blue edges
(1, s + 1), . . . , (1, n).
Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
be found in the original coloring c . Simply add edge (1, s).

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 12 / 23



Monochromatic spanning subgraphs

Theorem (JB, AGy, GT)

In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.
(ii) a monochromatic non-nested spanning tree.
(iii) a monochromatic non-separated spanning tree.

Proposition (JB, AGy, GT)

(i) There is a 2-coloring of the ordered complete graph on [n], which does
not contain a non-crossing monochromatic subgraph with n edges.
(ii) There is a 2-coloring of the ordered complete graph on [n], which does
not contain a non-nested monochromatic subgraph with n edges.
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not contain a non-nested monochromatic subgraph with n edges.
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges.

Color all edges (i , i + 1) blue, for 1 ≤ i ≤ n − 1, all other edges red.
Let H be a non-crossing subgraph with red edges.
Consider the convex drawing of Kn, where the blue edges are on the outer
cycle. Now H becomes a planar subgraph of the convex drawing.
Let us add all edges of the outer cycle (n− 1 blue and possibly one red) to
H to get H ′.
It is still an outerplanar graph. Therefore, H ′ has at most 2n − 3 edges,
n − 1 of them are blue.
Thus H can have at most n − 2 edges.
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Non-nested monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-nested monochromatic subgraph with n edges.

Color edge (i , j) blue if i + j is even and red, if i + j is odd.
For the red edges, the value of i + j can have at most n − 1 different
values.
So, among n red edges, there are two with i + j = i ′ + j ′, therefore, these
edges are nested.
The argument is the same for the blue edges.
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Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of ⌊n2/8⌋ edges.

Consider all edges (i , j) with i ≤ ⌊n/2⌋ < j .

# edges = n2

4
no separated pairs
majority color

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 16 / 23



Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of ⌊n2/8⌋ edges.

Consider all edges (i , j) with i ≤ ⌊n/2⌋ < j .

# edges = n2

4
no separated pairs
majority color

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 16 / 23



Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of ⌊n2/8⌋ edges.

Consider all edges (i , j) with i ≤ ⌊n/2⌋ < j .

# edges = n2

4
no separated pairs
majority color

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 16 / 23



Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of ⌊n2/8⌋ edges.

Consider all edges (i , j) with i ≤ ⌊n/2⌋ < j .

# edges = n2

4

no separated pairs
majority color

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 16 / 23



Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of ⌊n2/8⌋ edges.

Consider all edges (i , j) with i ≤ ⌊n/2⌋ < j .

# edges = n2

4
no separated pairs

majority color

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 16 / 23



Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of ⌊n2/8⌋ edges.

Consider all edges (i , j) with i ≤ ⌊n/2⌋ < j .

# edges = n2

4
no separated pairs
majority color

J.Barát (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025 16 / 23



Non-nested matchings

Every 2-colored complete graph K3n−1 contains a monochromatic
matching Mn

Conjecture

Every 2-colored ordered complete graph on [3n − 1] contains a
monochromatic non-nested matching Mn

Theorem (JB, AGy, GT)

If an ordered complete graph on [3n−1] contains either
(i) a red K2n−1 or
(ii) a blue Kn−1,2n as a subgraph, then there is a monochromatic
non-nested Mn.
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n−1] contains a
monochromatic non-crossing Mn.

This follows from a more general theorem by Károlyi, Pach and Tóth.
here is a simple proof
Consider the Hamiltonian path.
Either it is monochromatic or
there are two consecutive edges of different colors.
use induction.
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Non-separated matchings

Theorem (JB, AGy, GT)

Every 2-colored ordered complete graph on [3n − 1] contains a
monochromatic non-separated Mn.

Consider the complete bipartite graph on A = [1, n] and B = [2n, 3n−1].
either this is monochromatic
or we find a 2-colored V and use induction
check the new edge and the non-separated property
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Singular matchings

Let Rnest(t, n),Rcr (t, n),Rsep(t, n) be the smallest m such that every
t-coloring of the edges of the ordered complete graph on [m] there is a
monochromatic nested, crossing, separated matching, respectively, of
size n.

Theorem (JB, AGy, GT)

For t, n ≥ 2 we have Rnest(t, n) = 2(t(n − 1) + 1).
For t, n ≥ 2 we have Rcr (t, n) = 2t(n − 1) + 1.
For t, n ≥ 2 we have Rsep(t, n) = 2(t(n − 1) + 1).
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Preliminary results on cycles

Theorem (Erdős-Gallai)

Every n-vertex graph with (k − 1)(n − 1)/2 + 1 edges contains a cycle of
length at least k .

Theorem (KPT)

Every 2-coloring of the complete geometric graph with n vertices contains
a cycle of length at least

√
k/2.
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Cycles and colorings

length of the longest cycle

lower bound upper bound

nested 3 3

crossing ? n/2

separated 3 3

non−nested ? 2n/3

non−crossing
√
n/2

√
n

non−separated n/4 2n/3
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Open questions

Problem 1

What is the minimum number m such that every 2-colored ordered
complete graph on [m] contains a monochromatic non-nested Mn?

Problem 2

Show that every 2-colored ordered complete graph on [11] contains a
monochromatic non-nested M4.
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