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Abstract. Using purely elementary methods, necessary and sufficient conditions are
given for the existence of T-periodic and 2T-periodic solutions around the upper equi-
librium of the mathematical pendulum when the suspension point is vibrating verti-
cally with asymmetric high frequency. The equation of the motion is of the form

θ̈ − 1
l
(g + a(t)) θ = 0,

where

a(t) :=

{
Ah, if kT ≤ t < kT + Th,
−Ae, if kT + Th ≤ t < (kT + Th) + Te,

(k = 0, 1, . . . );

Ah, Ae, Th, Te are positive constants (Th + Te = T); g and l denote the acceleration of
gravity and the length of the pendulum, respectively. An extended Oscillation Theorem
is given. The exact stability regions for the upper equilibrium are presented.

Keywords: inverted pendulum, asymmetric excitation, periodic step function coeffi-
cient, stabilization, stability regions.
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1 Introduction

Since A. Stephenson discovered [21] that the upper (unstable) equilibrium of the mathematical
pendulum can be stabilized by vibrating of the point of suspension vertically with sufficiently
high frequency many papers (see, e.g., [2, 4, 8, 15–17, 20] and the references therein) have been
devoted to the description of this phenomenon (see also [1, 5, 19]). Investigating the small
oscillation around the upper equilibrium V. I. Arnold [1] and, later, M. Levi and W. Weckesser
[17] estimated the stability zones on the parameter plane. In [6] with László Hatvani, we gave
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a more precise estimate for the stability regions than Levi and Weckesser. It is well known
[1] that the boundary curves of these zones correspond to the equations of motions having
T-periodic and 2T-periodic solutions, where T is the period of the vibration of the suspension
point. In the joint work [7] with Professor László Hatvani, we gave necessary and sufficient
conditions for the parameters in the equation of motions so that the equation have periodic
solutions of 2T or 4T, in that case the suspension point of the pendulum moves vertically by a
symmetric effect. In the present article we investigate the equation of motion of the pendulum
when its suspension point moves under the influence of an asymmetric, T-periodic force and
give necessary and sufficient conditions for the parameters so that the equation of motion have
periodic solutions of T or 2T. Applying these conditions we can give an extended Oscillation
Theorem in the sense that setting special value for each independent parameter, this theorem
corresponds an oscillation theorem of the corresponding equation. The conditions define the
exact stability regions on the parameter space. The conditions and their proofs are based upon
purely elementary methods; we do not use even Floquet’s theory [1, 5, 19].

In Section 2 we set up the model describing the small oscillations of the excited pendulum
around the upper equilibrium. The model is a non-autonomous second order linear differ-
ential equation with a T-periodic step function coefficient. We reduce this equation to an
equivalent dynamical system on the plane. In Section 3 we construct periodic solutions of
period T and 2T to this equivalent system. In Section 4 we give an oscillation theorem and de-
duce stability conclusion, and present the stability regions on the parameter space introduced
in [6].

2 Technical background

It is well-known [1, 5, 19] that motions of the mathematical pendulum are described by the
second order differential equation

ψ̈ +
g
l

sin ψ = 0 (−∞ < ψ < ∞), (2.1)

where the state variable ψ denotes the angle between the rod of the pendulum and the di-
rection downward measured counter-clockwise; g and l are positive constants. The lower
equilibrium position ψ ≡ 0 (mod 0) is stable, and the upper one ψ ≡ π (mod 2π) is un-
stable. We want to stabilize the upper equilibrium position, so introducing the new angle
variable θ = ψ− π and linearizing equation (2.1) we obtain the linear second order differen-
tial equation

θ̈ − g
l

θ = 0,

which describes the small oscillations of the pendulum around the upper equilibrium position
θ ≡ 0 (mod 2π).

Suppose that the suspension point is vibrating vertically with the T-periodic acceleration

a(t) :=

{
Ah, if kT ≤ t < kT + Th,

−Ae, if kT + Th ≤ t < (kT + Th) + Te,
(k = 0, 1, . . . ); (2.2)

Ah, Ae, Th, Te are positive constants (Th + Te = T). If p = p(t) and ṗ denote the displacement
and the velocity in the vibration of the suspension point respectively, and p(0) = 0, ṗ(0) < 0,
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Figure 2.1: Vertically excited inverted pendulum.

then it can be seen that the motion of the point is represented by the function

p(t) :=



1
2

Ah(t− kT)(t− kT − Th) if kT ≤ t < kT + Th,

−1
2

Ae(t− kT − Th)
2

+
1
2

AeTe(t− kT − Th) if kT + Th ≤ t < (k + 1)T,

(k = 0, 1, . . . ), (2.3)

(see Figure 2.1).
The maximum amplitudes of the vibration in the first and second phase within one period

Th + Te = T are expressed by the formulae

Dh =
1
8

AhTh
2, De =

1
8

AeTe
2,

and, presuming the natural condition that the velocity of the point of suspension is continu-
ous, the six parameters of the vibration satisfy the following two assumptions:

Ah

Ae
=

Te

Th
,

Dh

De
=

Th

Te
. (2.4)

Since the suspending rod is rigid, the acceleration of the vibration is continuously added to
the gravity, and the equation of motion of the pendulum is

θ̈ − 1
l
(g + a(t))θ = 0. (2.5)

Every motion of (2.5) has two phases during every period, a hyperbolic and an elliptic one,
that are described by the equations

θ̈ −ω2
hθ = 0 (kT ≤ t < kT + Th) (2.6)

and
θ̈ + ω2

e θ = 0 (kT + Th ≤ t < kT + Th + Te), (2.7)
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Figure 2.2: Hyperbolic and elliptic rotation.

where

ωh :=

√
Ah + g

l
, ωe :=

√
Ae − g

l
, (Ae > g, k ∈N)

denote the hyperbolic and the elliptic frequency of the pendulum, respectively.
A fruitful treatment can be found in [11]. Similar to that, we introduce two different phase

planes for the two different phases of the motions. Starting with the hyperbolic case, we
introduce the new phase variables

xh = θ, yh =
θ̇

ωh
,

in which (2.6) has the following symmetric form:

ẋh = ωhyh, ẏh = ωhxh. (2.8)

Using polar coordinates rh, ϕh and the transformation rules

xh = rh cos ϕh, yh = rh sin ϕh (rh > 0, −∞ < ϕh < ∞),

(2.8) can be rewritten into the system

ṙh = rhωh sin 2ϕh, ϕ̇h = ωh cos 2ϕh. (2.9)

The derivative of Hh(x, y) := x2
h − y2

h with respect to system (2.8) equals identically zero, i.e.,
Hh is a first integral of (2.8), so the trajectories of the system are hyperbolae; (2.9) describes
“hyperbolic rotations” (see Figure 2.2). We will need the solution of the second equation in
(2.9). This equation is separable, so we can write∫ t

0

ϕ̇h(s) ds
cos 2ϕh(s)

= ωht, 0 ≤ t ≤ Th,

and so ∫ ϕh(t)

ϕ0

dϕ

cos 2ϕ
= ωht, ϕ0 := ϕh(0) 6= −

π

4
. (2.10)

Let G(ϕ) :=
∫

dϕ/ cos 2ϕ. Then

G(ϕ) = −1
2

ln
∣∣∣tan

(π

4
− ϕ

)∣∣∣ ,
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whence

G(ϕ) :=


−1

2
ln tan

(π

4
− ϕ

)
if − π/4 < ϕ < π/4,

−1
2

ln tan
(

ϕ− π

4

)
if − 3π/4 < ϕ < −π/4.

(2.11)

From (2.10) we obtain
ϕh(t) = G−1 (ωht + G(ϕ0)) .

Especially,
ϕh(Th − 0) = G−1 (ωhTh + G(ϕ0)) , (2.12)

where ϕh(Th − 0) denotes the left-hand side limit of ϕ at T. Now, we can give the solution of
the second equation of (2.9):

ϕh(t; ϕ0) :=


π

4
− arctan

(
e−2ωht tan

(π

4
− ϕ0

))
if − π/4 < ϕ0 < π/4,

π

4
+ arctan

(
e−2ωht tan

(
ϕ0 −

π

4

))
if − 3π/4 < ϕ0 < −π/4.

(2.13)

Let us repeat the same procedure for the second phase of the period with the new phase
variables xe = θ, ye = θ̇/ωe. Then we get the systems

ẋe = ωeye, ẏe = −ωexe, (2.14)

ṙe = 0, ϕ̇e = −ωe. (2.15)

Now He(x, y) := x2
e + y2

e is a first integral, and the trajectories of (2.14) are circles around the
origin; (2.15) describes uniform “elliptic (ordinary) rotations”.

Equation (2.5) has a piecewise continuous coefficient, so we have to modify the standard
definition of a solution of a continuous second order differential equation. A function θ :
R+ → R is a solution of (2.5) if it is continuously differentiable on R+, it is twice differentiable
on the set

S := R+ \ ({kT}k∈N ∪ {kT − Te}k∈N),

and it satisfies equation (2.5) on the set S. Any solution θ consists of solutions xh : [kT, kT +

Th) → R and xe : [kT + Th, (k + 1)T) → R of (2.8) and (2.14) respectively (k ∈ N). To
guarantee the continuity of θ̇ on R we have to require the “connecting conditions”

xe(kT + Th) = lim
t→kT+Th−0

xh(t),

xh((k + 1)T) = lim
t→(k+1)T−0

xe(t);

ωeye(kT + Th) = lim
t→kT+Th−0

ωhyh(t),

ωhyh((k + 1)T) = lim
t→(k+1)T−0

ωeye(t).

(2.16)

Geometrically this means that when we illustrate the hyperbolic and elliptic phases in a com-
mon coordinate system, then the ends of the continuous parts of dynamics there acts a linear
transformation on the phase point (a contraction or a dilation)

(x, y) 7→ (x, dy) =: (x, ŷ) (0 < d = const., d 6= 1)

in the direction of y-axis. Namely, d = ωh/ωe at t = Th + kT, and d = ωe/ωh at t =

(k + 1)T, k ∈N.
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The steps of dynamics of the system can be described as follows. The phase point starts
from (x0, y0) and moves along a hyperbola during the interval [0, Th). At the moment t = Th
a dilation or a contraction of measure ωh/ωe happens parallel with y-axis. Then the phase
point turns clockwise around the origin by ωeTe. Finally, a contraction/dilation of measure
ωe/ωh happens. These four steps are repeated ad infinitum, see Figure 2.3.

Figure 2.3: The phase space of the inverted pendulum, if ωh > ωe.

Let us consider this system in polar coordinates. Denote by (rR, ϕR), and (rC, ϕC) =

(ρ(r, ϕ; d), φ(ϕ; d)) the image of the point (r, ϕ) at the rotation of a clockwise angle α and the
contraction-dilatation, respectively. Then, obviously, rR(r, ϕ) = r, ϕR(r, ϕ) = ϕ− α; further-
more,

ρ(r, ϕ; d) =
√

x2 + d2y2 = r
√

1 + (d2 − 1) sin2 ϕ = f (ϕ; d)r,

f (ϕ, d) :=
√

1 + (d2 − 1) sin2 ϕ, (d > 0,−∞ < ϕ < ∞).

It is easy to see that tan φ(ϕ; d) = dy/x = d tan ϕ (x 6= 0, i.e., ϕ 6≡ π/2 (mod π)), so

φ(ϕ; d) :=


arctan(d tan ϕ) +

[
ϕ+ π

2
π

]
· π if ϕ 6= (2k + 1)

π

2
,

ϕ if ϕ = (2k + 1)
π

2
, (k ∈ Z),

where [x] denotes the integer part of x ∈ R.

The detailed description of properties of functions f and φ can be found in [10]. During
our calculations we will use from these properties that f is even and φ is odd, furthermore
φ(·+ kπ; d) = φ(·; d) + kπ (k ∈ Z); φ (φ(ϕ; d); 1/d) = ϕ (ϕ ∈ R).
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3 The construction of periodic solutions

Let us start a trajectory t 7→ (r(t), ϕ(t)) from r0, ϕ0 at t0 = 0. For the first five notable points
of the trajectory we introduce the notations q := ωh/ωe,

r0 := r(0), ϕ0 :≡ ϕ(0) (mod 2π), −2π < ϕ0 ≤ 0;
r1 := r(Th − 0), ϕ1 := ϕ(Th − 0);
r2 := r(Th) = f (ϕ1; q) r1, ϕ2 := ϕ(Th) = φ (ϕ1; q) ;
r3 := r(T − 0)(= r2), ϕ3 := ϕ(T − 0);
r4 := r(T) = f (ϕ3; 1/q)r3, ϕ4 := ϕ(T) = φ(ϕ3; 1/q).

(3.1)

If q > 1 then the first jump is a dilation and the next one is a contraction, and so on, however,
in the case q < 1 the first impulsive step is a contraction and the next one is a dilation and so
on. If q = 1 then ωh = ωe and so Ae = Ah + 2g. In this case the phase point does not make
jump: from a hyperbola passes to a circle around the origin, see Figure 3.1.

Figure 3.1: The trajectory if q = 1.

Since systems of (2.6) and (2.7) are linear, it is obvious that if t 7→ (x(t), y(t)) is a solution
of a system then t 7→ (−x(t),−y(t)) is also a solution. So, it is sufficient to consider the half
plane of the right-hand side, namely, when −π/2 5 ϕ0 < π/2.

Definition 3.1. A solution of the equation (2.5) is called T-periodic if the corresponding tra-
jectory t 7→ (r(t), ϕ(t)) satisfies that

r4 = r0, ϕ4 ≡ ϕ0 (mod 2π).

Definition 3.2. A solution of the equation (2.5) is called 2T-periodic but not T-periodic if the
corresponding trajectory t 7→ (r(t), ϕ(t)) satisfies that

r4 = r0, ϕ4 ≡ ϕ0 − π (mod 2π).

Using (3.1) and the Definition 3.1, it can be seen that if a solution is T-periodic, then
r3 = f (ϕ4; q)r4 = f (ϕ0; q)r0.

From equations (2.9) we obtain that every hyperbola satisfies some differential equation

dr
dϕ

= r tan 2ϕ
(
−π

4
+ m

π

2
< ϕ <

π

4
+ m

π

2
, m ∈ {−1, 0, 1}

)
. (3.2)
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(3.2) is separable, so integrating it we have

r
r0

=

√
| cos 2ϕ0|
| cos 2ϕ|

(
−π

4
+ m

π

2
< ϕ0, ϕ <

π

4
+ m

π

2
, m ∈ {−1, 0, 1}

)
. (3.3)

If the solution is T-periodic and r3 = r2, from (3.1), we have

r1

r0
=

√
| cos 2ϕ0|
| cos 2ϕ1|

=
f (ϕ0; q)
f (ϕ1; q)

=

√
1 + (q2 − 1) sin2 ϕ0

1 + (q2 − 1) sin2 ϕ1
. (3.4)

By the use of the function (see Figure 3.2)

h(ϕ) :=
| cos 2ϕ|

1 + (q2 − 1) sin2 ϕ
(3.5)

(3.4) can be expressed by h(ϕ0) = h(ϕ1).

Figure 3.2: The graph of function h; q > 1.

An elementary calculation shows that for every q function h is strictly increasing on the
closed interval [π/4 + mπ/2, π/2 + mπ/2], and strictly decreasing on [mπ/2, π/4 + mπ/2]
(m ∈ Z).

If ϕ0 ∈ [0, π/4] or ϕ0 ∈ [π/4, π/2], then ϕ1 must be found in the same interval. Since h
is strictly monotonous in these intervals, h(ϕ0) = h(ϕ1) cannot be satisfied. So, a T-periodic
solution cannot start from such a ϕ0.

Function h is even and periodic of period π, so if ϕ0 ∈ (−π/4, 0) or ϕ0 ∈ (−π/2,−π/4)
then there exists exactly one ϕ1 ∈ (0, π/4) or ϕ1 ∈ (−3π/4,−π/2) for which h(ϕ0) = h(ϕ1).

Since equation (2.5) is linear, so a solution t 7→ (r(t), ϕ(t)) is 2T-periodic but not T-periodic
if and only if r(T) = r(0), ϕ(T) ≡ ϕ(0)− π (mod 2π). Therefore, the phase point in a 2T-
periodic solutions case can start from same state as in the T-periodic cases.

After these comments we give two lemmas without the proofs about the behaviour of the
trajectories in the cases of T- and 2T-periodic solutions. The exact proofs can be found in [7].

Lemma 3.3. Let ϕ0 ∈ [−π/2, π/2). Then t 7→ (r(t), ϕ(t)) is a trajectory of a T-periodic solution of
(2.5) if and only if either
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(a) −π/4 < ϕ0 < 0 and there is a non-negative integer k such that{
ϕ1 = −ϕ0

ϕ3 = −ϕ2 − 2kπ,
(3.6)

or

(b) −π/2 < ϕ0 < −π/4 and there is a non-negative integer k such that

{
ϕ1 = −ϕ0 − π

ϕ3 = −ϕ2 − π − 2(k + 1)π.
(3.7)

Lemma 3.4. Let ϕ0 ∈ [−π/2, π/2). Then t 7→ (r(t), ϕ(t)) is the trajectory of such a 2T-periodic
solution of (2.5) which is not T-periodic if and only if either

(a) −π/4 < ϕ0 < 0 and there is a non-negative integer k such that{
ϕ1 = −ϕ0

ϕ3 = −ϕ2 − π − 2kπ,
(3.8)

or

(b) −π/2 < ϕ0 < −π/4 and there is a non-negative integer k such that{
ϕ1 = −ϕ0 − π

ϕ3 = −ϕ2 − 2π − 2kπ.
(3.9)

The Figure 3.3 and 3.4 shows an example for the trajectories on the phase plane which trajec-
tories correspond to the T- and 2T-periodic solutions, respectively.

Figure 3.3: Trajectories corresponding to a T-periodic solution.

Now, we can formulate two theorems which yield necessary and sufficient conditions for the
existence of T-periodic and 2T-periodic solutions of (2.5).
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Theorem 3.5. Suppose that q 6= 1. Then there is a solution of (2.5) of period T if and only if there are
positive constants Ah, Ae and Th, Te in (2.2) and a non-negative integer k such that either

2 arctan
(

q
eωhTh − 1
eωhTh + 1

)
+ 2kπ = ωeTe, (3.10)

or

2 arctan
(

q
eωhTh + 1
eωhTh − 1

)
+ (2k + 1)π = ωeTe. (3.11)

Figure 3.4: Trajectories corresponding to a 2T-periodic solution.

Theorem 3.6. Suppose that q 6= 1. Then there is a 2T-periodic solution of (2.5) which is not T-periodic
if and only if there are positive constants Ah, Ae and Th, Te in (2.2) and a non-negative integer k such
that either

2 arctan
(

q
eωhTh − 1
eωhTh + 1

)
+ (2k + 1)π = ωeTe, (3.12)

or

2 arctan
(

q
eωhTh + 1
eωhTh − 1

)
+ 2kπ = ωeTe. (3.13)

Remark 3.7.

1. If q = 1, the corresponding formulae can be obtained from (3.10)–(3.13) by an obvious
modification: ωh = ωe = ω.

2. We prove only Theorem 3.5. The proof of Theorem 3.6 can be given by similar calcula-
tions.

Proof. Necessity. We suppose that θ is a T-periodic solution of equation (2.5), furthermore, case
(a) of Lemma 3.3 is satisfied. Using notations (3.1) and the second equation of (2.15) we obtain

ϕ3 − ϕ2 = −ωeTe. (3.14)

We eliminate ϕ2 and ϕ3 in (3.14) in terms of ϕ0. Since ϕ2 = φ(ϕ1; q) = φ(−ϕ0; q), ϕ3 = φ(ϕ4; q);
furthermore, ϕ3 = −ϕ2 − 2kπ and so by the periodicity ϕ3 = φ(ϕ0; q) − 2kπ we can write
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ϕ3 − ϕ2 = φ(ϕ0; q)− 2kπ − φ(−ϕ0; q) = −ωeTe. Using the parity of φ, (3.14) can be rewritten
as

2φ(ϕ0; q)− 2kπ = −ωeTe. (3.15)

Using (2.12) and (2.13) we obtain

ϕ0 = arctan
e−ωhTh − 1
e−ωhTh + 1

= arctan
1− eωhTh

1 + eωhTh
. (3.16)

Substituting (3.16) into (3.15) we get

2 arctan
(

q
1− eωhTh

1 + eωhTh

)
− 2kπ = −ωeTe. (3.17)

Multiplying (3.17) by (−1) we obtain (3.10).
Now, let us suppose that case (b) of Lemma 3.3 is satisfied. Similar calculations lead to the

equations:
2φ(ϕ0; q) + π − 2(k + 1)π = −ωeTe, (3.18)

and

ϕ0 = arctan
e−ωhTh + 1
e−ωhTh − 1

= arctan
1 + eωhTh

1− eωhTh
(3.19)

which yield (3.11).

Sufficiency. Suppose that (3.10) is satisfied. If

ϕ0 := arctan
1− eωhTh

1 + eωhTh
(3.20)

then the solution of (2.5) is T-periodic. Indeed. From (3.20) we get eωhTh = 1−tan ϕ0
1+tan ϕ0

; further-
more, using also (2.13) we can write

tan
(

π

4
− ϕ1

)
=

1 + tan ϕ0

1− tan ϕ0
= tan

(
π

4
+ ϕ0

)
.

Since ϕ0 ∈ (−π/4, 0) we obtain ϕ1 = −ϕ0. We show that the second equality in (3.6) is also
satisfied. In fact, from (2.9) and (3.10) we obtain

2 arctan
(

q
eωhTh − 1
eωhTh + 1

)
+ 2kπ = −(ϕ3 − ϕ2). (3.21)

From (3.1) and (3.20) we can write

ϕ2 = φ(ϕ1; q) = φ(−ϕ0; q) = − arctan(q tan ϕ0)

= − arctan
(

q
1− eωhTh

1 + eωhTh

)
= arctan

(
q

eωhTh − 1
eωhTh + 1

)
.

Therefore, (3.21) can be rewritten into the form:

2ϕ2 + 2kπ = −ϕ3 + ϕ2,

i.e.,

ϕ3 = −ϕ2 − 2kπ.

So we have proved that (3.6) is satisfied. Lemma 3.3 guaranties that the solution is T-periodic.
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If (3.11) is satisfied, then we define

ϕ0 := − arctan
eωhTh + 1
eωhTh − 1

∈
(
− π

2
,−π

4

)
.

Repeating step by step the previous reasoning we get that (3.7) is satisfied, and the solution
with this ϕ0 is T-periodic.

Parameters ωh, ωe, Th, Te, namely Ah, Ae, Th, Te in (3.10)–(3.13) are not independent, see
(2.4). Let introduce the new, independent parameters:

d :=

√
Ae

Ah
, ε :=

√
De

l
, µ :=

√
g

Ae
. (3.22)

Note that d = 1 characterizes the symmetrically excited pendulum case [7]. Using (3.22) the
equations of Theorem 3.5 and 3.6 can be rewritten into the next form.

Corollary 3.8. There is a solution of (2.5) of period T if and only if there are positive constants d, ε, µ

and a non-negative integer k such that either

2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2 − 1

e2
√

2εd
√

1+d2µ2
+ 1

+ 2kπ = 2
√

2ε
√

1− µ2, (3.23)

or

2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2
+ 1

e2
√

2εd
√

1+d2µ2 − 1

+ (2k + 1)π = 2
√

2ε
√

1− µ2. (3.24)

Corollary 3.9. There is a 2T-periodic solution of (2.5) which is not T-periodic if and only if there are
positive constants d, ε, µ and a non-negative integer k such that either

2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2 − 1

e2
√

2εd
√

1+d2µ2
+ 1

+ (2k + 1)π = 2
√

2ε
√

1− µ2, (3.25)

or

2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2
+ 1

e2
√

2εd
√

1+d2µ2 − 1

+ 2kπ = 2
√

2ε
√

1− µ2. (3.26)

4 An oscillation theorem and its consequences

Equation (2.5) is a special type of Hill’s equation. One of main results about Hill’s equation
is the Oscillation Theorem [18]. The previous corollaries lead us to an oscillation theorem for
(2.5) which, using the parameters ε, µ and d we can formulate as follows.

Theorem 4.1. For every d > 0 and for every 0 < µ < 1 there exist sequences of functions
{εn(µ, d)}∞

n=1, {ε̃n(µ, d)}∞
n=1 such that (2.5) with ε = εn (respectively, ε = ε̃n) has T-periodic (respec-

tively, 2T-periodic) solutions. In addition,

0 < ε1 < ε̃1 < ε̃2 < ε2 < · · · < ε̃n < ε̃n+1 < εn+1 < εn+2 < · · ·

lim
n→∞

εn = ∞, lim
n→∞

ε̃n = ∞.
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Proof. Let us introduce the functions

Fk(ε, µ, d) := 2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2 − 1

e2
√

2εd
√

1+d2µ2
+ 1

+ 2kπ,

G̃k(ε, µ, d) := 2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2
+ 1

e2
√

2εd
√

1+d2µ2 − 1

+ 2kπ,

F̃k(ε, µ, d) := 2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2 − 1

e2
√

2εd
√

1+d2µ2
+ 1

+ π + 2kπ,

Gk(ε, µ, d) := 2 arctan

1
d

√
1 + d2µ2

1− µ2
e2
√

2εd
√

1+d2µ2
+ 1

e2
√

2εd
√

1+d2µ2 − 1

+ π + 2kπ,

H(ε, µ) := 2
√

2ε
√

1− µ2, k ∈N.

(4.1)

Let us consider d > 0 as parameter in formulae (4.1), then, we can visualize the graphs of
these functions, see Figure 4.2. Since

∂Fk/∂ε > 0, ∂F̃k/∂ε > 0, ∂Gk/∂ε < 0, ∂G̃k/∂ε < 0 (k ∈N)

and
∂2Fk/∂ε2 < 0, ∂2F̃k/∂ε2 < 0, ∂2Gk/∂ε2 > 0, ∂2G̃k/∂ε2 > 0 (k ∈N),

so the intersection curve of surface z = Fk(ε, µ) (z = F̃k(ε, µ)) and the plane µ = const.
is increasing and concave, and intersection curve of surface z = Gk(ε, µ) (z = G̃k(ε, µ)) is
decreasing and convex; furthermore, intersection of z = H(ε, µ) and µ = const. is a straight
line, see Figure 4.1. From these it is easy to see that for every fixed k and every fixed µ the
equations Fk = H, G̃k = H, F̃k = H, Gk = H each have exactly one solution:

εk+1 < ε̃k+1 < ε̃k+2 < εk+2 (k ∈N),

provided that positive parameter d is fixed. According to the Implicit Function Theorem we

0.5 1.0 1.5 2.0 2.5 3.0
ϵ

1

2

3

4

5

6

7

z

ε
ε1 ε̃1 ε̃2 ε2

Figure 4.1: Intersection of surfaces; k = 0.

can write: εk+1 = εk+1(µ; d), ε̃k+1 = ε̃k+1(µ; d), ε̃k+2 = ε̃k+2(µ; d), εk+2 = εk+2(µ; d). Moreover,
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the Implicit Function Theorem shows also that for every k ∈ N and every d > 0, ∂ε/∂µ > 0,
namely functions εk(µ; d) and ε̃k(µ; d) are increasing.

µ

ε

Figure 4.2: Conditions (3.23)–(3.26), when k = 0, d = 0, 7.

Note that Theorem 4.1 for each d and for each µ corresponds to an oscillation theorem of
a corresponding Hill’s equation.

For the linear equation (2.5) we use the stability notations accepted in [1]. Equation (2.5)
is strongly stable if it is stable in the sense of Lyapunov together with all of its sufficiently
small perturbation, i.e., there exists an δ > 0 such that θ̈ − ((g + â(t))/l) θ = 0 is stable if
(Âh − Ah)

2 + (Âe − Ae)2 + (T̂h − Th)
2 < δ2, where the step function â belongs to Âh, Âe, T̂h in

the sense of the definition (2.2), provided that T̂e = T − T̂h, and the first equality in (2.4) is
satisfied for the parameters with .̂ The set in the ε− µ− d-space consisting of all the points
corresponding to the strongly stable equations is called the stability region of (2.5).

µ

ε

d

Figure 4.3: A part of stability region, k = 0.



On stabilizability of the upper equilibrium of the asymmetrically excited inverted pendulum 15

µ

ε

d

Figure 4.4: The approximating (cave-like part inside the solid) and the exact
stability region (the whole solid).

Floquet Theory [1] says the stability region and the instability region are separated by
surfaces whose points correspond to the equations of form (2.5) having T- or 2T-periodic
solutions. So, drawing the solution sets of equations (3.23)–(3.26) in the ε− µ− d-space, we
get the boundary surfaces of the stability region, see Figure 4.3. In [6], using a different
method, with László Hatvani we gave an approximation for the stability region. Figure 4.4
shows the earlier approximating and the exact stability region.

As we can see, now we have much more chance to stabilize the upper equilibrium of the
pendulum than in the earlier approximated case, however, as ε → ∞ our chance is less and
less, because the stability region becomes thin.

4.1 Numerical simulations

Using the stability map we can prepare some computer simulations which demonstrate our
previous results. The computer solved the system ẋ = y, ẏ = g+a(t)

l x, where g = 9.81, l = 2;
so now we use the “physical” phase plane. Due to Figure 4.3, we can choose the following
parameter values: ε = 0.2, µ = 0.2, d = 1.05 and thus we obtain Ae = 245.25, Ah =

222.448, Th = 0.056, T = 0.1. From (3.16) we get for the initial values: x0 = 1.918, y0 = −0.562.
The calculations were carried out in different long time intervals, and so we can present the
next figures.

Figure 4.5 illustrates the first 10 periods, we can not deduce any conclusion from behaviour
of this trajectory.

When the simulation runs on a longer interval than [0, 1], see Figure 4.6, we can see that
the phase point goes to the half-plane x < 0, namely, the origin may be stable.
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x

y

Figure 4.5: Phase curve, when t ∈ [0, 1].

x

y

Figure 4.6: Phase curve, when t ∈ [0, 2].

Following the movement of the phase point during a relatively long time: t ∈ [0, 10]
(respectively, t ∈ [0, 20]) we can see that the solution of the equation of motion is bounded,
see Figure 4.7 (respectively, Figure 4.8).

As we can see, the simulations suggest that the upper equilibrium is stable.
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x

y

Figure 4.7: Phase curve, when t ∈ [0, 10].

x

y

Figure 4.8: Phase curve, when t ∈ [0, 20].
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