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Preliminary geometric results

Karolyi, Pach and Téth generalized both results to geometric graphs, that
are graphs drawn in the plane with straight-line segments as edges.
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Preliminary geometric results

Karolyi, Pach and Téth generalized both results to geometric graphs, that
are graphs drawn in the plane with straight-line segments as edges.

Theorem (KPT)

Every 2-colored complete geometric graph has a monochromatic plane
spanning tree.

Theorem (KPT)

Every 2-colored complete geometric graph K3,_1 contains a
monochromatic plane matching M,.

Here a plane subgraph is one, whose edges in the embedding do not have
common internal points.
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Our starting point

Conjecture: Every 2-colored complete simple drawing has a
monochromatic plane spanning tree.
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Our starting point

Conjecture: Every 2-colored complete simple drawing has a
monochromatic plane spanning tree.

OPEN

GOAL: Show it for the twisted drawing (Harborth, Mengersen '92)
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Our starting point

Conjecture: Every 2-colored complete simple drawing has a
monochromatic plane spanning tree.

OPEN

GOAL: Show it for the twisted drawing (Harborth, Mengersen '92)
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Ordered graphs

An ordered graph G is a simple graph with V(G) = [m] ={1,2,..., m}.
We also use [i,j] ={i,i+1,...,j}

The vertex set is considered with the natural ordering and the edges are
denoted by (/,/), where we always assume i < j.

The length of (/,)) is j—i.
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Independent edges

Independent edges in ordered graphs can be classified as follows
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Independent edges

Independent edges in ordered graphs can be classified as follows

e Edges (a, b) and (c, d) are crossing if either a < ¢ < b < d or
c<a<d<hb

e Edges (a, b) and (c, d) are nested if either a < c < d < bor
c<a<b<d.

e Edges (a,b) and (c, d) are separated if either a < b < c < d or
c<d<a<hb.

/ ; : t an ordered graph

1 2 3 4 5 6

(VY ) s

1 2 3 4
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6 types of questions
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6 types of questions

length of the

longest cycle

lower bound | upper bound
nested 3 3
crossing ? n/2
separated 3 3
non—nested 7 2n/3 — twisted drawing
non—crossing n/2 Vn — convex drawing
non—separated n/4 2n/3
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Monochromatic spanning trees
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Monochromatic spanning trees

Theorem (JB, AGy, GT)

In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.

(ii) a monochromatic non-nested spanning tree.

(iii) a monochromatic non-separated spanning tree.
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Monochromatic spanning trees

Theorem (JB, AGy, GT)

In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.

(ii) a monochromatic non-nested spanning tree.

(iii) a monochromatic non-separated spanning tree.

(i) Bialostocki and Dierker.
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Monochromatic spanning trees

Theorem (JB, AGy, GT)

In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.

(ii) a monochromatic non-nested spanning tree.

(iii) a monochromatic non-separated spanning tree.

(i) Bialostocki and Dierker.
(ii) connection to twisted drawings
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Non-crossing spanning tree
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Non-crossing spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(i) a monochromatic non-crossing spanning tree.

J
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Non-crossing spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(i) a monochromatic non-crossing spanning tree.

If all edges (i,i+ 1), i=1,...,n—1 have the same color, then we are
done, they form the desired spanning tree.
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Non-crossing spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(i) a monochromatic non-crossing spanning tree.

J

If all edges (i,i+ 1), i=1,...,n—1 have the same color, then we are
done, they form the desired spanning tree.

Otherwise there is an i, 1 < i < n such that (i — 1,/) and (/,i + 1) have
different colors.
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Non-crossing spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(i) a monochromatic non-crossing spanning tree.

J

If all edges (i,i+ 1), i=1,...,n—1 have the same color, then we are
done, they form the desired spanning tree.

Otherwise there is an i, 1 < i < n such that (i — 1,/) and (/,i + 1) have
different colors.

Delete vertex i. Use induction.
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Non-nested spanning tree
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Non-nested spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(ii) a monochromatic non-nested spanning tree.

J
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Non-nested spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(ii) a monochromatic non-nested spanning tree.

J

Let ¢ be any 2-coloring of the edges. (1,2) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,
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Non-nested spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(ii) a monochromatic non-nested spanning tree.

Let ¢ be any 2-coloring of the edges. (1,2) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,

Otherwise, let s be the smallest number such that (1,s) is red. We now
change the coloring ¢ to ¢ as follows: we recolor each edge induced by
[s—1] blue, and keep c otherwise. Consider the coloring ¢ on [2, n] and
apply the induction hypothesis.
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Non-nested spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(ii) a monochromatic non-nested spanning tree. J

Let ¢ be any 2-coloring of the edges. (1,2) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,

Otherwise, let s be the smallest number such that (1,s) is red. We now
change the coloring ¢ to ¢ as follows: we recolor each edge induced by
[s—1] blue, and keep c otherwise. Consider the coloring ¢ on [2, n] and
apply the induction hypothesis.

Suppose first that we find a blue spanning tree B without nested edges.
Delete the edges in B induced by [2,s — 1]. The resulting graph can also
be found in the original coloring c. Now add the blue edges
(1,2),(1,3),...,(1,s-1).
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Non-nested spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(ii) a monochromatic non-nested spanning tree. J

Let ¢ be any 2-coloring of the edges. (1,2) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,

Otherwise, let s be the smallest number such that (1,s) is red. We now
change the coloring ¢ to ¢ as follows: we recolor each edge induced by
[s—1] blue, and keep c otherwise. Consider the coloring ¢ on [2, n] and
apply the induction hypothesis.

Suppose first that we find a blue spanning tree B without nested edges.
Delete the edges in B induced by [2,s — 1]. The resulting graph can also
be found in the original coloring c. Now add the blue edges
(1,2),(1,3),...,(1,s-1).

Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [2,s—1] since they are blue. So, R can also
be found in the original coloring c. Simply add edge (1, s).
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Non-separated spanning tree
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Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

J
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Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

J

Let ¢ be any 2-coloring of the edges. (1, n) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,

Otherwise, let s be the largest number such that (1,s) is red.
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Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree.

J

Let ¢ be any 2-coloring of the edges. (1, n) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,

Otherwise, let s be the largest number such that (1,s) is red. We now
change the coloring ¢ to ¢ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring ¢ on [2, n] and
apply the induction hypothesis.
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Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree. J

Let ¢ be any 2-coloring of the edges. (1, n) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,

Otherwise, let s be the largest number such that (1,s) is red. We now
change the coloring ¢ to ¢ as follows: we recolor each edge induced by
[s+1, n] blue, and keep c otherwise. Consider the coloring ¢ on [2, n] and
apply the induction hypothesis.

Suppose first that we find a blue spanning tree B without separated edges.
Delete the edges of B induced by [s+1, n]. The resulting graph can also
be found in the original coloring c. Now add the blue edges
(1,s+1),...,(1,n).
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Non-separated spanning tree

In every 2-coloring of the ordered complete graph on [n], there exists
(iii) a monochromatic non-separated spanning tree. J

Let ¢ be any 2-coloring of the edges. (1, n) is blue. If (1,/) is blue for
every i, 2 < i < n, then we are done,
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Delete the edges of B induced by [s+1, n]. The resulting graph can also
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Suppose now that we found a red spanning tree R on [2, n]. It cannot
contain any edges induced by [s + 1, n] since they are blue. So, R can also
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Monochromatic spanning subgraphs
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Monochromatic spanning subgraphs

Theorem (JB, AGy, GT)

In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.

(ii) a monochromatic non-nested spanning tree.

(iii) a monochromatic non-separated spanning tree.
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Monochromatic spanning subgraphs

Theorem (JB, AGy, GT)

In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.

(ii) a monochromatic non-nested spanning tree.

(iii) a monochromatic non-separated spanning tree.

Proposition (JB, AGy, GT)

(i) There is a 2-coloring of the ordered complete graph on [n], which does
not contain a non-crossing monochromatic subgraph with n edges.

(ii) There is a 2-coloring of the ordered complete graph on [n], which does
not contain a non-nested monochromatic subgraph with n edges.

v
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Non-crossing monochromatic subgraphs
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges. J
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges. J

Color all edges (i,i + 1) blue, for 1 < i < n—1, all other edges red.
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges. J

Color all edges (i,i + 1) blue, for 1 < i < n—1, all other edges red.
Let H be a non-crossing subgraph with red edges.
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges. J

Color all edges (i,i + 1) blue, for 1 < i < n—1, all other edges red.

Let H be a non-crossing subgraph with red edges.

Consider the convex drawing of Kj,, where the blue edges are on the outer
cycle. Now H becomes a planar subgraph of the convex drawing.
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges. J

Color all edges (i,i + 1) blue, for 1 < i < n—1, all other edges red.

Let H be a non-crossing subgraph with red edges.

Consider the convex drawing of Kj,, where the blue edges are on the outer
cycle. Now H becomes a planar subgraph of the convex drawing.

Let us add all edges of the outer cycle (n — 1 blue and possibly one red) to
H to get H'.
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges. J

Color all edges (i,i + 1) blue, for 1 < i < n—1, all other edges red.

Let H be a non-crossing subgraph with red edges.

Consider the convex drawing of Kj,, where the blue edges are on the outer
cycle. Now H becomes a planar subgraph of the convex drawing.

Let us add all edges of the outer cycle (n — 1 blue and possibly one red) to
H to get H'.

It is still an outerplanar graph. Therefore, H' has at most 2n — 3 edges,

n — 1 of them are blue.
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Non-crossing monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges. J

Color all edges (i,i + 1) blue, for 1 < i < n—1, all other edges red.

Let H be a non-crossing subgraph with red edges.

Consider the convex drawing of Kj,, where the blue edges are on the outer
cycle. Now H becomes a planar subgraph of the convex drawing.

Let us add all edges of the outer cycle (n — 1 blue and possibly one red) to
H to get H'.

It is still an outerplanar graph. Therefore, H' has at most 2n — 3 edges,

n — 1 of them are blue.

Thus H can have at most n — 2 edges.
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Non-nested monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-nested monochromatic subgraph with n edges. J
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Non-nested monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-nested monochromatic subgraph with n edges. J

Color edge (i,/) blue if i +j is even and red, if i + j is odd.
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Non-nested monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-nested monochromatic subgraph with n edges. J

Color edge (i,/) blue if i +j is even and red, if i + j is odd.

For the red edges, the value of i 4+ can have at most n — 1 different
values.
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Non-nested monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-nested monochromatic subgraph with n edges. J

Color edge (i,/) blue if i +j is even and red, if i + j is odd.

For the red edges, the value of i 4+ can have at most n — 1 different
values.

So, among n red edges, there are two with i +j = i/ + j/, therefore, these
edges are nested.
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Non-nested monochromatic subgraphs

There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-nested monochromatic subgraph with n edges. J

Color edge (i,/) blue if i +j is even and red, if i + j is odd.

For the red edges, the value of i 4+ can have at most n — 1 different
values.

So, among n red edges, there are two with i +j = i/ + j/, therefore, these
edges are nested.

The argument is the same for the blue edges.
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Non-separated subgraph
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Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of | n?/8] edges.
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Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of | n?/8] edges.

Consider all edges (/,j) with i < [n/2]| <.
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Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of | n?/8] edges.

Consider all edges (/,j) with i < [n/2]| <.
# edges = ”Tz
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Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of | n?/8] edges.

Consider all edges (/,j) with i < [n/2]| <.

2
_n
# edges = - .
no separated pairs
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Non-separated subgraph

Proposition (JB, AGy, GT)

In any 2-coloring of the ordered complete graph on [n], there is a
non-separated monochromatic subgraph of | n?/8] edges.

Consider all edges (/,j) with i < [n/2]| <.

2
_n
# edges = - .
no separated pairs
majority color
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Non-nested matchings
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Non-nested matchings

Every 2-colored complete graph K3,_; contains a monochromatic
matching M,
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Non-nested matchings

Every 2-colored complete graph K3,_; contains a monochromatic
matching M,

Conjecture

Every 2-colored ordered complete graph on [3n — 1] contains a
monochromatic non-nested matching M,
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Non-nested matchings

Every 2-colored complete graph K3,_1 contains a monochromatic
matching M,

Conjecture

Every 2-colored ordered complete graph on [3n — 1] contains a
monochromatic non-nested matching M,

Theorem (JB, AGy, GT)

If an ordered complete graph on [3n—1] contains either

(i) a red Kp,—1 or

(i) a blue Ks_1,2, as a subgraph, then there is a monochromatic
non-nested M,,.

J.Bardt (Renyi and Pannon) Vertex ordered Ramsey 07.02.2025
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Non-crossing matchings
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n—1] contains a
monochromatic non-crossing M,,.
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n—1] contains a
monochromatic non-crossing M,,.

This follows from a more general theorem by Karolyi, Pach and Téth.
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n—1] contains a
monochromatic non-crossing M,,.

This follows from a more general theorem by Karolyi, Pach and Téth.
here is a simple proof
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n—1] contains a
monochromatic non-crossing M,,.

This follows from a more general theorem by Karolyi, Pach and Téth.
here is a simple proof
Consider the Hamiltonian path.
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n—1] contains a
monochromatic non-crossing M,,.

This follows from a more general theorem by Karolyi, Pach and Téth.
here is a simple proof

Consider the Hamiltonian path.

Either it is monochromatic or
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n—1] contains a
monochromatic non-crossing M,,.

This follows from a more general theorem by Karolyi, Pach and Téth.
here is a simple proof

Consider the Hamiltonian path.

Either it is monochromatic or

there are two consecutive edges of different colors.
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Non-crossing matchings

Every 2-colored ordered complete graph on [3n—1] contains a
monochromatic non-crossing M,,.

This follows from a more general theorem by Karolyi, Pach and Téth.
here is a simple proof

Consider the Hamiltonian path.

Either it is monochromatic or

there are two consecutive edges of different colors.

use induction.
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Non-separated matchings
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Non-separated matchings

Theorem (JB, AGy, GT)

Every 2-colored ordered complete graph on [3n — 1] contains a
monochromatic non-separated M,,.
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Non-separated matchings

Theorem (JB, AGy, GT)

Every 2-colored ordered complete graph on [3n — 1] contains a
monochromatic non-separated M,,.

Consider the complete bipartite graph on A = [1, n] and B = [2n,3n—1].
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Non-separated matchings

Theorem (JB, AGy, GT)

Every 2-colored ordered complete graph on [3n — 1] contains a
monochromatic non-separated M,,.

Consider the complete bipartite graph on A = [1, n] and B = [2n,3n—1].
either this is monochromatic
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Non-separated matchings

Theorem (JB, AGy, GT)

Every 2-colored ordered complete graph on [3n — 1] contains a
monochromatic non-separated M,,.

Consider the complete bipartite graph on A = [1, n] and B = [2n,3n—1].
either this is monochromatic
or we find a 2-colored V' and use induction
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Non-separated matchings

Theorem (JB, AGy, GT)

Every 2-colored ordered complete graph on [3n — 1] contains a
monochromatic non-separated M,.

Consider the complete bipartite graph on A = [1, n] and B = [2n,3n—1].
either this is monochromatic

or we find a 2-colored V' and use induction

check the new edge and the non-separated property
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Singular matchings
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Singular matchings

Let Rpest(t, n), Rer(t, n), Rsep(t, n) be the smallest m such that every
t-coloring of the edges of the ordered complete graph on [m] there is a
monochromatic nested, crossing, separated matching, respectively, of
size n.
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Singular matchings

Let Rpest(t, n), Rer(t, n), Rsep(t, n) be the smallest m such that every
t-coloring of the edges of the ordered complete graph on [m] there is a
monochromatic nested, crossing, separated matching, respectively, of
size n.

Theorem (JB, AGy, GT)

For t,n > 2 we have Rpest(t,n) =2(t(n—1) +1).
For t,n > 2 we have R.(t,n) =2t(n—1)+ 1.
For t,n > 2 we have Rsp(t,n) =2(t(n—1) +1).
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Preliminary results on cycles

Theorem (Erdés-Gallai)

Every n-vertex graph with (k —1)(n —1)/2 + 1 edges contains a cycle of
length at least k.
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Preliminary results on cycles

Theorem (Erdés-Gallai)

Every n-vertex graph with (k —1)(n —1)/2 + 1 edges contains a cycle of
length at least k.

Theorem (KPT)

Every 2-coloring of the complete geometric graph with n vertices contains
a cycle of length at least \/k/2.
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Preliminary results on cycles

Theorem (Erdés-Gallai)

Every n-vertex graph with (k —1)(n —1)/2 + 1 edges contains a cycle of
length at least k.

Theorem (KPT)

Every 2-coloring of the complete geometric graph with n vertices contains
a cycle of length at least \/k/2.
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Cycles and colorings

length of the

longest cycle

lower bound | upper bound
nested 3 3
crossing ? n/2
separated 3 3
non—nested ? 2n/3
non—crossing n/2 Vn
non—separated n/4 2n/3

J.Bardt (Renyi and Pannon)

Vertex ordered Ramsey




Open questions
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Open questions

Problem 1

What is the minimum number m such that every 2-colored ordered
complete graph on [m] contains a monochromatic non-nested M,?
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Open questions

Problem 1

What is the minimum number m such that every 2-colored ordered
complete graph on [m] contains a monochromatic non-nested M,?

Problem 2

Show that every 2-colored ordered complete graph on [11] contains a
monochromatic non-nested Mj.
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