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Abstract. In this paper we consider the damped half-linear oscillator

x′′|x′|n−1 + c(t)|x′|n−1x′ + a(t)|x|n−1x = 0, n ∈ R+.

We give a sufficient condition guaranteeing the existence of a small solution, that is
a non-trivial solution which tends to 0 as t tends to infinity, in the case when both
damping and elasticity coefficients are step functions. With our main theorem we not
just generalize the corresponding theorem for the linear case n = 1, but we even sharpen
Hatvani’s theorem concerning the undamped half-linear differential equation.
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1 Introduction

Let us consider the second order damped half-linear differential equation

x′′|x′|n−1 + c(t)|x′|n−1x′ + a(t)|x|n−1x = 0, n ∈ R+. (1.1)

The term half-linear reflects to the property that the solution set of equation (1.1) is homoge-
neous but it is not additive. Clearly, equation (1.1) is a generalization of the damped linear
oscillator, since for n = 1 it takes the form

x′′ + c(t)x′ + a(t)x = 0. (1.2)

The qualitative theory for equation (1.1) and for its undamped variant

x′′|x′|n−1 + a(t)|x|n−1x = 0, n ∈ R+ (1.3)
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has an extensive and still growing literature since the foundational works of Bihari [3] and
Elbert [11]. This is due to the fact that many theorems concerning the linear case can be
generalized to the half-linear case (often with a different machinery), furthermore, half-linear
equations have several real life applications as well, see, e.g. monographs [1, 8, 9] and papers
[5, 6, 10, 17, 22, 31, 32, 34], and the references therein.

We shall call a non-trivial solution x0(t) of (1.1) small if

lim
t→∞

x0(t) = 0 (1.4)

holds. Note, that this stability property is equivalent to partial asymptotic stability with
respect to x. For the linear oscillator

x′′ + a(t)x = 0 (1.5)

Milloux [27] was the first to prove, that if a is differentiable, monotonously increasing and
tends to infinity as t → ∞, then it always has at least one small solution. He also gave an
example where the coefficient a was a step function and equation (1.5) had a solution which
was not small. The first theorem to give a sufficient condition on that all solutions of (1.5)
being small, was the celebrated Armellini–Tonelli–Sansone theorem (abbreviated as A–T–S
theorem, see, e.g., [26]). This theorem required the “regular” growth of a, which roughly
means that the growth of a cannot be located to a set with small measure. Obviously, a
step function a is of “irregular” growth type. For the half-linear oscillator (1.3) Atkinson and
Elbert [2] generalized Milloux’s theorem, while Bihari [4] extended the A–T–S theorem.

Hatvani [19] considered equation (1.3) in the case of increasing step function coefficients:

x′′|x′|n−1 + an+1
k |x|n−1x = 0, n ∈ R+, (tk−1 ≤ t < tk, k = 1, 2, . . .), (1.6)

where {tk}∞
k=0, {ak}∞

k=1 are real sequences, and

0 = t0 < t1 < · · · < tk−1 < tk < · · · ; lim
k→∞

tk = ∞,

0 < a1 < a2 < · · · < ak−1 < ak < · · · ; lim
k→∞

ak = ∞.
(1.7)

When we speak about a second order differential equation with step function coefficients we
have to define what we mean by a solution of it: a function is a solution if it is continuously
differentiable on [0, ∞), furthermore, it is twice continuously differentiable and satisfies the
equation on intervals (tk, tk+1) for all k = 0, 1, . . . With the aid of a topological method, Hatvani
proved the following result for equation (1.6).

Theorem 1.1 (Hatvani [19]). Under assumptions (1.7) equation (1.6) has a small solution.

We note here that Hatvani and Székely [22] generalized the A–T–S theorem for equation
(1.6) in the case n ≥ 1 under the previous assumptions.

In [18], Hatvani considered the linear oscillator in the case of not necessarily increasing
step function coefficients:

x′′ + a2
kx = 0 (tk−1 ≤ t < tk, k = 1, 2, . . .), (1.8)

where {tk}∞
k=0, {ak}∞

k=1 are real sequences, and

0 = t0 < t1 < · · · < tk−1 < tk < · · · ; lim
k→∞

tk = ∞,

ak > 0 (k = 1, 2, . . .), lim
k→∞

ak = ∞.
(1.9)

He deduced the theorem below.
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Theorem 1.2 (Hatvani [18]). If

∞

∑
k=1

max
{

ak

ak+1
− 1; 0

}
< ∞, (1.10)

then (1.8) has at least one small solution.

Condition (1.10) says that the sequence {ak}∞
k=1 is “almost” increasing in the sense that the

sum of decrements in the not monotone increasing sections is not too large.
It is quite a natural idea that damping helps weaken this condition and even the condition

limk→∞ ak = ∞.
Let us turn our attention now to the damped linear oscillator

x′′ + ckx′ + a2
kx = 0 (tk−1 ≤ t < tk, k = 1, 2, . . .), (1.11)

where both the elasticity and damping coefficients are step functions. Namely, {tk}∞
k=0,

{ak}∞
k=1 and {ck}∞

k=1 are real sequences with the following properties:

0 = t0 < t1 < · · · < tk−1 < tk < · · · ; lim
k→∞

tk = ∞,

ak > 0, ck ≥ 0 (k = 1, 2, . . .).
(1.12)

Hatvani and Székely proved the following.

Theorem 1.3 (Hatvani and Székely [21,23]). Assume that the above conditions on sequences {tk}∞
k=0,

{ck}∞
k=1 and {ak}∞

k=1 are satisfied, and let us introduce the notation

γk :=
ck

2ak + ck
[(2ak − ck)(tk − tk−1)− 2].

Suppose, in addition, that

(i) ak > ck/2 (k = 1, 2, . . .),

(ii)
∞

∑
k=1

(
−γk + ln

ak

ak+1

)
= −∞,

(iii) there is a number K such that for every p, q ∈N, (1 ≤ p ≤ q)

q

∑
k=p

(
−γk

2
+ ln max

{
ak

ak+1
; 1
})

< K

holds.

Then equation (1.11) has at least one small solution.

Remark 1.4. Theorem 1.3 is a generalization and a further developed version of Theorem 3.2
in [21].

Our main purpose is to generalize Theorem 1.3 to the damped half-linear equation (1.1).
It will turn out, that as a corollary of our main theorem we even generalize Theorem 1.1
concerning the undamped case. In fact, this corollary is also a generalization of Theorem 1.2.

Finally, we mention that many papers were devoted to examine and extend the above
discussed stability problems to several types of equations, we refer the reader to the textbook
of Hartman [16] and papers [7, 12–15, 20, 21, 24, 25, 28, 29, 33].
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2 Prerequisites

2.1 Generalized trigonometric functions

During our calculations we will need the well known generalized sine and cosine functions
which were introduced for half-linear equations by Elbert [11], and play an essential role in
the qualitative analysis of half-linear equations.

Consider the solution S = Sn(Φ) of the initial value problem{
S′′|S′|n−1 + S|S|n−1 = 0

S(0) = 0, S′(0) = 1.
(2.1)

If we multiply the differential equation by S′ and integrate the product over [0, Φ], we obtain
the Pythagorean identity

|S′(Φ)|n+1 + |S(Φ)|n+1 = 1 (−∞ < Φ < ∞). (2.2)

S and S′ are periodic functions with period 2π̂, where π̂ is defined as

π̂ =
2 π

n+1

sin π
n+1

.

Similarly to the “ordinary” tangent function, the generalized tangent function is

T(Φ) =
S(Φ)

S′(Φ)
.

We recall the following identity (see e.g. formulas (2.10) and (2.12) in [2]):

d
dΦ

(
1

n + 1
|S′(Φ)|n−1S′(Φ)S(Φ)

)
= |S′(Φ)|n+1 − n

n + 1
. (2.3)

2.2 Small solutions of systems of non-linear difference equations

The proof of Theorem 1.3 relies on a theorem (see Theorem 2.2 in [21]) which guarantees
the existence of small solutions to systems of linear first order non-autonomous difference
equations. In order to generalize Theorem 1.3 to the half-linear case, we will need a similar
theorem for systems of non-linear first order non-autonomous difference equations as well,
therefore we recall some concepts and Theorem 9 from [23]. We have to note that this theorem
is a consequence of the very general theorem of Karsai, Graef and Li (see Theorem 1 in [25]),
which is based on a Lyapunov function. Instead of that we will use the following theorem,
which relies only on the right hand side of the equation.

Let us consider the system of non-linear difference equations

xk+1 = f(k, xk), k = 0, 1, 2, . . . , (2.4)

where xk ∈ Rm (m ∈ N) is a column vector, and the functions f(k, ·) satisfy the following
conditions for all k ∈N0:

f(k, ·) : Dk ⊂ Rm → Rm, ran f(k, ·) ⊂ Dk+1,

f(k, 0) = 0, f(k, ·) ∈ C1(Dk),
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where Dk is a convex domain (k = 0, 1, . . .). Let q ≥ p (p, q ∈N0), then introduce the notation

F(q, p ; ·) = f(q, ·) ◦ · · · ◦ f(p, ·),

furthermore, let Fj(q, p ; ·) : Dp → R (j = 1, . . . , m) be the jth component function of F(q, p ; ·),
that is

F(q, p ; x) =

F1(q, p ; x)
...

Fm(q, p ; x)

 .

Note that F(k, 0 ; ·) is the flow of equation (2.4). For a function g : Rm → R, grad g(x) denotes
the gradient of g, i.e.

grad g(x) =
(

∂g(x)
∂x1

, . . . ,
∂g(x)
∂xm

)T

.

Clearly, the Jacobian of a function G : Rm → Rm is the m×m matrix

G′(x) =

grad G1(x)
...

grad Gm(x)

 ,

where G1, . . . , Gm are the component functions of G. Let H0 ⊂ D0 be the closure of a bounded
and connected open set, then define Hk as the kth image of H0 among the flow of (2.4), that is
Hk = F(k, 0; H0). The phase volume of Hk can be calculated as

µ(Hk) =
∫

H0

∣∣det F′(k, 0; x)
∣∣ dx, (2.5)

where µ is the Lebesgue measure.

Theorem 2.1 (Hatvani and Székely [23]). Suppose that there exists a closed ball H0 around the
origin and a number K > 0, such that for all p, q ∈N0 (0 ≤ p ≤ q), j = 1, . . . , m and x ∈ H0∥∥grad Fj(q, p ; x)

∥∥ ≤ K (2.6)

holds, furthermore

lim
k→∞

∫
H0

∣∣det F′(k, 0; x)
∣∣ dx = 0. (2.7)

Then equation (2.4) has at least one small solution.

Remark 2.2. If
lim
k→∞

det F′(k, 0; x) = 0 (x ∈ H0) (2.8)

is satisfied, then (2.7) holds.

Remark 2.3. Observe that according to the chain rule,

∣∣det F′(k, 0; x0)
∣∣ = k

∏
i=0

∣∣det f′(i, xi)
∣∣ (x0 ∈ H0). (2.9)
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3 Main result

Let us now consider the damped half-linear differential equation with step function coeffi-
cients

x′′|x′|n−1 + ck|x′|n−1x′ + an+1
k |x|n−1x = 0, n ∈ R+, (tk−1 ≤ t < tk, k = 1, 2, . . .), (3.1)

where {tk}∞
k=0, {ak}∞

k=1 and {ck}∞
k=1 are real sequences, and

0 = t0 < t1 < · · · < tk−1 < tk < · · · ; lim
k→∞

tk = ∞,

ak > 0, ck ≥ 0 (k = 1, 2, . . .)
(3.2)

are satisfied. Note that these conditions are identical to (1.12).
Before we can state our main result, we recall Hadamard’s lemma, which we will need in

the proof of the main theorem.

Lemma 3.1 (Hadamard, see e.g. [30, p. 176]). Let N be an m × m matrix having rows vi
(vi ∈ Rm, 1 ≤ i ≤ m), then

|det N| ≤
m

∏
i=1
‖vi‖ .

Now we are ready to state our main theorem.

Theorem 3.2. Assume that conditions (3.2) on sequences {tk}∞
k=0, {ck}∞

k=1 and {ak}∞
k=1 are satisfied,

and let us introduce the notation

γk :=
ck

ak + ck
[n(ak − ck)(tk − tk−1)− 2]. (3.3)

Suppose, in addition, that

(i) ak > ck (k = 1, 2, . . .),

(ii)
∞

∑
i=1

(
− 2γi

n + 1
+ ln

ai

ai+1

)
= −∞,

(iii) there is a number K such that for every p, q ∈N, (1 ≤ p ≤ q)

q

∑
i=p

(
− γi

n + 1
+ ln max

{
ai

ai+1
; 1
})

< K (3.4)

holds.

Then equation (3.1) has at least one small solution.

Proof. First, let us introduce the notation a(t) := an+1
k (tk−1 ≤ t < tk, k = 1, 2 . . .) and then we

define a new time variable in the following way

τ = ϕ(t) =
∫ t

0
a

1
n+1 (s)ds, τk := ϕ(tk). (3.5)

Note that
τk+1 − τk = ak+1(tk+1 − tk). (3.6)
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Let x(t) = x(ϕ−1(τ)) =: y(τ), where ϕ−1 denotes the inverse function of ϕ. This way, for the
first and second derivative of x we have

x′(t) = ẏ(τ)a
1

n+1 (t), x′′(t) = ÿ(τ)a
2

n+1 (t) (t 6= tk, k = 0, 1, 2, . . .),

where (·)· = d(·)/dτ. Thus, equation (3.1) is transformed into the form

ÿ(τ)|ẏ(τ)|n−1 + h(τ)|ẏ(τ)|n−1ẏ(τ) + |y(τ)|n−1y(τ) = 0,

(τk−1 < τ < τk, k = 1, 2, . . .), (3.7)

where
h(τ) =

ck

ak
(τk−1 < τ < τk, k = 1, 2, . . .). (3.8)

Let us use the notations f (t− 0) and f (t + 0) for the left-hand side and the right-hand side
limit of a function f at t, respectively. Since any solution x of equation (3.1) has to be contin-
uously differentiable on (0, ∞), x′(tk − 0) = x′(tk + 0) = x′(tk) must hold for every k ∈ N,
i.e.,

ẏ(τk) = ẏ(τk + 0) =
ak

ak+1
ẏ(τk − 0).

Then (3.1) is equivalent to the following differential equation with impulses:{
ÿ(τ)|ẏ(τ)|n−1 + h(τ)|ẏ(τ)|n−1ẏ(τ) + |y(τ)|n−1y(τ) = 0, τ 6= τk

ẏ(τk) =
ak

ak+1
ẏ(τk − 0), k = 1, 2, . . .

(3.9)

Let us apply now the so-called generalized Prüfer transformation, that is, let us introduce the
generalized polar coordinates ẏ = ρS′(Φ), y = ρS(Φ), where

ρ = (|ẏ|n+1 + |y|n+1)
1

n+1 , T(Φ) =
y
ẏ

, −∞ < Φ < ∞.

With the aid of these variables we can rewrite equation (3.7) into the system of equations

ρ̇ = −h(τ)ρ|Ṡ(Φ)|n+1,

Φ̇ = 1 + h(τ)|Ṡ(Φ)|n−1Ṡ(Φ)S(Φ), (τk−1 ≤ τ < τk, k = 1, 2, . . .).
(3.10)

Observe that ρ̇(τ) ≤ 0, furthermore, assumption (i) and (3.8) together imply that Φ̇(τ) > 0
holds for all τ ∈ [τk−1, τk) (k = 1, 2, . . .). With the aid of equations (3.8), (2.3), and the Newton–
Leibniz theorem we obtain the following estimation:∫ τk

τk−1

ρ̇(τ)

ρ(τ)
dτ = ln

ρ(τk − 0)
ρ(τk−1)

= − ck

ak

∫ τk

τk−1

|Ṡ(Φ(τ))|n+1 dτ

= − ck

ak

∫ τk

τk−1

|Ṡ(Φ(τ))|n+1Φ̇(τ)

Φ̇(τ)
dτ

= − ck

ak

∫ τk

τk−1

|Ṡ(Φ(τ))|n+1Φ̇(τ)

1 + ck
qk
|Ṡ(Φ(τ))|n−1Ṡ(Φ(τ))S(Φ(τ))

dτ

= − ck

ak

∫ Φ(τk)

Φ(τk−1)

|Ṡ(u)|n+1

1 + ck
ak
|Ṡ(u)|n−1Ṡ(u)S(u)

du

≤ − ck

ak
· 1

1 + ck
ak

∫ Φ(τk)

Φ(τk−1)
|Ṡ(u)|n+1 du
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= − ck

ak + ck

∫ Φ(τk)

Φ(τk−1)

(
n

n + 1
+ |Ṡ(u)|n+1 − n

n + 1

)
du

= − ck

ak + ck

{[
n

n + 1
u +

1
n + 1

|S′(u)|n−1S′(u)S(u)
]Φ(τk)

Φ(τk−1)

}

= − ck

(n + 1)(ak + ck)

[
n(Φ(τk − 0)−Φ(τk−1))

+
(
|S′(Φ(τk − 0))|n−1S′(Φ(τk − 0))S(Φ(τk − 0))

− |S′(Φ(τk−1))|n−1S′(Φ(τk−1))S(Φ(τk−1))
)]

. (3.11)

From the second equation of system (3.10) we get the estimation from below for Φ̇

Φ̇ = 1 +
ck

ak
|Ṡ(Φ)|n−1Ṡ(Φ)S(Φ) ≥ 1− ck

ak
(τk−1 ≤ τ < τk, k = 1, 2, . . .).

By integration over [τk−1, τk] and using (3.6) yields

Φ(τk − 0)−Φ(τk−1) =
∫ τk

τk−1

Φ̇(τ)dτ ≥
(

1− ck

ak

)
(τk − τk−1) = (ak − ck)(tk − tk−1). (3.12)

Now, we are able to continue estimation (3.11)

ln
ρ(τk − 0)
ρ(τk−1)

≤ − ck

(n + 1)(ak + ck)
[n(ak − ck)(tk − tk−1)− 2] = − γk

n + 1
. (3.13)

Next, we are moving towards to apply Theorem 2.1. In order to do this, let f̂(k− 1, ·) be the
non-linear mapping corresponding to system (3.10), that is(

ẏ(tk − 0)
y(tk − 0)

)
= f̂(k− 1, (ẏ(tk−1), y(tk−1))), k = 1, 2, . . .

According to system (3.9) the vector (ẏ(tk), y(tk))
T is(

ẏ(tk)

y(tk)

)
=

(
ak

ak+1
0

0 1

)(
ẏ(tk − 0)
y(tk − 0)

)
= f(k− 1, (ẏ(tk−1), y(tk−1))),

where

f(k− 1, (ẏ(tk−1), y(tk−1))) =

(
ak

ak+1
0

0 1

)
f̂(k− 1, (ẏ(tk−1), y(tk−1))).

Clearly, the stability properties of system (3.9) are equivalent to the stability properties of the
following system of non-linear difference equations(

xk
yk

)
= f(k− 1, (xk−1, yk−1)) (k = 1, 2, . . .). (3.14)

Since ρ is a monotonically decreasing function, it follows that

‖(xk, yk)‖ ≤ ‖(xk−1, yk−1)‖ (k = 1, 2, . . .). (3.15)
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For the coordinate functions of f and f̂ let us introduce the notations

f(k, (x, y)) = ( f 1(k, (x, y)), f 2(k, (x, y))), f̂(k, (x, y)) = ( f̂ 1(k, (x, y)), f̂ 2(k, (x, y))).

With these notations, the Jacobian of f and f̂ are

f′(k, (x, y)) =
(

grad f 1(k, (x, y))
grad f 2(k, (x, y))

)
, f̂′(k, (x, y)) =

(
grad f̂ 1(k, (x, y))
grad f̂ 2(k, (x, y))

)
.

With the aid of estimation (3.13) we can give the following estimate

max
{∥∥∥grad f̂ 1(k− 1, ·)

∥∥∥ ,
∥∥∥grad f̂ 2(k− 1, ·)

∥∥∥} ≤ sup
0<ρ(τk−1)

ρ(τk − 0)
ρ(τk−1)

≤ exp
[
− γk

n + 1

]
, (3.16)

where the supremum is taken over each solution where ρ is positive at time τk−1. It yields that

max
{∥∥∥grad f 1(k− 1, ·)

∥∥∥,
∥∥∥grad f 2(k− 1, ·)

∥∥∥}
≤ max

{∥∥∥grad f̂ 1(k− 1, ·)
∥∥∥ ,
∥∥∥grad f̂ 2(k− 1, ·)

∥∥∥}max
{

ak

ak+1
; 1
}

≤ exp
[
− γk

n + 1

]
max

{
ak

ak+1
; 1
}

= exp
[
− γk

n + 1
+ ln max

{
ak

ak+1
; 1
}]

.

(3.17)

Let
F(q, p; ·) = f(q, ·) ◦ f(q− 1, ·) ◦ · · · ◦ f(p, ·), q ≥ p, p, q ∈N.

Then, according to the chain rule and according to condition (iii) the following holds for all
q ≥ p, p, q ∈N

max
{∥∥∥grad F1(q, p; ·)

∥∥∥ ,
∥∥∥grad F2(q, p; ·)

∥∥∥}
≤

q

∏
i=p

max
{∥∥∥grad f 1(i, ·)

∥∥∥ ,
∥∥∥grad f 2(i, ·)

∥∥∥}
≤

q

∏
i=p

exp
[
− γi

n + 1
+ ln max

{
ai

ai+1
; 1
}]

= exp

[
q

∑
i=p

(
− γi

n + 1
+ ln max

{
ai

ai+1
; 1
})]

< K.

(3.18)

Next, to apply Theorem 2.1 we need to estimate the change of the phase volume during the
dynamics of system (3.14). To do this, first, using Hadamard’s inequality and inequality (3.16)
we estimate the determinant of the Jacobian of f̂(k− 1, ·)∣∣∣det f̂′(k− 1, (x, y))

∣∣∣ ≤ (max
{∥∥∥grad f̂ 1(k− 1, (x, y))

∥∥∥ ,
∥∥∥grad f̂ 2(k− 1, (x, y))

∥∥∥})2

≤ ‖(x, y)‖2
(

max
{∥∥∥grad f̂ 1(k− 1, ·)

∥∥∥ ,
∥∥∥grad f̂ 2(k− 1, ·)

∥∥∥})2

≤ ‖(x, y)‖2 exp
[
− 2γk

n + 1

]
,

(3.19)



10 A. Dénes and L. Székely

which holds for all points (x, y) of the Minkowski plane. Let H0 be the unit circle in the
Minkowski plane and let (x0, y0) ∈ H0. Then, applying again the chain rule and inequalities
(3.15) and (3.16), we get

∣∣det F′(k− 1, 0; (x0, y0))
∣∣ = k

∏
i=1

∣∣det f′(i− 1, (xi−1, yi−1))
∣∣

=
k

∏
i=1

ai

ai+1

∣∣∣det f̂′(i− 1, (xi−1, yi−1))
∣∣∣

≤
k

∏
i=1

ai

ai+1
· ‖(xi−1, yi−1)‖2 exp

[
− 2γi

n + 1

]
=

k

∏
i=1
‖(xi−1, yi−1)‖2 ×

k

∏
i=1

exp
[
− 2γi

n + 1
+ ln

ai

ai+1

]
≤

k

∏
i=1

exp
[
− 2γi

n + 1
+ ln

ai

ai+1

]

= exp

[
k

∑
i=1

(
− 2γi

n + 1
+ ln

ai

ai+1

)]
.

One can easily see that due to condition (ii)

lim
k→∞

∣∣det F′(k, 0; (x0, y0))
∣∣ = 0 ((x0, y0) ∈ H0),

thus with the application of Theorem 2.1 we conclude our proof.

Remark 3.3. With the aid of the examples in Remark 7 in [23] one can easily see that conditions
(ii) and (iii) in Theorem 3.2 are independent of each other.

Remark 3.4. Theorem 3.2 is a direct generalization of Theorem 1.3, the slight differences
between them are due to the fact, that in the proof of the linear case some trigonometric
identities were used, which (to the authors’ best knowledge) do not apply for the half-linear
case. According to Remark 8 in [23] Theorem 3.2 is also a generalization of Theorem 1.2.

In the case without damping, that is ck = 0 (k = 1, 2, . . .), Theorem 3.2 takes the following
form.

Theorem 3.5. Assume that conditions (3.2) are satisfied, furthermore let ck = 0 (k = 1, 2, . . .). If

lim
k→∞

ak = ∞

and there is a number K such that for every p, q ∈N, (1 ≤ p ≤ q)

q

∑
i=p

ln max
{

ai

ai+1
; 1
}

< K

holds. Then equation (3.1) has at least one small solution.

Remark 3.6. Using the inequality x− 1 ≥ ln x one can easily see that the theorem of Hatvani
(Theorem 1.1) implies Theorem 3.5.
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