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1 Introduction

We consider the following problem

x′′ = f (t, x, x′), x(0) = a, x′(1) = N(x′), (1.1)

where a ∈ Rn is fixed, t ∈ [0, 1], f : [0, 1]×Rn ×Rn → Rn is continuous, N : C([0, 1], Rn) →
Rn is a continuous and not necessarily linear application. Boundary value problems with
nonlinear boundary conditions have been studied, using various methods, for instance in the
following papers [2, 6, 17, 22].

In the nonlocal case, when N is a linear mapping given by a Riemann–Stieltjes integral,
namely N(x′) =

∫ 1
0 x′(s)dg(s), the problem (1.1) was extensively studied. Results for the

scalar nonresonant problem, i.e.
∫ 1

0 dg(s) 6= 1, and references to such multipoint problems are
given in [3,7,9,14–16]. The resonant scalar multipoint case was considered in [8] and existence
results for resonant integral problem can be found in [18]. The nonlocal problem for systems
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has been less studied. Recently such problems were considered in [21] in the nonresonant
case and in [20] at resonance. Example 3.2 shows that Theorem 2.1 covers situations escaping
to those previous results.

In this paper, using the properties of the Leray–Schauder degree, we prove the existence of
a solution to the problem (1.1). Under the elementary arguments of convex analysis inspired
by the ones introduced in [10] and some suitable conditions imposed upon N, we obtain
existence conditions for the problem (1.1) (see Theorems 2.1 and 2.2). The assumption imposed
on the operator N in the first theorem is quite general, hence not only some estimates are
needed but a topological assumption on the nontriviality of the Brouwer degree of I − N on a
set of constant functions as well. In the second theorem, the homotopy collapses the nonlinear
term N too, and it can be applied to the linear case mentioned above.

As we use homotopy arguments, the main question is to find a priori bounds for solutions
of a whole family of problems indexed by λ ∈ [0, 1], where, for λ = 1, we get the problem
under consideration and, for λ = 0, a simpler one. Often, a priori bounds are first obtained
for an unknown function and then for its derivative. This is the case for example in the vast
literature devoted to lower and upper solutions arguments (see e.g. [4,6]) and its extensions to
second order systems (see e.g. [1, 6, 11, 19]). First, an a priori bound on the possible solutions
is obtained through a maximum principle and the requested a priori bound on the derivative
follows from Nagumo-like conditions. Here, like in other papers, the assumptions provide
bounds for derivatives first and next provide a simple estimate for the function x.

In Section 3, special cases of the problem (1.1), where the convex set is a ball or a parallelo-
tope, is studied (see Corollaries 3.1, 3.4 and 3.7). A concrete example is given for Corollary 3.1,
and, in Corollaries 3.4 and 3.7, the abstract assumptions upon N are specialized to sign con-
ditions of some inner products. Further applications of Theorem 2.2 to the nonlocal linear
boundary conditions are also given (Corollaries 3.10 and 3.11). Corollary 3.10 improves some
existence results for a nonresonant problem obtained in [21], where the sign condition was
considered on a ball. In [20], the authors deal with a resonant nonlocal problem. Special cases
of the main existence theorem were proved there under some monotonicity conditions upon
the functions gi, i = 1, . . . , n. Here, we obtain a new existence result for the nonlocal resonant
case (Corollary 3.11).

2 Existence results

Denote by C([0, 1], Rn) the space of all continuous functions y : [0, 1] → Rn with the usual
norm ‖ · ‖.

Let us consider the problem (1.1). The following assumptions upon f and N will be
needed:

(F) f : [0, 1]×Rn ×Rn → Rn is a continuous function;

(N) N : C([0, 1], Rn)→ Rn is a continuous, not necessarily linear application taking bounded
sets into bounded sets.

Since any x ∈ C1([0, 1], Rn) such that x(0) = a can be written, with y = x′,

x(t) = a +
∫ t

0
y(s) ds, (2.1)
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the equation (1.1) is equivalent to the integro-differential system

y′(t) = f
(

t, a +
∫ t

0
y(s) ds, y(t)

)
, y(1) = N(y), (2.2)

t ∈ [0, 1].
Observe that solutions to the problem (2.2) are fixed points of the operator T : C([0, 1], Rn)

→ C([0, 1], Rn) given by

T(y)(t) := N(y)−
∫ 1

t
f
(

s, a +
∫ s

0
y, y(s)

)
ds. (2.3)

It is standard, using the Arzelà–Ascoli theorem, to show that under assumptions (F)–(N) the
operator T is completely continuous.

Denote by 〈 · , · 〉 the usual inner product in Rn corresponding to the Euclidean norm | · |.
Let C ⊂ Rn be an open convex neighborhood of 0 ∈ Rn. Then, applying the Supporting

Hyperplane Theorem [5,12], one gets that for each y0 ∈ ∂C, there exists some ν(y0) ∈ Rn \ {0}
such that 〈ν(y0), y0〉 > 0 and C ⊂ {y ∈ Rn : 〈ν(y0), y− y0〉 < 0}. The vector ν(y0) is called an
outer normal to ∂C at y0 and is orthogonal to a supporting hyperplane of C at y0. Moreover,
we have

C ⊂ {y ∈ Rn : 〈ν(y0), y− y0〉 ≤ 0}.

Denote by B(0, |a|) the open ball in Rn of center 0 and radius |a|. For a = 0, B(0, 0) =

B(0, 0) := {0}.

Theorem 2.1. Let the assumptions (F) and (N) be satisfied. Moreover, assume that there is an open,
bounded, convex neighborhood C of 0 ∈ Rn such that B(0, |a|) ⊂ C and the following conditions hold:

(A) for every y ∈ ∂C there is an outer normal ν(y) to ∂C at y such that

〈ν(y), f (t, x, y)〉 ≥ 0, (2.4)

for all t ∈ [0, 1] and x− a ∈ C;

(B) for every y ∈ C([0, 1], Rn) such that y(t) ∈ C for each t ∈ [0, 1] and y(1) ∈ ∂C, we have

y(1) 6= N(y);

(C) for the Brouwer degree of the map I− N restricted to constant functions on the set C at the point
0, the following condition holds

degB(I − N|const, C, 0) 6= 0.

Then the problem (1.1) has a solution x such that x(t)− a ∈ C and x′(t) ∈ C for all t ∈ [0, 1].

Proof. Let us consider a homotopy H : [0, 1]× C([0, 1], Rn)→ C([0, 1], Rn) given by

H(λ, y)(t) := y(t)− Tλ(y)(t),

where

Tλ(y)(t) = N(y)− λ
∫ 1

t

[
f
(

s, a +
∫ s

0
y, y(s)

)
+ (1− λ)y(s)

]
ds, (2.5)
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in the open bounded set

Ω = {y ∈ C([0, 1], Rn) : y(t) ∈ C, ∀ t ∈ [0, 1]}.

Observe that T1 = T and that the fixed points of (2.5) are solutions to the problem

y′(t) = λ f
(

t, a +
∫ t

0
y(s) ds, y(t)

)
+ λ(1− λ)y(t), y(1) = N(y). (2.6)

We shall show that the homotopy does not vanish on the boundary of Ω for λ ∈ [0, 1).
First, notice that if y ∈ ∂Ω, then y(t) ∈ C for all t ∈ [0, 1] and there is some t0 ∈ [0, 1] such that
y(t0) ∈ ∂C and, by (2.1), x′(t) = y(t) ∈ C. Consequently, as

x(t)− a =
∫ 1

0
u(s) ds with u(s) =

{
x′(s) for s ∈ [0, t]

0 for s ∈ (t, 1]

such that u(s) ∈ C for all s ∈ [0, 1], x(t) − a is the limit of convex combination of points
x′(ξi) ∈ C and of 0 ∈ C, and hence x(t)− a ∈ C for all t ∈ [0, 1].

By the assumption (B), H(0, y) 6= 0 for y ∈ ∂Ω, since in this case y(t) = N(y) for each
t ∈ [0, 1]. Now, suppose that there exists λ ∈ (0, 1) and y ∈ ∂Ω such that y = Tλ(y).

Assume that y(t0) ∈ ∂C with t0 ∈ [0, 1) and define

ϕ(t) := 〈ν(y(t0)), y(t)− y(t0)〉.

Observe that ϕ(t) ≤ 0 for t ∈ [0, 1], since y(t) ∈ C for each t ∈ [0, 1], and ϕ reaches its
maximum 0 at t0. By (2.6) and the assumption (A), we reach a contradiction with

0 ≥ ϕ′(t0) = 〈ν(y(t0)), y′(t0)〉
= λ〈ν(y(t0)), f (t0, x(t0), y(t0)) + λ(1− λ)〈ν(y(t0)), y(t0)〉 > 0.

By the above, it remains to exclude only functions y such that y(t) ∈ C for t ∈ [0, 1)
and y(1) ∈ ∂C. In this case, since y is a solution to (2.6), we reach a contradiction with the
assumption (B). Finally, if H(1, y) = 0 for some y ∈ ∂Ω, the result is proved. If H(1, y) 6= 0
for all y ∈ ∂Ω, it follows from the above reasoning that H(λ, y) 6= 0 for all (λ, y) ∈ [0, 1]× ∂Ω,
and hence, by the homotopy invariance of the Leray–Schauder degree

degLS(I − T, Ω, 0) = degLS(I − N, Ω, 0). (2.7)

But, as N sends C([0, 1], Rn) to its subspace of constant mappings isomorphic to Rn, we have

degLS(I − N, Ω, 0) = degB(I − N|const, C, 0),

where in the second term we have the Brouwer degree of a map from Rn into Rn.
By the assumptions (B), (C) and the existence property of degrees, T has a fixed point y

in Ω. Furthermore, the corresponding functions (2.1) are solutions to the problem (1.1).

Theorem 2.2. Let the assumptions (F), (N) and (A) hold. Moreover, assume that there is an open,
bounded, convex neighborhood C of 0 ∈ Rn such that B(0, |a|) ⊂ C and the following condition is
fulfilled

(B’) for every λ ∈ [0, 1] and y ∈ C([0, 1], Rn) such that y(t) ∈ C for each t ∈ [0, 1) and y(1) ∈ ∂C,
one has

y(1) 6= λN(y).
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Then the problem (1.1) has a solution x such that such that x(t) − a ∈ C and x′(t) ∈ C for all
t ∈ [0, 1].

Proof. Define a homotopy H : [0, 1]× C([0, 1], Rn)→ C([0, 1], Rn) by

H(λ, y)(t) := y(t)− λT(y)(t) + λ(1− λ)
∫ 1

t
y(s) ds,

with T given in (2.3). Now, using the homotopy and proceeding in the same way as in the
proof of Theorem 2.1, we obtain that either I − T has a zero in ∂Ω, and the result is proved,
or that

degLS(I − T, Ω, 0) = degLS(I, Ω, 0) 6= 0.

3 Special cases and examples

Let C := B(0, M) be the open ball in Rn of center 0 and radius M > |a|. Taking ν(y) = y, for
each y ∈ ∂B(0, M), and applying Theorem 2.1, we obtain immediately the following existence
result.

Corollary 3.1. Let the assumptions (F) and (N) hold. Moreover, assume that the following conditions
are fulfilled.

(A1) there exists M > |a| such that
〈y, f (t, x, y)〉 ≥ 0,

for all t ∈ [0, 1], x ∈ Rn, y ∈ Rn with |x− a| ≤ M and |y| = M;

(B1) for every y ∈ C([0, 1], Rn) such that |y(t)| < M for every t ∈ [0, 1) and |y(1)| = M, one has

y(1) 6= N(y);

(C1) for the Brouwer degree of the map I − N restricted to constant functions on the set B(0, M) at
the point 0, the following condition holds

degB(I − N|const, B(0, M), 0) 6= 0.

Then the problem (1.1) has a solution x such that ‖x‖ ≤ |a|+ M and ‖x′‖ ≤ M.

Example 3.2. Let us identify R2 with C, use complex notation with z instead of x and consider
the boundary value problem for the Rayleigh-type system

z′′ =
z

1 + |z| + ϕp(z′) + e(t), z(0) = a, z′(1)2 −
∫ 1

0
z′(s) dg(s) = b, (3.1)

where ϕp(y) = |y|p−2y for y 6= 0, ϕp(0) = 0, p > 1, a, b ∈ C, e ∈ C([0, 1], C) and g : [0, 1]→ R

is of bounded variation. This is a special case of problem (1.1) with n = 2,

f (t, z, y) =
z

1 + |z| + ϕp(y) + e(t),

and N : C([0, 1], C)→ C defined by

N(y) = y(1)− y(1)2 +
∫ 1

0
y(s) dg(s) + b.
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The assumptions (F) and (N) of Corollary 3.1 are trivially satisfied. Furthermore, for M > |a|
to be fixed and 〈u, v〉 = <(uv) the inner product in C ' R2, we have, when z ∈ C, |y| = M
and t ∈ R,〈

z
1 + |z| + ϕp(y) + e(t), y

〉
=
〈z, y〉

1 + |z| + |y|
p + 〈e(t), y〉

≥ |y|p − (‖e‖+ 1)|y| = |y|
[
|y|p−1 − (‖e‖+ 1)

]
≥ 0,

if M > (‖e‖+ 1)
1

p−1 .
On the other hand, if y ∈ C([0, 1], C) is such that |y(t)| ≤ M for all t ∈ [0, 1] and |y(1)| =

M, then ∣∣∣∣∫ 1

0
y(s) dg(s) + b

∣∣∣∣ ≤ ∫ 1

0
|y(s)| d|g|(s) + |b| ≤ M Var(g) + |b| < M2, (3.2)

if M > M0(|b|, Var(g)) where M0(|b|, Var(g)) denotes the unique positive root of equation

r2 − (Var(g))r− |b| = 0,

where we apply Jordan’s decomposition of function g as the difference of two nondecreasing
functions g = g1 − g2 and the integral with respect to |g| is the same as w.r.t. g1 + g2. Conse-

quently, for M > max
{
|a|, (‖e‖+ 1)

1
p−1 , M0(|b|, Var(g))

}
and C the open ball of center 0 and

radius M, both assumptions (A1) and (B1) of Corollary 3.1 are satisfied.
Finally, if h : C → C is defined by h(w) = w2 − (g(1) − g(0))w − b, then, by standard

properties of Leray–Schauder and Brouwer degrees,

degB(I − N|const, C, 0) = degB(h, B(0, M), 0) = 2.

Hence assumption (C1) is satisfied, and problem (3.1) has at least one solution.

Remark 3.3. Example 3.2 corresponds to a problem whose equivalent fixed point formulation
has Leray–Schauder degree equal to 2. This shows that Theorem 2.1 deals with situations
distinct from those covered by the existence results in [20,21], which correspond to fixed point
problems having Leray–Schauder degree equal to 1. When N is linear, the assumptions of
Theorem 2.1 imply that the problem is non-resonant.

The following result is a special case of Theorem 2.2.

Corollary 3.4. Let the assumptions (F), (N) and (A1) hold. Moreover, assume that the following
condition is fulfilled

(B’1) for every y ∈ C([0, 1], Rn) such that |y(t)| < M for all t ∈ [0, 1) and |y(1)| = M, one has

〈y(1), N(y)〉 ≤ 0.

Then the problem (1.1) has at least one solution x such that ‖x‖ ≤ |a|+ M and ‖x′‖ ≤ M.

Proof. Observe that, by the assumption (B’1), we have, for every y ∈ C([0, 1], Rn) such that
|y(t)| < M for all t ∈ [0, 1) and |y(1)| = M, and every λ ∈ [0, 1],

〈y(1)− λN(y), y(1)〉 = |y(1)|2 − λ〈N(y), y(1)〉 ≥ |y(1)|2 = M2 > 0,

so that Assumption (B’) of Theorem 2.2 is satisfied.
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Example 3.5. Let us consider the problem (1.1) with N : C([0, 1], Rn)→ Rn given by

N(y) := S1(y(1)) + S2(y(η1), . . . , y(ηm)), (3.3)

where S1 : Rn → Rn, S2 : Rmn → Rn are continuous and η1, . . . , ηm ∈ [0, 1]. Assume that there
is M > |a| such that the condition (A1) holds,

〈y0, S1(y0)〉 < 0,

for |y0| = M and set
L := max

|y0|=M
〈y0, S1(y0)〉.

Moreover, assume that
|S2(y1, . . . , ym)| < −L/M,

for any |y1|, . . . , |ym| ≤ M.
It is easy to observe that the assumption (B’1) is satisfied. Consequently, the problem (1.1)

with N defined in (3.3) has at least one solution.

Example 3.6. Consider the problem (1.1) for which the assumption (A1) is fulfilled. Define

N(y) := S1(y(1)) + S2

(∫ 1

0
y(s) dg(s)

)
, (3.4)

where g : [0, 1]→ Rn, g = (g1, . . . , gn) with gi : [0, 1]→ R, i.e.,∫ 1

0
y(s)dg(s) =

(∫ 1

0
y1(s)dg1(s), . . . ,

∫ 1

0
yn(s)dgn(s)

)
,

and the variation of g on the interval [0, 1] verifies

Var(g) :=

[
n

∑
i=1

(∫ 1

0
d|gi|

)2
] 1

2

=

{
n

∑
i=1

[Var(gi)]
2

} 1
2

≤ 1. (3.5)

Moreover, let S1, S2 : Rn → Rn be continuous, S1 satisfy the assumption from Example 3.5
and

|S2(y1)| < −L/M,

when |y1| ≤ M.
By (3.5) and the Cauchy–Schwarz inequality, for |y(t)| ≤ M, t ∈ [0, 1], we obtain the

following estimates∣∣∣∣∫ 1

0
y(s) dg(s)

∣∣∣∣2 =
n

∑
i=1

(∫ 1

0
yi(s) dgi(s)

)2

≤
n

∑
i=1

(∫ 1

0
|yi(s)| d|gi|(s)

)2

≤
n

∑
i=1

[(∫ 1

0
|yi(s)|2 d|gi|(s)

)(∫ 1

0
d|gi|(s)

)]
≤ M2

n

∑
i=1

(∫ 1

0
d|gi|(s)

)2

= M2[Var(g)]2 ≤ M2.

Now, one can easily check that the assumption (B’1) holds. Consequently, the problem (1.1)
with N defined in (3.4) has at least one solution.
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We now consider situations where the convex set C is a product of intervals. Set C =

∏n
i=1(−Mi, Mi) for some Mi > |ai|. Then, for each y ∈ ∂C, one can take ν(y) = yiei, where

only ith coordinate is such that |yi| = Mi. If y belongs to more that one faces of C then i can be
chosen arbitrarily among all j such that |yj| = Mj. Here ei is the ith element of the canonical
basis of Rn (i = 1, . . . , n). The following result follows from Theorem 2.2.

Corollary 3.7. Let the assumptions (F) and (N) hold. Moreover, assume that the following conditions
are fulfilled.

(A2) there exist Mj > |aj|, j = 1, . . . , n, such that, for every t ∈ [0, 1] and i = 1, . . . , n, if |yi| = Mi,
|yj| < Mj for j = 1, . . . , n and j 6= i, and xi − ai ∈ [−Mi, Mi] for any i = 1, . . . , n, then we
have

yi fi(t, x, y) ≥ 0; (3.6)

(B2) for every y ∈ C([0, 1], Rn) such that |yi(t)| < Mi for t ∈ [0, 1) and |yi(1)| = Mi, and such
that |yj(t)| < Mj for each j 6= i and all t ∈ [0, 1], we have

yi(1)Ni(y) ≤ 0.

Then the problem (1.1) has at least one solution x such that |xi(t)| ≤ |ai| + Mi and |x′i(t)| ≤ Mi,
where t ∈ [0, 1] and i = 1, . . . , n.

Remark 3.8. Observe that the condition (3.6) is set only for y belonging to "open" faces of the
cube. For points belonging to more than one face, the inequalities are fulfilled for all indices
numerating these faces by continuity of f . Similar remark for (B2), using the continuity of N.

Example 3.9. Let n = 2. Consider the problem (1.1) with

f1(t, x1, x2, y1, y2) :=
x2

2
+ sin

πy1

2
+

t
2

, f2(t, x1, x2, y1, y2) :=
x1

2
+ sin

πy2

2
+

t
2

,

and the following nonlinear boundary conditions

x1(0) = 0, x2(0) = 0, x′1(1) = −x′1
3
(1) + α1x′1(η1), x′2(1) = −x′1

5
(1) + α2x′2(η2),

where |αj| ≤ 1, ηj ∈ [0, 1] (j = 1, 2). Let C = (−1, 1)× (−1, 1). Setting

ν(y1, y2) =


(1, 0) if (y1, y2) ∈ {1} × [−1, 1],

(0, 1) if (y1, y2) ∈ (−1, 1)× {1},
(−1, 0) if (y1, y2) ∈ {−1} × [−1, 1],

(0,−1) if (y1, y2) ∈ (−1, 1)× {−1},

one can easily check that Corollary 3.7 implies the existence of a solution to the problem (1.1)
with a = 0.

Now, let us consider the problem (1.1) with linear boundary condition, i.e.

N(y) :=
∫ 1

0
y(s) dg(s), (3.7)
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where g = (g1, . . . , gn) and gi : [0, 1]→ R, i = 1, . . . , n. Then the problem (1.1) takes the form

x′′ = f (t, x, x′), x(0) = a, x′(1) =
∫ 1

0
x′(s)dg(s). (3.8)

Similar problems have been considered under different assumptions in [13].

The following assumptions upon the function g are introduced alternatively:

(G1) Var(g) < 1, where Var(g) is defined in (3.5);

(G2) Var(gi) ≤ 1, i = 1, . . . , n, and, if Var(gi) = 1 for each i = 1, . . . , n, then there is i0 ∈
{1, . . . , n} such that gi0 is not constant on [0, 1).

Corollary 3.10. Let the assumptions (F), (A1) and (G1) hold. Then the problem (3.8) with C =

B(0, M) has at least one solution.

Proof. Let λ ∈ [0, 1], y ∈ C([0, 1], Rn) be such that y(t) ∈ B(0, M) for each t ∈ [0, 1) and
y(1) ∈ ∂B(0, M). By the assumption (G1) and the Cauchy–Schwarz inequality, one gets

M2 = |y(1)|2 = λ2N(y)|2 ≤ |N(y)|2 =
n

∑
i=1

(∫ 1

0
yi(s) dgi(s)

)2

≤ M2[Var(g)]2 < M2,

a contradiction. Consequently, the conclusion (B’) of Theorem 2.2 with C = B(0, M) is satis-
fied, and the result follows.

Corollary 3.11. Let the assumptions (F), (A2) and (G2) be fulfilled. Then the problem (3.8) with
C = ∏n

j=1(−Mj, Mj) has at least one solution.

Proof. Let λ ∈ [0, 1], y ∈ C([0, 1], Rn) be such that y(t) ∈ ∏n
i=j(−Mj, Mj) for each t ∈ [0, 1) and

y(1) ∈ ∂ ∏n
i=j(−Mj, Mj). Then |yi(1)| = 1 for some i ∈ {1, . . . , n}. If Var(gi) < 1, then

λ|Ni(y)| ≤ |Ni(y)| =
∣∣∣∣∫ 1

0
yi(s) dgi(s)

∣∣∣∣ ≤ ∫ 1

0
|yi(s)| d|gi|(s)

≤ |yi(1)|Var(gi) < |yi(1)|,

so that Assumption (B2) holds. If Var(gi) = 1, then by definition of the Riemann–Stieltjes
integral, we obtain

λ|Ni(y)| ≤ |Ni(y)| ≤ sup ∑
j
|yi(sj)||gi(tj)− gi(tj−1)|

< Mi · sup ∑
j
|gi(tj)− gi(tj−1)| ≤ Mi,

where supremum is taken over all subdivisions 0 = t0 < t1 < · · · < tn = 1 and sj ∈ [tj−1, tj],
j = 1, . . . , n. The third inequality is sharp for any function y with values in the open set C
for t < 1 since at least one summand does not vanish for each subdivision. Consequently, the
assumptions of Theorem 2.2 with C = ∏n

j=1(−Mj, Mj) are fulfilled.

Remark 3.12. Corollary 3.11 slightly generalizes Theorem 3.1 from [20], since here we do not
assume that

∫ 1
0 et dg(t) 6= e; this is the additional assumptions in [20].
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