Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials

Tingting Shang and Ruixi Liang

School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R.China

Received 28 April 2020, appeared 26 July 2020
Communicated by Patrizia Pucci

Abstract. In this article, we study the following quasilinear Schrödinger equation

\[-\Delta u - \mu \frac{u}{|x|^2} + V(x)u - (\Delta (u^2))u = f(x,u), \quad x \in \mathbb{R}^N,\]

where \(V(x)\) is a given positive potential and the nonlinearity \(f(x,u)\) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions by a change of variable and Symmetric Mountain Pass Theorem.

Keywords: quasilinear Schrödinger equation, Hardy potential, Mountain Pass Theorem.

2020 Mathematics Subject Classification: 35J20, 35J60.

1 Introduction and main results

In this paper, we consider the following equation

\[-\Delta u - \mu \frac{u}{|x|^2} + V(x)u - (\Delta (u^2))u = f(x,u), \quad x \in \mathbb{R}^N,\]

where \(N \geq 3, 0 \leq \mu < \bar{\mu} := \frac{(N-2)^2}{4}, V(x) \in C(\mathbb{R}^N, \mathbb{R})\) is a given potential and \(f \in C^{1}(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})\).

For problem (1.1), if \(\mu = 0, f(x,u) = f(u)\), then (1.1) becomes

\[-\Delta u + V(x)u - (\Delta (u^2))u = f(u), \quad x \in \mathbb{R}^N.\]

Recently, the existence of solutions for (1.2) has drawn much attention, see for example [5, 7, 19, 21, 22, 25]. Particularly, it was established the existence of both one-sign and nodal ground states of soliton type solutions in [21] by Nehari method. Furthermore, using a constrained minimization argument, the existence of a positive ground state solution has been proved in [25]. Later, by using a change of variables, [19] and [7] studied the existence of solutions in
different working spaces with different classes of nonlinearities. For more results we can refer to [18,20,23,33,34].

Moreover, if we take \(\mu \equiv 0 \) in (1.1), we have
\[
- \Delta u + V(x)u - (\Delta u^2)u = f(x,u), \quad x \in \mathbb{R}^N. \tag{1.3}
\]

In [39], Zhang and Tang proved there are infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential by Mountain Pass Theorem. When \(f(x,u) = \frac{|u|^{2^*}-2u}{|x|^s} \), where \(0 \leq s < 2 \) and \(2^* = \frac{2(N-s)}{N-2} \) is the critical Sobolev–Hardy exponents, the problem (1.3) was studied in [10,12]. If \(f(x,u) = \lambda |u|^{q-2}u + \frac{|u|^{p-2}u}{|x|^q} \), the authors in [40] have proved the existence of solutions by using a change of variable.

Recently, great attention has been attracted to the study of the following problem
\[
- \Delta u - \mu \frac{u}{|x|^2} + V(x)u = f(x,u), \quad x \in \mathbb{R}^N. \tag{1.4}
\]

This class of quasilinear equations are often referred as modified nonlinear Schrödinger equations, whose solutions are related to the existence of standing wave solutions. For example, by use of variational method, Kang and Deng in [13] proved the existence of solutions for
\[
V(x) = 0 \quad \text{and} \quad f(x,u) = \frac{|u|^{2^*}-2u}{|x|^s} + K(x)|u|^{-2}u. \quad \text{Using the similar method, Li in [14] proved}
\]

the existence of nontrivial solutions for \(V(x) = 0 \) and \(f(x,u) = \frac{|u|^{2^*}-2u}{|x|^s} + K(x)|u|^{-2}u + \lambda u \).

In [4], Cao and Zhou studied the problem (1.4) with \(V(x) \equiv 1 \) and general subcritical nonlinearity \(f(x,u) \), they obtained the existence and multiplicity of positive solutions in some different conditions, their method relies upon the proof of Tarantello in [30]. Under certain conditions, using Ekeland’s variational principle, Chen and Peng in [6] obtained the existence of a positive solution with \(V(x) \equiv 1 \) and nonlinearity \(\lambda(f(x,u) + h(x)) \). For more results about (1.4), we can refer to [9,11,29] and the references therein.

As regards other relevant papers, we mention here [8,15–17,27,28,31,35,38]. Motivated by facts mentioned above, in this paper, we study the existence of infinitely many solutions for problem (1.1) by Mountain Pass Theorem. Before giving the main result of this paper, we give the assumptions of the potential \(V(x) \) and the nonlinear term \(f(x,u) \) as follows, firstly

\begin{enumerate}
 \item[(V_1)] \(V \in C(\mathbb{R}^N, \mathbb{R}) \) and \(\inf_{x \in \mathbb{R}^N} V(x) = V_0 > 0 \);
 \item[(V_2)] for any \(L > 0 \), there exists a constant \(\theta > 0 \) such that
 \[
 \lim_{|y| \to \infty} \text{meas}\{x \in \mathbb{R}^N : |x - y| \leq \theta, V(x) \leq L\} = 0;
 \]
 \item[(F_0)] \(f \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R}) \) and there exist constants \(c_1, c_2 > 0 \) and \(4 < p < 2^* \) such that
 \[
 |f(x,u)| \leq c_1 |u| + c_2 |u|^{p-1}, \quad \forall (x,u) \in \mathbb{R}^N \times \mathbb{R};
 \]
 \item[(F_1)] \(\lim_{|u| \to \infty} \frac{F(x,u)}{u^p} = \infty \) uniformly in \(x \), and there exists \(a_0 \geq 0 \) such that \(F(x,u) \geq 0 \) for all \((x,u) \in \mathbb{R}^N \times \mathbb{R} \) and \(|u| \geq a_0 \), where \(F(x,u) = \int_0^u f(x,s)ds \);
 \item[(F_2)] \(\tilde{F}(x,u) : = \frac{1}{2}f(x,u)u - F(x,u) \geq 0 \) and there exist \(c_0 > 0 \) and \(\sigma \in (\max\{1, \frac{2N}{N+2}\}, 2) \) such that
 \[
 |F(x,u)|^\sigma \leq c_0 |u|^{2\sigma}\tilde{F}(x,u)
 \]
 for all \((x,u) \in \mathbb{R}^N \times \mathbb{R} \) with \(u \) large enough;
\end{enumerate}
(F_3) \(f(x, u) = -f(x, -u) \) for all \((x, u) \in \mathbb{R}^N \times \mathbb{R} \).

Now, we are ready to state the main result of this paper.

Theorem 1.1. Assume that \((V_1)-(V_2), (F_0)-(F_3)\) are satisfied, then problem (1.1) has infinitely many nontrivial solutions \(\{u_n\}\) such that \(\|u_n\| \to \infty\) and \(I(u_n) \to \infty\) (I will be defined later).

Remark 1.2 (see [30]). It follows from \((F_1)\) and \((F_2)\) that

\[
\tilde{F}(x, u) \geq \frac{1}{c_0} \left(\frac{|F(x, u)|}{|u|^2} \right) \to \infty,
\]

uniformly in \(x\) as \(|u| \to \infty\).

This paper is organized as follows. In Section 2, we will introduce the variational setting for the problem and some preliminary results. In Section 3, we give the proof of main result.

Notations. In what follows we will adopt the following notations

- \(C, C_i, i = 1, 2, 3, \ldots\) denote possibly different positive constants which may change from line to line;
- For \(1 \leq p < \infty\), \(L^p(\mathbb{R}^N)\) denotes the usual Lebesgue spaces with norms
 \[
 \|u\|_p = \left(\int_{\mathbb{R}^N} |u|^p \, dx \right)^{1/p}, \quad 1 \leq p < \infty;
 \]
- \(H^1(\mathbb{R}^N)\) denotes the Sobolev spaces modeled in \(L^2(\mathbb{R}^N)\) with norm
 \[
 \|u\|_{H^1} = \left(\int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) \, dx \right)^{1/2};
 \]
- \(B_R\) denotes the open ball centered at the origin and radius \(R > 0\).

2 Variational setting and preliminary results

Before establishing the variational setting for problem (1.1), we give our working space firstly. Under the assumption \((V_1)\) we define

\[
E := \left\{ u \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} V(x) u^2 \, dx < \infty \right\},
\]

then \(E\) is a Hilbert space equipped with the inner product and norm

\[
(u, v) = \int_{\mathbb{R}^N} \left(\nabla u \nabla v - \mu \frac{uv}{|x|^2} + V(x) uv \right) \, dx, \quad \|u\| = (u, u)^{1/2}.
\]

In view of \((V_1)\) and for \(u \in E\), the following norm

\[
\|u\|_E = \left(\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x) u^2) \, dx \right)^{1/2}
\]

is equivalent to the classic one in \(H^1(\mathbb{R}^N)\).

Now, let us recall the Hardy inequality, which is the main tool and allows us to deal with Hardy-type potentials.
Lemma 2.1 (see [1]). Assume that $1 < p < N$ and $u \in W^{1,p}(\mathbb{R}^N)$, then

$$\int_{\mathbb{R}^N} \frac{|u|^p}{|x|^p} \, dx \leq \left(\frac{p}{(N-p)} \right)^p \int_{\mathbb{R}^N} |\nabla u|^p \, dx.$$

Thus, by Lemma 2.1, $\|u\|$ is well defined. In fact

$$\int_{\mathbb{R}^N} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2} \right) \, dx \geq \int_{\mathbb{R}^N} \left(|\nabla u|^2 - \frac{4}{(N-2)^2} |\nabla u|^2 \right) \, dx = \left(1 - \frac{4}{(N-2)^2} \right) \int_{\mathbb{R}^N} |\nabla u|^2 \, dx > 0.$$

(2.1)

Lemma 2.2. Assume that $0 \leq \mu < \bar{\mu} = \frac{(N-2)^2}{4}$, then there exist $C_1, C_2 > 0$ such that

$$C_1 \|u\|_E^2 \leq \|u\|^2 \leq C_2 \|u\|_E^2,$$

for any $u \in H^1(\mathbb{R}^N)$.

Proof. For $\mu \geq 0$, we have

$$\|u\|^2 = \int_{\mathbb{R}^N} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2} + V(x)u^2 \right) \, dx \leq \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx = \|u\|_E^2.$$

(2.2)

On the other hand, since $0 \leq \mu < \bar{\mu} = \frac{(N-2)^2}{4}$, we can get

$$1 \geq 1 - \frac{4\mu}{(N-2)^2} > 0.$$

Then, we have

$$\|u\|^2 = \int_{\mathbb{R}^N} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2} + V(x)u^2 \right) \, dx \geq \int_{\mathbb{R}^N} \left(|\nabla u|^2 - \frac{4\mu}{(N-2)^2} |\nabla u|^2 + V(x)u^2 \right) \, dx \geq \left(1 - \frac{4\mu}{(N-2)^2} \right) \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx = \left(1 - \frac{4\mu}{(N-2)^2} \right) \|u\|_E^2.$$

(2.3)

It follows from (2.2) and (2.3) that

$$C_1 \|u\|_E^2 \leq \|u\|^2 \leq C_2 \|u\|_E^2.$$

□
As we all known, under the assumption \((V_1)\), the embedding \(E \hookrightarrow L^r(\mathbb{R}^N)\) is continuous for \(r \in [2, 2^*)\) and \(E \hookrightarrow L^r_{loc}(\mathbb{R}^N)\) is compact for \([2, 2^*)\) i.e. there is a constant \(d_r > 0\) such that
\[
\|u\|_s \leq d_r \|u\|_E, \quad \forall u \in E, \ r \in [2, 2^*].
\]
From this, by Lemma 2.2, there is \(C_3 > 0\) such that
\[
\|u\|_r \leq d_r \|u\|_E \leq C_3 \|u\|_r, \quad \forall u \in E, \ r \in [2, 2^*].
\]
Furthermore, under the assumptions \((V_1)\) and \((V_2)\), we have the following compactness lemma due to [3] (see also [2, 41]).

Lemma 2.3. Assume that \((V_1)\) and \((V_2)\) hold, the embedding \(E \hookrightarrow L^r(\mathbb{R}^N)\) is compact for \(2 \leq r < 2^*\).

In order to solve problem (1.1), we define the energy functional \(I : E \rightarrow \mathbb{R}\) given by
\[
I(u) = \frac{1}{2} \int_{\mathbb{R}^N} (1 + 2|u|^2)|\nabla u|^2 dx - \frac{1}{2} \int_{\mathbb{R}^N} \mu |x|^2 u^2 dx + 1 \int_{\mathbb{R}^N} V(x) u^2 dx - \int_{\mathbb{R}^N} F(x, u)dx.
\]
It is well known that \(I\) is not well defined in \(E\). To overcome this difficulty, we make the change of variables by \(v = h^{-1}(u)\), where \(h\) is defined by
\[
h'(t) = \frac{1}{\sqrt{1 + 2|h(t)|^2}} \quad \text{on } [0, \infty),
\]
and
\[
h(-t) = -h(t) \quad \text{on } (-\infty, 0].
\]
Therefore, after the change of variables, from \(I(u)\) we obtain the following functional
\[
J(v) := I(h(v)) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 dx - \frac{1}{2} \int_{\mathbb{R}^N} \mu |x|^2 h^2(v)dx + 1 \int_{\mathbb{R}^N} V(x) h^2(v)dx - \int_{\mathbb{R}^N} F(x, h(v))dx. \tag{2.4}
\]
It is easy to check that \(J\) is well defined on \(E\). Under our hypotheses, \(J \in C^1(E, \mathbb{R})\) and
\[
\langle J'(v), \phi \rangle = \int_{\mathbb{R}^N} \nabla v \nabla \phi dx - \int_{\mathbb{R}^N} \frac{\mu}{|x|^2} h'(v) \phi dx + \int_{\mathbb{R}^N} V(x) h(v) h'(v) \phi dx - \int_{\mathbb{R}^N} f(x, h(v)) h'(v) \phi dx. \tag{2.5}
\]
for all \(\phi \in E\).

Moreover, the critical points of \(J\) are the weak solutions of the following equation
\[
-\Delta v = \frac{1}{\sqrt{1 + 2|h(v)|^2}} \left(f(x, h(v)) - V(x) h(v) + \frac{\mu}{|x|^2} h(v) \right) \quad \text{in } \mathbb{R}^N. \tag{2.6}
\]
We also observe that if \(v\) is a critical point of the functional \(J\), then \(u = h(v)\) is a critical point of the functional \(I\), i.e. \(u = h(v)\) is a solution of (1.1).

Now, let us recall some properties of the change of variables \(h : \mathbb{R} \rightarrow \mathbb{R}\).

Lemma 2.4. (see [24]) The function \(h(t)\) and its derivative satisfy the following properties

\((h_1)\) \(h\) is uniquely defined, \(C^\infty\) and invertible;
\((h_2)\) \(|h'(t)| \leq 1 \text{ for all } t \in \mathbb{R};\)
\((h_3)\) \(|h(t)| \leq |t| \text{ for all } t \in \mathbb{R};\)
\((h_4)\) \(\frac{h(t)}{t} \to 1 \text{ as } t \to 0;\)
\((h_5)\) \(\frac{h(t)}{\sqrt{t}} \to 2^{\frac{1}{2}} \text{ as } t \to \infty;\)
\((h_6)\) \(\frac{h(t)}{2} \leq th'(t) \leq h(t) \text{ for all } t > 0;\)
\((h_7)\) \(\frac{h^2(t)}{2} \leq th(t)h'(t) \leq h^2(t) \text{ for all } t \in \mathbb{R};\)
\((h_8)\) \(|h(t)| \leq 2^{\frac{1}{2}}|t|^{\frac{1}{2}} \text{ for all } t \in \mathbb{R};\)
\((h_9)\) there exists a positive constant \(C\) such that
\[|h(t)| \geq \begin{cases} C|t|, & |t| \leq 1 \\ C|t|^2, & |t| \geq 1; \end{cases}\]
\((h_{10})\) for each \(\alpha > 0\), there exists a positive constant \(C(\alpha)\) such that
\[|h(\alpha t)|^2 \leq C(\alpha)|h(t)|^2;\]
\((h_{11})\) \(|h(t)h'(t)| \leq \frac{1}{\sqrt{2}}.\)

For convenience of our proof, we give the following basic and important definition.

Definition 2.5 (see [36]). Assume that \(J \in C^1(E, \mathbb{R})\), sequence \(\{u_n\} \subset E\) is called \((C)_c\) sequence if
\[J(u_n) \to c \text{ and } (1 + \|u_n\|)J'(u_n) \to 0.\]

If any \((C)_c\) sequence has a convergent subsequence, we say \(J\) satisfies Cerami condition at level \(c\).

Lemma 2.6. Assume that \((V_1), (V_2), (F_0)-(F_2)\) hold, then any \((C)_c\)-sequence of \(J\) is bounded in \(E\) for each \(c \in \mathbb{R}\).

Proof. Let \(\{v_n\} \subset E\) be a \((C)_c\)-sequence of \(J\), we have
\[J(v_n) \to c, \quad (1 + \|v_n\|)J'(v_n) \to 0 \quad \text{as } n \to \infty. \quad (2.7)\]

Then, there is a constant \(C_4 > 0\) such that
\[J(v_n) - \frac{1}{4} \langle J'(v_n), v_n \rangle \leq C_4. \quad (2.8)\]

Let
\[\|v_n\|_h := \int_{\mathbb{R}^N} \left(|\nabla v_n|^2 - \frac{\mu}{|x|^2} h^2(v_n) + V(x)h^2(v_n) \right) dx.\]

First, we prove that there exists \(C_5 > 0\) such that
\[\|v_n\|_h^2 \leq C_5. \quad (2.9)\]
On the contrary, we suppose that
\[\|v_n\|^2 \rightarrow \infty. \]
Taking \(\tilde{h}(v_n) = \frac{h(v_n)}{\|v_n\|^2_h} \), then \(\|\tilde{h}(v_n)\| \leq 1. \) Passing to a subsequence, we assume that
\[\tilde{h}(v_n) \rightharpoonup \nu \quad \text{in} \ E, \]
\[\tilde{h}(v_n) \rightarrow \nu \quad \text{in} \ L^r(\mathbb{R}^N), \ 2 \leq r < 2^*, \]
and
\[\tilde{h}(v_n) \rightarrow \nu \quad \text{a.e. on} \ \mathbb{R}^N. \]

From (2.4) and (2.7), we have
\[\lim_{|n| \rightarrow \infty} \int_{\mathbb{R}^N} \frac{|F(x,h(v_n))|}{\|v_n\|^2_h} \, dx = \frac{1}{2}. \quad (2.10) \]

On the other hand, set \(\xi_n = \frac{h(v_n)}{\|v_n\|^2_h} \), then there exists \(C_6 > 0 \) such that \(\|\xi_n\| \leq C_6 \|v_n\| \). Since \(\{v_n\} \) is a \((C)\) sequence of \(J \), by (2.8) we have
\[C_6 \geq J(v_n) - \frac{1}{4} \langle J'(v_n), \xi_n \rangle
= \frac{1}{4} \int_{\mathbb{R}^N} \left(\left| \nabla h(v_n) \right|^2 - \frac{H}{|x|^2} h^2(v_n) + V(x) h^2(v_n) \right) \, dx
+ \int_{\mathbb{R}^N} \left(\frac{1}{4} f(x,h(v_n)) h(v_n) - F(x,h(v_n)) \right) \, dx
\geq \int_{\mathbb{R}^N} \bar{F}(x,h(v_n)) \, dx. \quad (2.11) \]

Take \(l(a) = \inf \{ \bar{F}(x,h(v_n)) \mid x \in \mathbb{R}^N, |h(v_n)| \geq a \} \), for \(a \geq 0 \). By (1.5), we have \(l(a) \rightarrow \infty \) as \(a \rightarrow \infty \). For \(0 \leq b_1 < b_2 \), let
\[B_n(b_1,b_2) = \{ x \in \mathbb{R}^N : b_1 \leq |h(v_n(x))| < b_2 \}. \]

Combining with (2.11) that
\[C_6 \geq \int_{B_n(0,a)} \bar{F}(x,h(v_n)) \, dx + \int_{B_n(a,\infty)} \bar{F}(x,h(v_n)) \, dx
\geq \int_{B_n(0,a)} \bar{F}(x,h(v_n)) \, dx + l(a) \text{meas} \{ B_n(a,\infty) \}, \]
from this we get \(\text{meas} \{ B_n(a,\infty) \} \rightarrow 0 \) as \(a \rightarrow \infty \) uniformly in \(n \). Hence, for \(r \in [2,2^*) \) and
\(h_{11} \), there exist \(C, C_7 > 0 \) such that

\[
\int_{B_n(a, \infty)} |F(x, h(v_n))| |\tilde{h}(v_n)|^2 \, dx \\
\leq \left(\int_{B_n(a, \infty)} |\tilde{h}^{22*}(v_n)| \, dx \right)^{\frac{\sigma}{\sigma'}} \left(\int_{B_n(a, \infty)} |h(v_n)|^2 \, dx \right)^{\frac{\sigma'}{2}} \left(\int_{B_n(a, \infty)} |\tilde{h}(v_n)|^{2\tau'} \, dx \right)^{\frac{\tau'}{2}}
\]

\[
\leq C \left(\int_{B_n(a, \infty)} |\tilde{h}(v_n)|^{2\tau'} \, dx \right)^{\frac{\tau'}{2}} \left(\int_{B_n(a, \infty)} |h(v_n)|^2 \, dx \right)^{\frac{\tau'}{2}} \left(\int_{B_n(a, \infty)} |\tilde{h}(v_n)|^2 \, dx \right)^{\frac{\tau}{2}}
\]

as \(a \to \infty \) uniformly in \(n \).

If \(\nu = 0 \), then \(\tilde{h}(v_n) \to 0 \) in \(L^r(\mathbb{R}^N), 2 \leq r < 2^* \). For any \(0 < \varepsilon < \frac{1}{8} \), there exist \(a_1, L \) large enough, such that

\[
\int_{B_n(0,a_1)} \frac{|F(x, h(v_n))|}{|\tilde{h}(v_n)|^2} |\tilde{h}(v_n)|^2 \, dx \\
\leq (c_1 + c_2 a_1^{p-2}) \int_{B_n(0,a_1)} |\tilde{h}(v_n)|^2 \, dx
\]

\[
\leq (c_1 + c_2 a_1^{p-2}) \int_{\mathbb{R}^N} |\tilde{h}(v_n)|^2 \, dx < \varepsilon,
\]

for \(n > L \). Set \(\tau' = \frac{\sigma}{\sigma' - \tau} \), since \(\sigma \in \left(\max\{1, \frac{2N}{N+2}\}, 2 \right) \), then \(2\tau' \in (2, 22^*) \). Thus, by (F2) and (2.12) we have

\[
\int_{B_n(a_1, \infty)} \frac{|F(x, h(v_n))|}{|\tilde{h}(v_n)|^2} |\tilde{h}(v_n)|^2 \, dx
\]

\[
\leq \left(\int_{B_n(a_1, \infty)} \left(\frac{|F(x, h(v_n))|}{|\tilde{h}(v_n)|^2} \right)^\sigma \, dx \right)^{\frac{\sigma}{\sigma'}} \left(\int_{B_n(a_1, \infty)} |\tilde{h}(v_n)|^{2\tau'} \, dx \right)^{\frac{\tau'}{2}}
\]

\[
\leq C_8 \left(\int_{B_n(a_1, \infty)} |\tilde{h}(v_n)|^{2\tau'} \, dx \right)^{\frac{\tau'}{2}} \left(\int_{B_n(a_1, \infty)} |h(v_n)|^2 \, dx \right)^{\frac{\tau'}{2}}
\]

\[
< \varepsilon.
\]

From (2.13) and (2.14), we can get

\[
\int_{\mathbb{R}^N} \frac{|F(x, h(v_n))|}{|v_n|_{L^2}^2} \, dx = \int_{B_n(0,a_1)} \frac{|F(x, h(v_n))|}{|\tilde{h}(v_n)|^2} |\tilde{h}(v_n)|^2 \, dx + \int_{B_n(a_1, \infty)} \frac{|F(x, h(v_n))|}{|\tilde{h}(v_n)|^2} |\tilde{h}(v_n)|^2 \, dx
\]

\[
< 2\varepsilon < \frac{1}{4},
\]

for \(n > L \), which contradicts (2.10).
If \(\nu \neq 0 \), then \(\text{meas}\{B\} > 0 \), where \(B = \{x \in \mathbb{R}^N : \nu \neq 0\} \). For \(x \in B \), we have \(|h(v_n)| \to \infty \) as \(n \to \infty \). Hence \(B \subset B_n(a_0, \infty) \) for \(n \in \mathbb{N} \) large enough, where \(a_0 \) is given in \((F_1)\). By \((F_1)\), we have
\[
\frac{F(x, h(v_n))}{|h(v_n)|^4} \to \infty \quad \text{as} \quad n \to \infty.
\]

Using Fatou’s Lemma, then
\[
\int_B \frac{F(x, h(v_n))}{|h(v_n)|^4} \, dx \to \infty \quad \text{as} \quad n \to \infty.
\]

We see from \((2.7)\) and \((2.15)\)
\[
0 = \lim_{n \to \infty} \frac{c + o(1)}{\|v_n\|_h^2} = \lim_{n \to \infty} \frac{I(v_n)}{\|v_n\|_h^2} = \lim_{n \to \infty} \frac{1}{\|v_n\|_h^2} \left(\frac{1}{2} \int_{\mathbb{R}^N} \left| \nabla v_n \right|^2 - \frac{H}{|x|^2} h^2(v_n) + V(x) h^2(v_n) \right) \, dx - \int_{\mathbb{R}^N} F(x, h(v_n)) \, dx
\]
\[
= \lim_{n \to \infty} \left(\frac{1}{2} - \int_{B_n(0,a_n)} \frac{F(x, h(v_n))}{|h(v_n)|^2} \, dx - \int_{B_n(a_0,\infty)} \frac{F(x, h(v_n))}{|h(v_n)|^2} \, dx \right)
\]
\[
\leq \frac{1}{2} \left(\limsup_{n \to \infty} \left(c_1 + c_2 a_0^{-2} \right) \int_{\mathbb{R}^N} |\tilde{h}(v_n)|^2 \, dx \right) - \int_{B_n(a_0,\infty)} \frac{F(x, h(v_n))}{|h(v_n)|^2} \, dx
\]
\[
\leq C_0 - \liminf_{n \to \infty} \int_B \frac{F(x, h(v_n))}{|h(v_n)|^4} |h(v_n)| \tilde{h}(v_n) \, dx
\]
\[
= -\infty,
\]
which is a contradiction. Hence, \((2.9)\) holds.

In order to prove that \(\{v_n\} \) is bounded, we only need to show that there is \(C_{10} > 0 \) such that
\[
\|v_n\|_h^2 \geq C_{10} \|v_n\|^2.
\]

Arguing indirectly, for a subsequence, we assume \(\frac{\|v_n\|_h^2}{\|v_n\|^2} \to 0 \), where \(v_n \neq 0 \) (if not, the result is obvious). Take \(\tilde{\xi}_{n,1} = \frac{v_n}{\|v_n\|^2}, \eta_{n,1} = \frac{h^2(v_n)}{\|v_n\|^2} \), then
\[
\int_{\mathbb{R}^N} \left(\left| \nabla \tilde{\xi}_{n,1} \right|^2 - \frac{H}{|x|^2} \eta_{n,1}(x) + V(x) \eta_{n,1}(x) \right) \, dx \to 0.
\]

It follows from \((h_3)\) that
\[
\int_{\mathbb{R}^N} \left(\left| \nabla \tilde{\xi}_{n,1} \right|^2 - \frac{H}{|x|^2} \eta_{n,1}(x) + V(x) \eta_{n,1}(x) \right) \, dx
\]
\[
= \int_{\mathbb{R}^N} \left(\left| \nabla \tilde{\xi}_{n,1} \right|^2 - \frac{H}{|x|^2} \frac{h^2(v_n)}{\|v_n\|^2} + V(x) \eta_{n,1}(x) \right) \, dx
\]
\[
\geq \int_{\mathbb{R}^N} \left(\left| \nabla \tilde{\xi}_{n,1} \right|^2 - \frac{H}{|x|^2} \frac{v_n^2}{\|v_n\|^2} + V(x) \eta_{n,1}(x) \right) \, dx
\]
\[
= \int_{\mathbb{R}^N} \left(\left| \nabla \tilde{\xi}_{n,1} \right|^2 - \frac{H}{|x|^2} v_n^2 + V(x) \eta_{n,1}(x) \right) \, dx
\]
\[
\geq 0.
\]
Combining (2.1), (2.17) and (2.18), we
\[
\int_{\mathbb{R}^N} \left(|\nabla \xi_{n,1}|^2 - \frac{\mu}{|x|^2} \xi_{n,1}^2 + V(x)\eta_{n,1}(x) \right) dx \to 0.
\]
Hence
\[
\int_{\mathbb{R}^N} \left(|\nabla \xi_{n,1}|^2 - \frac{\mu}{|x|^2} \xi_{n,1}^2 \right) dx \to 0, \quad \int_{\mathbb{R}^N} V(x)\eta_{n,1}(x) dx \to 0 \quad \text{and} \quad \int_{\mathbb{R}^N} V(x)\xi_{n,1}^2 dx \to 1.
\]
Similar to the idea of [37], let \(B_n = \{ x \in \mathbb{R}^N : |v_n(x)| \geq C_{11} \} \), where \(C_{11} > 0 \) is independent of \(n \). We suppose that for \(\varepsilon > 0 \), \(\text{meas}\{B_n\} < \varepsilon \). If not, there exists \(\varepsilon' > 0 \) and \(\{v_{n_i}\} \subset \{v_n\} \) such that
\[
\text{meas}\{x \in \mathbb{R}^N : |v_{n_i}(x)| \geq i\} \geq \varepsilon',
\]
where \(i > 0 \) is a integer. Set \(B_{n_i} = \{ x \in \mathbb{R}^N : |v_{n_i}(x)| \geq i\} \). From (2.1), \((h_3)\) and \((h_9)\) we have
\[
\|v_{n_i}\|^2_{B_{n_i}} = \int_{\mathbb{R}^N} \left(|\nabla v_{n_i}|^2 - \frac{\mu}{|x|^2} h^2(v_{n_i}) + V(x)h^2(v_{n_i}) \right) dx \\
\geq \int_{\mathbb{R}^N} \left(|\nabla v_{n_i}|^2 - \frac{\mu}{|x|^2} \xi_{n_i}^2 + V(x)h^2(v_{n_i}) \right) dx \\
> \int_{\mathbb{R}^N} V(x)h^2(v_{n_i}) dx \\
> C_i\varepsilon' \to \infty.
\]
as \(i \to \infty \), which is a contradiction. For constants \(C_{12}, C_{13} > 0 \), it follows \(|v_n(x)| \leq C_{12}, (h_9) \) and \((h_{10})\) that
\[
\frac{C}{C_{12}}v_n^2 \leq h^2 \left(\frac{1}{C_{12}}v_n \right) \leq C_{13}h^2(v_n).
\]
Hence
\[
\int_{\mathbb{R}^N \setminus B_n} V(x)\xi_{n,1}^2 dx \leq C_{14} \int_{\mathbb{R}^N \setminus B_n} V(x) h^2(V_n) \frac{1}{\|v_n\|} dx \\
\leq C_{14} \int_{\mathbb{R}^N} V(x)\eta_{n,1}(x) dx \to 0,
\]
where \(C_{14} > 0 \) is a constant. For another, by absolute continuity of integral, there exists \(\varepsilon > 0 \) such that
\[
\int_{B'} V(x)\xi_{n,1}^2 dx \leq \frac{1}{2}.
\]
where \(B' \subset \mathbb{R}^N \) and \(\text{meas}\{B'\} < \varepsilon \). By (2.19) and (2.20), we have
\[
\int_{\mathbb{R}^N} V(x)\xi_{n,1}^2 dx = \int_{\mathbb{R}^N \setminus B_n} V(x)\xi_{n,1}^2 dx + \int_{B_n} V(x)\xi_{n,1}^2 dx \leq \frac{1}{2} + o(1).
\]
We can get a contradiction. Hence (2.16) holds. Combining (2.9) with (2.16), we complete the proof of this lemma. \(\square \)

Lemma 2.7. Assume that \((V_1), (V_2), (F_0)\)–(\(F_2\)) hold, then \(J \) satisfies \((C)_\varepsilon\)-condition.
By a similar fashion as (2.19) and (2.20), we can conclude a contradiction.

Indeed, we may assume \(v_n \neq v \) (otherwise the conclusion is trivial). Set

\[
\xi_{n,2} = \frac{v_n - v}{\|v_n - v\|} \quad \text{and} \quad \eta_{n,2} = \frac{h(v_n)h'(v_n) - h(v)h'(v)}{v_n - v},
\]

we argue by contradiction and assume that

\[
\int_{\mathbb{R}^N} \left(|\nabla \xi_{n,2}|^2 - \frac{\mu}{|x|^2} \eta_{n,2}(x) \xi_{n,2}^2 + V(x) \eta_{n,2}(x) \xi_{n,2}^2 \right) dx \to 0. \tag{2.22}
\]

Since

\[
d \left(\frac{h(t)h'(t)}{h(t)h'(t)} \right) = h(t)h''(t) + (h'(t))^2 = \frac{1}{(1 + 2h^2(t))^2} > 0,
\]

\(h(t)h'(t) \) is strictly increasing and for each \(C_{16} > 0 \), there is \(\delta_1 > 0 \) such that

\[
d \left(\frac{h(t)h'(t)}{h(t)h'(t)} \right) \geq \delta_1,
\]

at \(|t| \leq C_{16}\). From this, we see that \(\eta_{n,2}(x) \) is positive. On the other hand, for \(v_n > v \), there exists \(\theta \in (v, v_n) \) such that

\[
\eta_{n,2} = \frac{h(v_n)h'(v_n) - h(v)h'(v)}{v_n - v} = \frac{d}{dt} \left(h(\theta)h'(\theta) \right) = \frac{1}{(1 + 2h^2(\theta))^2} \leq 1.
\]

Similarly, we can prove the case \(v_n < v \).

Hence,

\[
\eta_{n,2}(x) \leq 1 \quad \text{for all} \ v_n \neq v. \tag{2.23}
\]

It follows from (2.1), (2.22) and (2.23) that

\[
0 \leq \int_{\mathbb{R}^N} \left(|\nabla \xi_{n,2}|^2 - \frac{\mu}{|x|^2} \eta_{n,2}(x) \xi_{n,2}^2 + V(x) \eta_{n,2}(x) \xi_{n,2}^2 \right) dx \\
\leq \int_{\mathbb{R}^N} \left(|\nabla \xi_{n,2}|^2 - \frac{\mu}{|x|^2} \eta_{n,2}(x) \xi_{n,2}^2 + V(x) \eta_{n,2}(x) \xi_{n,2}^2 \right) dx \\
\to 0.
\]

Then, we have

\[
\int_{\mathbb{R}^N} \left(|\nabla \xi_{n,2}|^2 - \frac{\mu}{|x|^2} \xi_{n,2}^2 \right) dx \to 0, \quad \int_{\mathbb{R}^N} V(x) \eta_{n,2}(x) \xi_{n,2}^2 dx \to 0,
\]

and

\[
\int_{\mathbb{R}^N} V(x) \xi_{n,2}^2 dx \to 1.
\]

By a similar fashion as (2.19) and (2.20), we can conclude a contradiction.
On the other hand, by \((h_2), (h_3), (h_8), (h_{11}), (F_0)\) and \((1.5)\), there is \(C_{17} > 0\) such that

\[
\left| \int_{\mathbb{R}^N} (f(x, h(v_n)))h'(v_n) - f(x, h(v))h'(v))(v_n - v)dx \right|
\leq \int_{\mathbb{R}^N} C_{17}(|v_n| + |v_n|^{rac{p-1}{2}} + |v| + |v|^{rac{p-1}{2}})|v_n - v|dx
\leq C_{17}(|v_n|_2 + |v|_2)|v_n - v|_2 + \left(|v_n|_{L^2}^p + |v|_{L^2}^p \right) ||v_n - v||^2_{L^2}
\]

(2.24)

Therefore, by \((2.21)\) and \((2.24)\), we have

\[
o(1) = \langle f'(v_n) - f'(v), v_n - v \rangle
= \int_{\mathbb{R}^N} \left(\langle \nabla (v_n - v), V(x) - \frac{\mu}{|v|^2} \rangle (h(v_n)h'(v_n) - h(v)h'(v))(v_n - v) \right) dx
- \int_{\mathbb{R}^N} (f(x, h(v_n))h'(v_n) - f(x, h(v))h'(v))(v_n - v)dx
\geq C_{15}||v_n - v|| + o(1).
\]

This implies that \(||v_n - v|| \to 0\) as \(n \to \infty\). Thus, the proof is complete.

To prove our main result in this paper, we need the following lemma.

Lemma 2.8 (Symmetric Mountain Pass Theorem [26]). Let \(X\) be an infinite dimensional Banach space, \(X = Y \oplus Z\), where \(Y\) is finite dimensional. If \(\Psi \in C^1(X, \mathbb{R})\) satisfies \((C)_c\)-condition for all \(c > 0\), and

1. \(\Psi(0) = 0, \Psi(-u) = u\) for all \(u \in X\);
2. there exist constants \(\rho, \alpha > 0\) such that \(\Psi|_{\partial B_{\rho}^c} \geq \alpha\);
3. for any finite dimensional subspace \(\tilde{X} \subset X\), there is \(R = R(\tilde{X}) > 0\) such that \(\Psi(u) \leq 0\) on \(\tilde{X} \setminus B_R\);

then \(\Psi\) possesses an unbounded sequence of critical values.

3 Proof of Theorem 1.1

Let \(\{e_i\}\) is a total orthonormal basis of \(E\) and define \(X_i = \mathbb{R}e_i\), then \(E = \bigoplus_{i=1}^{\infty} X_i\). Let

\[Y_j = \bigoplus_{i=1}^{j} X_i, \quad Z_j = \bigoplus_{i=j+1}^{\infty} X_i, \quad j \in \mathbb{Z},\]

then \(E = Y_j \oplus Z_j\) and \(Y_j\) is finite-dimensional. Similar to Lemma 3.8 in [36], we have the following lemma.

Lemma 3.1 ([36]). Under assumptions \((V_1)\) and \((V_2)\), for \(2 \leq r < 2^*\),

\[
\beta_j(r) := \sup_{u \in Z_j, \|u\| = 1} \|u\|_r \to 0, \quad j \to \infty.
\]
Before going further, we need to show that there exists $C_{18} > 0$ such that

$$\int_{\mathbb{R}^N} \left(|\nabla v|^2 - \frac{H}{|x|^2} h^2(v) + V(x) h^2(v) \right) dx \geq C_{18} \|v\|^2, \quad \forall v \in S_\rho, \quad (3.1)$$

where $S_\rho = \{ v \in E : \|v\| = \rho \}$. Indeed, by a similar argument as (2.16), we can get this conclusion. Moreover, by Lemma 3.1, we can choose an integer $\kappa \geq 1$ such that

$$\|v\|^2 \leq \frac{C_{18}}{4C_1} \|\rho\|^2, \quad \|v\|^{\frac{p}{2}} \leq \frac{C_{18}}{4C_2} \|\rho\|^2, \quad \forall v \in Z_\kappa. \quad (3.2)$$

Lemma 3.2. Assume that (V_1), (V_2) and (F_0) hold, then there exist constants ρ, $\alpha > 0$ such that $J_{|S_\rho \cap Z_\kappa} \geq \alpha$.

Proof. For any $v \in Z_\kappa$ with $\|v\| = \rho < 1$, by (h_3), (h_8), (3.1) and (3.2), we have

$$J(v) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla v|^2 - \frac{H}{|x|^2} h^2(v) + V(x) h^2(v) \right) dx - \int_{\mathbb{R}^N} F(x, h(v)) dx$$

$$\geq \frac{C_{18}}{2} \|v\|^2 - \int_{\mathbb{R}^N} (c_1 |h(v)|^2 + c_2 |h(v)|^p) dx$$

$$\geq \frac{C_{18}}{2} \|v\|^2 - \int_{\mathbb{R}^N} (c_1 |v|^2 + c_2 |v|^{\frac{p}{2}}) dx$$

$$\geq \frac{C_{18}}{2} \|v\|^2 - \frac{C_{18}}{4} \|v\|^2 - \frac{C_{18}}{4} \|v\|^{\frac{p}{2}}$$

$$= \frac{C_{18}}{4} \|v\|^2 \left(1 - \|v\|^{\frac{p-2}{2}} \right)$$

$$> 0.$$

since $p \in (4, 22^*)$. This completes the proof. \hfill \Box

Lemma 3.3. Assume that (V_1), (V_2), (F_0) and (F_1) hold, for any finite dimensional subspace $\tilde{E} \subset E$, there is $R = R(\tilde{E}) > 0$ such that

$$J(v) \leq 0, \quad \forall v \in \tilde{E} \setminus B_R.$$

Proof. For any finite dimensional subspace $\tilde{E} \subset E$, there is a positive integral number k such that $\tilde{E} \subset Y_k$. Suppose to the contrary that there is a sequence $\{v_n\} \subset \tilde{E}$ such that $\|v_n\| \to \infty$ and $J(v_n) > 0$. Hence

$$\frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla v_n|^2 - \frac{H}{|x|^2} h^2(v_n) + V(x) h^2(v_n) \right) dx > \int_{\mathbb{R}^N} F(x, h(v_n)) dx. \quad (3.3)$$

Jointly with (h_3), we have

$$\int_{\mathbb{R}^N} F(x, h(v_n)) dx \|v_n\|^2 < \frac{1}{2}. \quad (3.4)$$

Set $\eta_n = \frac{v_n}{\|v_n\|}$. Then up to a subsequence, we can assume that

$$\eta_n \rightharpoonup \eta \quad \text{in } E,$$

$$\eta_n \to \eta \quad \text{in } L^r(\mathbb{R}^N) \quad \text{for } 2 \leq r < 2^*$$

and

$$\eta_n \to \eta \quad \text{a.e. on } \mathbb{R}^N.$$
Set $A_1 = \{ x \in \mathbb{R}^N : \eta(x) \neq 0 \}$ and $A_2 = \{ x \in \mathbb{R}^N : \eta(x) = 0 \}$. If $\text{meas}\{A_1\} > 0$, then by (F_1), (h_5) and Fatou’s Lemma, we have

$$
\int_{A_1} F(x, h(v_n)) \frac{dx}{\|v_n\|^2} = \int_{A_1} \frac{F(x, h(v_n)) h^4(v_n)}{h^4(v_n)} \frac{\eta_n^2}{v_n^2} \eta_n^2 dx \to \infty.
$$

By (F_0) and (F_1), there exists $C_{19} > 0$ such that

$$
F(x, t) \geq -C_{19} t^2, \quad \forall (x, t) \in \mathbb{R}^N \times \mathbb{R}.
$$

Hence

$$
\int_{A_2} F(x, h(v_n)) \frac{dx}{\|v_n\|^2} \geq -C_{19} \int_{A_2} \frac{h^2(v_n)}{\|v_n\|^2} dx \geq -C_{19} \int_{A_2} \eta_n^2 dx.
$$

Since $\eta_n \to \eta$ in $L^2(\mathbb{R}^N)$, it is clear that

$$
\liminf_{n \to \infty} \int_{A_2} \frac{F(x, h(v_n))}{\|v_n\|^2} dx = 0.
$$

Consequently,

$$
\lim_{n \to \infty} \int_{\mathbb{R}^N} \frac{F(x, h(v_n))}{\|v_n\|^2} dx = \infty.
$$

By (3.4) we obtain $\frac{1}{2} > \infty$, a contradiction. This shows $\text{meas}\{A_1\} = 0$ i.e. $\eta(x) = 0$ a.e. on \mathbb{R}^N.

By the equivalency of all norms in \tilde{E}, there exists $C > 0$ such that

$$
\|v\|_2^2 \geq C \|v\|^2, \quad \forall v \in \tilde{E}.
$$

Hence

$$
0 = \lim_{n \to \infty} \|\eta_n\|_2^2 \geq C \lim_{n \to +\infty} \|\eta_n\|^2 = C,
$$

a contradiction. This completes the proof.

Now, we prove our main result.

Proof of Theorem 1.1. Let $\Psi = I$, $X = E$, $Y = Y_\kappa$ and $Z = Z_\kappa$. Obviously, $J(0) = 0$ and (F_3) implies that J is even. By Lemma 2.7, 3.2 and Lemma 3.3, all conditions of Lemma 2.5 are satisfied. Thus, problem (2.6) has infinitely many nontrivial solutions sequence $\{v_n\}$ such that $J(v_n) \to \infty$ as $n \to \infty$. Namely, problem (1.1) also has infinitely many solutions sequence $\{u_n\}$ such that $I(u_n) \to \infty$ as $n \to \infty$.

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (11001274). And the authors are grateful to Prof. Zhouxin Li for the reading of the paper and giving some helpful suggestions.
References

