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Abstract. We prove a null controllability result for a parabolic Dirichlet problem with
non smooth coefficients in presence of strongly singular potentials and a coefficient
degenerating at an interior point. We cover the case of weights falling out the class of
Muckenhoupt functions, so that no Hardy-type inequality is available; for instance, we
can consider Coulomb-type potentials. However, through a cut-off function method,
we recover the desired controllability result.
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1 Introduction

This paper deals with null controllability for a class of degenerate and singular parabolic
Dirichlet problems with interior degeneracy and singularity, whose prototype is

ut − (|x− x0|ux)x −
λ

|x− x0|
u = f χω, (t, x) ∈ QT := (0, T)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x) ∈ L2(0, 1), x ∈ (0, 1).

(1.1)

Here x0 ∈ (0, 1), f ∈ L2(0, 1) denotes the control function, located in an open set ω compactly
contained in (0, 1) and λ is a real parameter.

Of course, we shall consider more general operators of the form

ut − (a(x)ux)x −
λ

b(x)
u, (1.2)
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where functions a and b, possibly non-smooth, degenerate at the same interior point x0 ∈ (0, 1).
The fact that both a and b degenerate at x0 is the most complicated situation, since, if they
degenerate at different points, we can split the problem in a degenerate one and a singular
one, so that known results apply separately.

Related problems have been studied before in [17], but not the case under consideration.
Indeed, let us recall the following possibilities for degenerating functions or singular poten-
tials:

• a ∈W1,1(0, 1) is said to be weakly degenerate, WD for short, if there exists x0 ∈ (0, 1) such
that a(x0) = 0, a > 0 on [0, 1] \ {x0} and there exists Ka ∈ (0, 1) such that (x− x0)a′ ≤ Kaa
a.e. in [0, 1];

• a ∈W1,∞(0, 1) is said to be strongly degenerate, SD for short, if there exists x0 ∈ (0, 1) such
that a(x0) = 0, a > 0 on [0, 1] \ {x0} and there exists Ka ∈ [1, 2) such that (x− x0)a′ ≤ Kaa
a.e. in [0, 1].

Typical examples for the previous degeneracies are a(x) = |x − x0|Ka with 0 < Ka < 2.
The restriction Ka < 2 is related to controllability and existence issues. In particular, if a(x) =
|x − x0|Ka , Ka ≥ 2 and λ = 0, by a standard change of variables (see [16]), the problem
associated to the equation

ut − (a(x)ux)x = f (t, x)χω(x), (t, x) ∈ QT,

is transformed in a non degenerate heat equation on an unbounded domain, while the control
may remain distributed in a bounded domain: in this situation the lack of null controllability
was already proved by Micu and Zuazua in [19]. Moreover, when Ka > 2, no characterization
of the domain of the operator is available due to the strong degeneracy of a, and so some
integrations by parts cannot be done, see for instance [8] or [18]. For this reasons, from now
on, we will only consider coefficients Ka, Kb < 2.

This paper is in some sense a completion of the previous works [14] and [17], where
we considered well-posedness and null controllability for the following problem via suitable
Hardy–Poincaré inequalities and Carleman estimates:

ut −Au = f (t, x)χω(x), (t, x) ∈ QT,

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x) ∈ X, x ∈ (0, 1).

(1.3)

Here
Au := (aux)x + λ

u
b

or Au := auxx + λ
u
b

,

X is a suitable Hilbert space and f ∈ L2(0, T; X). In both papers a key assumption was
that Ka + Kb ≤ 2, and the case Ka = Kb = 1 was treated only in the non divergence case
in [14] under additional assumptions (see below). Hence, the general situation for strongly
degenerate a and b was completely open. For this reason, in this paper we complete the
description of the evolution system

ut − (a(x)ux)x −
λ

b(x)
u = f (t, x)χω(x), (t, x) ∈ QT,

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x), x ∈ (0, 1)

(1.4)
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when Ka, Kb ≥ 1. In particular, we aim at showing null controllability results for (1.4), that
is: for every u0 ∈ L2(0, 1) there exists f ∈ L2(QT) such that the solution u of (1.4) satisfies
u(T, x) = 0 for every x ∈ [0, 1] and ‖ f ‖2

L2(QT)
≤ C‖u0‖2

L2(0,1) for some universal positive
constant C.

The originality of this paper is that in the previous papers the controllability issue was a
consequence of Carleman and observability inequalities. However, the last inequalities were
obtained by the Hardy–Poincaré type inequality with interior degeneracy∫ 1

0

u2

b
dx ≤ C

∫ 1

0
a(u′)2dx, (1.5)

which was obtained as a corollary of the inequality

(1− α)2

4

∫ 1

0

u2

|x− x0|2−α
dx ≤

∫ 1

0
|x− x0|α(u′)2dx, (1.6)

valid for every u ∈ H1
|x−x0|α,|x−x0|2−α(0, 1) (see below for the definition of this space) and for

every α ∈ R.
It is clear that inequality (1.6) above fails to be interesting for α = 1, in agreement with

the celebrated characterization of Muckenhoupt [20]. For this reason, in order to obtain the
controllability result, we cannot follow the approach used so far and we need a completely
different one. Indeed, we will prove the null controllability result, also when Ka = Kb = 1,
only using cut-off functions. This technique can be applied also to the non divergence case
generalizing the result given in [14].

We conclude this introduction recalling that null controllability for problems like (1.4) has
been a mainstream in recent years, especially when λ = 0 (we recall, for example, [1], [2–4],
[5–8], [13], [15], [16], [18] and [10] for the nonlinear case). If λ 6= 0, the first results in this
direction are obtained in [22] for the non degenerate heat operator with singular potential

ut − uxx − λ
1

xKb
u, (t, x) ∈ QT, (1.7)

and Dirichlet boundary conditions. In particular, in [22], Carleman estimates (and conse-
quently null controllability properties) are established for (1.7) when λ ≤ 1/4. On the con-
trary, if λ > 1/4, in [9] it is proved that null controllability fails.

To our best knowledge, the first paper coupling a degenerate diffusion coefficient and a
singular potential is [21]. In particular, the author establishes Carleman estimates (and thus
null controllability results) for the operator

ut − (xKa ux)x − λ
1

xKb
u, (t, x) ∈ QT,

under suitable conditions on λ and assuming Ka + Kb ≤ 2, but excluding Ka = Kb = 1. In
this way, she combines the results of [8] and [22] for the purely degenerate operator and the
purely singular one, respectively. Her result is then extended in [11] and in [12] for operators
of the form

ut − (a(x)ux)x − λ
1

xKb
u, (t, x) ∈ QT, (1.8)

where a(x) ∼ xKa .
However, all the previously cited papers deal with a degenerate/singular operator with

degeneracy or singularity at the boundary of the domain.
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To our best knowledge, [3], [4], [15], [16] and [18] are the first papers where purely degen-
erate operators are treated from the point of view of well-posedness and Carleman estimates
(and, thus, null controllability) when the degeneracy is at an interior point of the space do-
main. In particular, [16] is the first paper that deals with a non smooth degenerate function a.
On the contrary, if λ 6= 0, we refer to [14] and [17] for operators with a degeneracy and a
singularity both occurring in the interior of the domain (we refer to [14] and [17] for other
references on this subject).

A final comment on the notation: by C we shall denote universal positive constants, which
are allowed to vary from line to line.

2 The controllability results

2.1 The divergence case

Let us start introducing the functional setting from [17]. First of all, define the weighted
Hilbert spaces

H1
a (0, 1) :=

{
u ∈W1,1

0 (0, 1) :
√

au′ ∈ L2(0, 1)
}

and

H1
a,b(0, 1) :=

{
u ∈ H1

a (0, 1) :
u√
b
∈ L2(0, 1)

}
,

endowed with the inner products

〈u, v〉H1
a (0,1) :=

∫ 1

0
au′v′dx +

∫ 1

0
uv dx,

and

〈u, v〉H1
a,b(0,1) =

∫ 1

0
au′v′dx +

∫ 1

0
uv dx +

∫ 1

0

uv
b

dx,

respectively. Finally, introduce the Hilbert space

H2
a,b :=

{
u ∈ H1

a (0, 1) : au′ ∈ H1(0, 1) and Au ∈ L2(0, 1)
}

,

where

Au :=
(
au′
)′
+

λ

b
u with D(A) = H2

a,b(0, 1).

We assume:
(H): a and b are SD and λ < 0.

As a particular case of [17, Theorem 2.22], we have the following well-posedness result.

Theorem 2.1. Assume (H). Then, for every u0 ∈ L2(0, 1) and f ∈ L2(QT) there exists a unique
solution of problem (1.4). In particular, the operator A : D(A) → L2(0, 1) is non positive and self-
adjoint in L2(0, 1) and it generates an analytic contraction semigroup of angle π/2. Moreover, if
u0 ∈ D(A), then

f ∈W1,1(0, T; L2(0, 1))⇒ u ∈ C1(0, T; L2(0, 1)) ∩ C([0, T]; D(A)),

f ∈ L2(QT)⇒ u ∈ H1(0, T; L2(0, 1)).
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We remark that Theorem 2.1 is based on [17, Proposition 2.18] which holds if λ < 0;
otherwise, i.e. if λ > 0, we had to require the additional condition Ka + Kb ≤ 2 with Ka and
Kb not simultaneously equal to 1 and λ small.

On the control set ω we assume:
(O): either

ω = (α, β) ⊂ (0, 1) is such that x0 ∈ ω, (2.1)

or
ω = ω1 ∪ω2, (2.2)

where
ωi = (αi, βi) ⊂ (0, 1), i = 1, 2, and β1 < x0 < α2.

The main result is the following.

Theorem 2.2. Assume (H) and (O). Then, given u0 ∈ L2(0, 1), there exists f ∈ L2(QT) such that
the solution u of (1.4) satisfies

u(T, x) = 0 for every x ∈ [0, 1].

Moreover, ∫
QT

f 2dxdt ≤ C
∫ 1

0
u2

0dx (2.3)

for some universal positive constant C.

Proof. First, assume (2.1). Consider 0 < r′ < r with (x0 − r, x0 + r) ⊂ ω. Then, given
an initial condition u0 ∈ L2(0, 1), by classical controllability results in the non degenerate
and non singular case, there exist two control functions h1 ∈ L2((0, T) × (0, x0 − r′)) and
h2 ∈ L2((0, T)× (x0 + r′, 1)), such that the corresponding solutions v1 and v2 of the parabolic
problems

ut − (a(x)ux)x −
λ

b(x)
u = h1(t, x)χω∩(α,x0−r)(x), (t, x) ∈ (0, T)× (0, x0 − r′),

u(t, 0) = u(t, x0 − r′) = 0, t ∈ (0, T),

u(0, x) = u0(x), x ∈ (0, x0 − r′),

(2.4)

and 
ut − (a(x)ux)x −

λ

b(x)
u = h2(t, x)χω∩(x0+r,β)(x), (t, x) ∈ (0, T)× (x0 + r′, 1),

u(t, x0 + r′) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x), x ∈ (x0 + r′, 1),

(2.5)

respectively, satisfy v1(T, x) = 0 for all x ∈ (0, x0 − r′) and v2(T, x) = 0 for all x ∈ (x0 + r′, 1)
with ∫ T

0

∫ x0−r′

0
h2

1dxdt ≤ C
∫ T

0

∫ x0−r′

0
u2

0dxdt (2.6)

and ∫ T

0

∫ 1

x0+r′
h2

2dxdt ≤ C
∫ T

0

∫ 1

x0+r′
u2

0dxdt (2.7)
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for some constant C. Now, let u3 be the solution of the problem
ut − (a(x)ux)x −

λ

b(x)
u = 0, (t, x) ∈ (0, T)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x), x ∈ (0, 1).

(2.8)

Denote by u1 and u2, f1 and f2 the trivial extensions of v1 and v2, h1 and h2 in [x0 − r′, 1]
and [0, x0 + r′], respectively. Then take some cut-off functions φi ∈ C∞([0, 1]), i = 0, 1, 2, with

φ1(x) :=

{
0, x ∈ [x0 − r′, 1],

1, x ∈ [0, x0 − r],
φ2(x) :=

{
0, x ∈ [0, x0 + r′],

1, x ∈ [x0 + r, 1],

and φ0 = 1− φ1 − φ2. Finally, take

u(t, x) = φ1(x)u1(t, x) + φ2(x)u2(t, x) +
T − t

T
φ0(x)u3(t, x). (2.9)

Then, u(T, x) = 0 for all x ∈ [0, 1] and u satisfies problem (1.4) in the domain QT with

f = φ1 f1χ(α,x0−r) + φ2 f2χ(x0+r,β) −
1
T

φ0u3 − φ′1au1,x − φ′2au2,x

− φ′0
T − t

T
au3,x −

(
φ′1au1 + φ′2au2 + φ′0

T − t
T

au3

)
x

.

Since a belongs to W1,∞(0, 1), one has that f ∈ L2(QT), as required. Moreover, it is easy to see
that the support of f is contained in ω.

Now, we prove (2.3). To this aim, consider the equation satisfied by v1 and multiply it by
v1. Then, integrating over (0, x0 − r′), we have

1
2

d
dt
‖v1(t)‖2

L2(0,x0−r′) + ‖
√

av1,x(t)‖2
L2(0,x0−r′) − λ

∥∥∥∥ v1√
b

∥∥∥∥2

L2(0,x0−r′)

≤ 1
2
‖v1(t)‖2

L2(0,x0−r′) +
1
2
‖h1‖2

L2(ω∩(α,x0−r)).

Using the fact that λ < 0, we get

d
dt
‖v1(t)‖2

L2(0,x0−r′) ≤
d
dt
‖v1(t)‖2

L2(0,x0−r′) + 2‖
√

av1,x(t)‖2
L2(0,x0−r′)

≤ ‖v1(t)‖2
L2(0,x0−r′) + ‖h1(t, ·)‖2

L2(ω∩(α,x0−r)).

Integrating the previous inequality, we get

‖v1(t)‖2
L2(0,x0−r′) ≤ eT

(
‖u0‖2

L2(0,x0−r′) +
∫ t

0
‖h1(s, ·)‖2

L2(ω∩(α,x0−r))ds
)

for all t ∈ [0, T],

and so
‖v1‖2

L2((0,x0−r′)×[0,T]) ≤ C
(
‖u0‖2

L2(QT)
+ ‖h1‖2

L2((0,x0−r′)×[0,T])

)
. (2.10)

Now, integrating over (0, T) the inequality

d
dt
‖v1(t)‖2

L2(0,x0−r′) + 2‖
√

av1,x(t)‖2
L2(0,x0−r′) ≤ ‖v1(t)‖2

L2(0,x0−r′) + ‖h1(t, ·)‖2
L2(ω∩(α,x0−r)),
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by using (2.10), we immediately find

‖
√

av1,x‖2
L2((0,x0−r′)×[0,T]) ≤ C

(
‖u0‖2

L2(QT)
+ ‖h1‖2

L2((0,x0−r′)×[0,T])

)
(2.11)

for some C > 0.
Now, let us note that, since a ∈W1,∞(0, 1), then

‖(av1)x‖L2((0,x0−r′)×[0,T]) ≤ C
(
‖v1‖L2((0,x0−r′)×[0,T]) + ‖

√
av1,x‖L2((0,x0−r′)×[0,T])

)
.

By using (2.10) and (2.11) in the previous inequality, we get

‖(av1)x‖L2((0,x0−r′)×[0,T]) ≤ C
(
‖u0‖2

L2(QT)
+ ‖h1‖2

L2((0,x0−r′)×[0,T])

)
(2.12)

for some C > 0.
An estimate analogous to (2.12) holds for v2 with h2 replacing h1, and for v3 only in terms

of u0.
In conclusion, by (2.10), (2.11), (2.12), from the very definition of f and by (2.6) and (2.7),

inequality (2.3) follows immediately.

Now, assume (2.2). Take r > 0 such that β1 < x0 − r and x0 + r < α2. As before, given
an initial condition u0 ∈ L2(0, 1), by classical controllability results in the non degenerate
and non singular case, there exist two control functions h4 ∈ L2((0, T) × (0, x0 − r)) and
h5 ∈ L2((0, T)× (x0 + r, 1)), such that the corresponding solutions v4 and v5 of the parabolic
problems

ut − (a(x)ux)x −
λ

b(x)
u = h1(t, x)χ(α1,β1)(x), (t, x) ∈ (0, T)× (0, x0 − r),

u(t, 0) = u(t, x0 − r) = 0, t ∈ (0, T),

u(0, x) = u0(x), x ∈ (0, x0 − r),

(2.13)

and 
ut − (a(x)ux)x −

λ

b(x)
u = h2(t, x)χ(α2,β2)(x), (t, x) ∈ (0, T)× (x0 + r, 1),

u(t, x0 + r) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x), x ∈ (x0 + r, 1),

(2.14)

respectively, satisfy v4(T, x) = 0 for all x ∈ (0, x0 − r) and v5(T, x) = 0 for all x ∈ (x0 + r, 1)
with ∫ T

0

∫ x0−r

0
h2

4dxdt ≤ C
∫ T

0

∫ x0−r

0
u2

0dxdt (2.15)

and ∫ T

0

∫ 1

x0+r
h2

5dxdt ≤ C
∫ T

0

∫ 1

x0+r
u2

0dxdt (2.16)

for some constant C. As before, let u4 and f4, u5 and f5 be the trivial extensions of v4 and h4,
v5 and h5 in [x0 − r, 1] and [0, x0 + r], respectively.

Then, define cut-off functions ϕi ∈ C∞([0, 1]), i = 0, 1, 2, such that

ϕ1(x) :=

{
0, x ∈ [β1, 1],

1, x ∈ [0, α1],
ϕ2(x) :=

{
0, x ∈ [0, α2],

1, x ∈ [β2, 1],



8 G. Fragnelli and D. Mugnai

and ϕ0 = 1− ϕ1 − ϕ2. Finally, set

u(t, x) = ϕ1(x)u4(t, x) + ϕ2(x)u5(t, x) +
T − t

T
ϕ0(x)u3(t, x), (2.17)

where u3 is the solution of (2.8).
As before, u(T, x) = 0 for all x ∈ [0, 1] and u satisfies problem (1.4) in the domain QT with

f = ϕ1 f4χ(α1,β1) + ϕ2 f5χ(α2,β2) −
1
T

ϕ0u3 − ϕ′1au4,x − ϕ′2au5,x

− ϕ′0
T − t

T
au3,x −

(
ϕ′1au4 + ϕ′2au5 + ϕ′0

T − t
T

au3

)
x

.

Again f ∈ L2(QT), as required and the support of f is contained in ω. In order to conclude
we have to prove (2.3) for the control function f , but such an estimate can be proved as above,
and the result is proved.

Remark 2.3. We strongly remark that if a is WD, the previous approach does not work. Indeed,
the function f found in the previous proof is not in L2(QT

)
, since a is only of class W1,1(0, 1).

Remark 2.4. If a is SD and b is WD the technique above, and so the controllability result,
still works provided that there exists a solution of (1.4), for example if λ < 0 or λ > 0 small
enough and Ka + Kb ≤ 2 (see [17, Theorem 2.22]). Thus, we re-obtain the controllability result
in [17].

The importance of Theorem 2.2 is clarified also in the following.

Remark 2.5. The null controllability result in Theorem 2.2 cannot be obtained by results already
known in literature. Indeed, one may think to consider

ut − (a(x)ux)x −
λ

b(x)
u = f (t, x)(t, x)χ(α1β1)(x), (t, x) ∈ (0, T)× (0, x0),

u(t, 0) = u(t, x0) = 0, t ∈ (0, T),

u(0, x) = u0(x)|[0,x0)
,

(2.18)

and 
ut − (a(x)ux)x −

λ

b(x)
u = f (t, x)χ(α2,β2)(x), (t, x) ∈ (0, T)× (x0, 1),

u(t, x0) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x)|(x0,1]
,

(2.19)

and say that u is a solution of (1.4) if and only if the restrictions of u to [0, x0) and to (x0, 1],
are solutions to (2.18) and (2.19), respectively. Thanks to the characterization of the space
H1

a,b(0, 1) (see [17, Lemma 2.11]), if ω satisfies (2.2) and the initial datum is more regular,
this can actually be done. Hence, we have two problems with degeneracy and singularity
at the boundary. However, in this case the only available results are, for instance for (2.18),
when b(x) ∼ xKb ([11] and [12]) or a(x) = xKa , b(x) = xKb ([21]), provided that Ka + Kb ≤ 2,
excluding the case Ka = Kb = 1. Hence, we can not deduce null controllability for (1.4) by
known results. Moreover, if u0 is only of class L2(0, 1), the solution is not sufficiently regular
to verify the additional condition at x0 established in [17, Lemma 2.11], and this procedure
cannot be pursued.
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2.2 The non divergence case

The technique used in the proof of Theorem 2.2 can be applied also for the problem in non
divergence form 

ut − a(x)uxx −
λ

b(x)
u = f (t, x)χω(x), (t, x) ∈ QT,

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),

u(0, x) = u0(x), x ∈ (0, 1).

(2.20)

The null controllability for (2.20) was studied in [14] requiring additional assumptions: for
example, if λ < 0 then one has to ask that (x− x0)b′(x) ≥ 0 in [0, 1]. However, using the tech-
nique used in the proof of Theorem 2.2, in order to prove the global controllability result, one
has to require only the conditions for the existence theorem (see [14, Hypothesis 3.1]). Indeed,
proceeding as in the proof of Theorem 2.2 but with problems written in non divergence form,
the control function f of (2.20) is given by

f = φ1 f1χ(α,x0−r) + φ2 f2χ(x0+r,β) −
1
T

φ0u3 − 2φ′1au1,x − φ′′1 au1 − 2φ′2au2,x

− φ′′2 au2 − φ′0
T − t

T
au3,x − a

T − t
T

(
φ′0u3

)
x ,

if ω satisfies (2.1) or

f = ϕ1 f4χ(α1,β1) + ϕ2 f5χ(α2,β2) −
1
T

ϕ0u3 − 2ϕ′1au4,x − ϕ′′1 au4 − 2φ′2au5,x

− ϕ′′2 au5 − ϕ′0
T − t

T
au3,x − a

T − t
T

(
ϕ′0u3

)
x ,

if ω satisfies (2.2). In every case f belongs to the L2
1
a
(QT) as required (for the definition of the

space see, e.g., [14]). Hence, the next theorem holds.

Theorem 2.6. Assume [14, Hypothesis 3.1] and (O). Then, given u0 ∈ L2
1
a
(0, 1), there exists f ∈

L2
1
a
(QT) such that the solution u of (2.20) satisfies

u(T, x) = 0 for every x ∈ [0, 1].

Moreover ∫
QT

f 2

a
dxdt ≤ C

∫ 1

0

u2
0

a
dx, (2.21)

for some universal positive constant C.

We remark that [14, Hypothesis 3.1] is just an assumption ensuring that problem (2.20) is
well posed. Hence, the previous theorem generalizes the result given in [14] in the sense that
here we prove the controllability result under weaker assumptions. This is due to the fact that
in [14] it is proved via Carleman estimates and observability inequality, while here we use
only cut-off functions.
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