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Abstract. Hopf bifurcation analysis is conducted on a scalar implicit Neutral Delay
Differential Equation (NDDE) by means of the extension of two analytical methods: 1)
center manifold reduction combined with normal form theory; 2) method of multiple
scales. The modifications of the classical algorithms originally developed for explicit
differential equations lead to the same algebraic results, which are further confirmed by
numerical simulations. It is shown that the generalizations of these regular normal form
calculation methods are useful for the local nonlinear analysis of implicit NDDEs where
the explicit formalism is typically not accessible and the existence and uniqueness of
solutions around the equilibrium are only assumed together with the existence of a
smooth local center manifold.
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1 Introduction

Neutral Delay Differential Equations (NDDE) are a class of equations whose rate of change
of state depends not only on the state at present and earlier instances, but also on the rate of
change of the state at earlier instances [5]. We consider the simple nonlinear scalar NDDE

ẋ(t) = aẋ(t− 1) + bx(t− 1) + cẋ3(t− 1) , (1.1)

with non-zero parameters a, b, c ∈ R, where the nonlinear term cẋ3(t − 1) indicates that
equation (1.1) is an implicit differential equation as the highest derivative appears also with
its 3rd power. What makes the problem even more intricate is the fact that the nonlinearity
involves the delayed term of the first derivative. This means that however simple equation
(1.1) is, it is not possible to express it in the NDDE form

d
dt

(x(t)− g(x(t− 1))) = f (x(t), x(t− 1)) , (1.2)
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as defined in [5] (see Section 12, Definition 1.1), which can be considered as the general explicit
form of NDDEs. However, these implicit NDDEs do appear in some specific tasks, such as in a
nonlinear model for human balancing subjected to saturated delayed proportional-derivative-
acceleration (PDA) control [10]. There is a need to see whether normal form theories and the
corresponding algorithms developed for NDDEs in [8, 11] are also valid for implicit NDDEs.
We consider that the existence and uniqueness of the solutions of the implicit NDDEs around
the trivial solution in question are true.

This paper carries out Hopf bifurcation analysis on the implicit NDDE (1.1) with two ana-
lytical methods: 1) center manifold reduction combined with normal form theory; 2) method
of multiple scales. It is shown that the two analytical methods provide the same normal form
and the result is also confirmed by numerical simulation. This indicates the applicability of the
extension of these regular normal from calculation methods for the local bifurcation analysis
of implicit NDDEs.

The rest of the paper is organized as follows. In Section 2, linear stability is analyzed
and a stability chart is presented in the parameter plane (a, b). In Section 3, Hopf bifurcation
analysis is carried out with the help of normal form theory and method of multiple scales
together with numerical simulations, which leads to the conclusion in Section 4.

2 Linear analysis

The stability of the trivial solution x ≡ 0 of (1.1) is analyzed by means of the linearized system

ẋ(t) = aẋ(t− 1) + bx(t− 1) . (2.1)

The corresponding characteristic equation reads

λ(1− ae−λ)− be−λ = 0 (2.2)

for the characteristic exponent λ ∈ C. According to the D-subdivision method, substitution
of λ = γ + iω into the characteristic equation (2.2) and then decomposition into real and
imaginary parts yield

Re : γ + ((−aγ− b) cos ω− aω sin ω)e−γ = 0 , (2.3)

Im : ω + ((aγ + b) sin ω− aω cos ω)e−γ = 0 . (2.4)

If |a| > 1, the characteristic equation (2.2) has infinitely many characteristic exponents with
positive real parts and the linear system is always unstable [6]. Therefore, only the case |a| < 1
is studied here. By substituting the critical characteristic exponent λc = iωc into (2.2), that is,
by substituting γ = 0 into equations (2.3) and (2.4), the D-curves in the parameter plane (a, b)
are obtained as

bc = 0, if ωc = 0 , (2.5)

and
ac = cos ωc , bc = −ωc sin ωc , if ωc > 0 . (2.6)

The root tendency along the D-curves is needed for determining the stability area and also
the number of unstable exponents. By taking the partial derivative of (2.2) with respect to b,
one gets the root tendency

α :=
dλ(b)

db

∣∣∣∣
b=bc

=
1

iωcac − ac + bc + eiωc
. (2.7)
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Along the D-curve bc = 0 when ωc = 0,

α =
dλ(b)

db

∣∣∣∣
b=0

=
1

1− ac
> 0 , (2.8)

which indicates that a real characteristic root crosses the imaginary axis from left to right
through λ = 0 when b increases through bc = 0, i.e. the number of unstable characteristic
roots increases by 1. Along the D-curves (2.6) when ωc 6= 0,

Re α = Re
dλ(b)

db

∣∣∣∣
b=bc

= − ωc sin ωc

bc
2 + (acωc + sin ωc)2{

< 0, ωc ∈ (2kπ, (2k + 1)π)

> 0, ωc ∈ ((2k + 1)π, (2k + 2)π), k = 0, 1, 2, . . .

(2.9)

which provides another clue for determining the number of unstable characteristic roots as
Re α > 0 (< 0) suggests that a pair of complex characteristic roots crosses the imaginary axis
from left to right (from right to left), i.e. the number of unstable characteristic roots increases
(decreases) by 2.

For the linear NDDE (2.1), exponential stability only exists when

−
√

1− a2 arccos a < b < 0 (2.10)

since the number of unstable exponents is 0, as shown in Fig. 2.1. At the stability boundary
bc = −

√
1− ac2 arccos ac (the red line in Fig. 2.1), only a pair of imaginary roots ±iωc (0 <

ωc < π) exists while all other exponents have negative real parts and the root tendency is
Re α < 0, which guarantee [4] the occurrence of Hopf bifurcation to be studied in the next
section .

Figure 2.1: Stability chart of the linear NDDE (2.1) with the number of unsta-
ble characteristic exponents. Grey area indicates stable region. Red line is the
stability boundary where Hopf bifurcations occur in the nonlinear NDDE (1.1).
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3 Hopf bifurcation analysis

Suppose that there exists a smooth local center manifold embedded in the phase space of
the implicit NDDE (1.1) at the zero solution. Hopf bifurcation analysis is carried out for the
implicit NDDE (1.1) by centre manifold reduction combined with normal form calculation
then also by the method of multiple scales. To analyze the effect of varying b on system
dynamics, the bifurcation parameter µ is chosen as

b = bc + µ . (3.1)

3.1 Centre manifold reduction combined with normal form calculation

Rewrite the scalar equation (1.1) into the following operator form:

d
dt

Dxt = L0xt + (Lxt − L0xt) + G(ẋt) , (3.2)

where xt(θ) ≡ x(t + θ), −1 ≤ θ ≤ 0, xt ∈ C = C([−1, 0], R) is the Banach space of uniformly
continuous functions from [−1, 0] to R with the uniform norm, D, L0 and L are bounded linear
operators from C to R, Dxt = xt(0)− acxt(−1), L0xt = bcx(t− 1), Lxt − L0xt = µx(t− 1), and
the nonlinear part G(ẋt) = cẋ3

t (−1). The solution of the linearized equation

d
dt

Dxt = L0xt (3.3)

defines a C0 semigroup T(t) on C([−1, 0], R), T(t)φ = xφ
t , t ≥ 0 . The infinitesimal generator

A associated with T(t) is given by Aφ = φ̇ and has domain

Dom(A) =
{

φ ∈ C :
dφ

dθ
∈ C, D

dφ

dθ
= Lφ

}
. (3.4)

The spectrum σ(A) of A coincides with its point spectrum if and only if it satisfies the corre-
sponding characteristic equation (2.2). Define C∗ = C([0, 1], R). Consider the adjoint bilinear
form on C∗ × C:

(ψ, φ) = (ψ(0)− acψ(1))φ(0) + ac

∫ 0

−1
ψ(s + 1)φ′(s)ds + bc

∫ 0

−1
ψ(s + 1)φ(s)ds , (3.5)

which is the specific form deduced also in [9] from the general case given in [5]. Let A∗
denote the adjoint operator of A with respect to the bilinear form defined in Equation (3.5),
i.e., A∗ : C∗ → C∗, so that (ψ,Aφ) = (A∗ψ, φ) holds for all φ ∈ Dom(A) and ψ ∈ Dom(A∗).
Let Λ = {iωc,−iωc}. There exist two subspaces PΛ and QΛ splitting the space C, invariant
under T(t), such that C = PΛ

⊕
QΛ. A basis Φ of PΛ is given by

Φ(θ) =
[

eiωcθ e−iωcθ
]

(3.6)

and a basis Ψ for the dual space P∗Λ∗ can be expressed as

Ψ(ξ) =

[
βe−iωcξ

βeiωcξ

]
(3.7)

where β = αeiωc , so that (Ψ, Φ) = I is the unit matrix, and T(t)Φ = ΦeBt where

B =

[
iωc 0
0 −iωc

]
. (3.8)
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To write equation (3.2) as an infinite dimensional ordinary differential equation (ODE), the
infinitesimal generator A is extended to an operator Ã by

Ãφ = Aφ + X0[L0φ− Dφ′], φ′ =
dφ

dθ
(3.9)

onto BC, the space of functions, which are uniformly continuous on [−1, 0) and with a possible
finite jump discontinuity at 0, where

X0(θ) =

{
0, −1 ≤ θ < 0,

I, θ = 0.
(3.10)

Functions ψ in BC can be represented as ψ = φ + X0ζ, where φ ∈ C, ζ ∈ R. The bilinear form
(3.5) can be extended to C∗ × BC by setting (ψ, X0) = ψ(0). Let Π : BC → P be the projection
defined as Π(φ + X0ζ) = Φ[(Ψ, φ) + Ψ(0)ζ]. Then BC = P

⊕
ker Π and let Q ⊂ ker Π.

Dom(Ã) = C1([−1, 0], R), which makes sure that it is compatible with the domain of equation
(3.2). The abstract ODE on the space BC is of the form:

ẋt = Ãxt + X0 ((Lxt − L0xt) + G(ẋt)) , (3.11)

Decompose xt(θ) = Φ(θ)y(t) + zt(θ) where y(t) ∈ R2, zt ∈ Q. One obtains the following
decomposition of the neutral system

ẏ = By + Ψ(0)
(
µ(Φ(−1)y + zt(−1)) + c(Φ(−1)ẏ + żt(−1))3) ,

żt = Ãzt + (I −Π)X0
(
µ(Φ(−1)y + zt(−1)) + c(Φ(−1)ẏ + żt(−1))3) ,

µ̇ = 0 .

(3.12)

The normal form analysis is based on a recursive sequence of nonlinear transformations.
As non-resonance condition relative to Λ is satisfied [3, 8], there exists a formal nonlinear
transformation {

y = ỹ + V1(ỹ, µ),

zt = z̃t + V2(ỹ, µ, )
(3.13)

such that a local manifold satisfies z̃t = 0 and the normal form on this invariant manifold
yields the following two dimensional ODE

˙̃y = Bỹ + g(ỹ, 0, µ) . (3.14)

The third-order normal form is needed for the study of Hopf bifurcations. Based on similar
deduction as in [11], the simpler form of the second-order nonlinear term g2(ỹ, 0, µ) and the
third-order nonlinear term g3(ỹ, 0, µ) can be obtained by the following recursive formula:

gj(ỹ, 0, µ) = Ψ(0)Kj −
j−1

∑
k=2

DỹV1
k (ỹ, µ)gj+1−k(ỹ, 0, µ)− (DỹV1

j (ỹ, µ)Bỹ− BV1
j (ỹ, µ)), (3.15)

where

K2 = (e−iωc ỹ1 + eiωc ỹ2)µ ,

K3 = c(ie−iωc ỹ1ωc − ieiωc ỹ2ωc)
3 + w(ỹ1µ2, ỹ2µ2) ,
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with w(ỹ1µ2, ỹ2µ2) representing terms related to µ2 which are not expressed here in details as
they are not necessary for the Hopf bifurcation analysis. The third-order normal form is then
obtained as follows [ ˙̃y1

˙̃y2

]
≈
[

iωc 0
0 −iωc

] [
ỹ1

ỹ2

]
+

[
αỹ1µ + ∆ỹ2

1ỹ2

αỹ2µ + ∆ỹ1ỹ2
2

]
(3.16)

where ∆ = 3 iα cωc
3. Through the change of variables

ỹ1 =
1
2
(ρ cos ϕ− iρ sin ϕ) , ỹ2 =

1
2
(ρ cos ϕ + iρ sin ϕ) , (3.17)

equation (3.16) is transformed into the polar form

ρ̇ = Re α ρµ +
1
4

Re∆ ρ3 , (3.18)

where Re α > 0 for ωc ∈ (0, π) as given in equation (2.9) and

Re ∆ =
3cωc

3(acωc + sin ωc)

b2
c + (acωc + sin ωc)2 . (3.19)

If Re ∆ 6= 0 and formula (2.6) of the critical parameter values are substituted, the amplitude
of the bifurcated periodic motions of equation (1.1) yields

ρ =

(
−4Re α

Re ∆
µ

) 1
2

= 2

√
ωc sin ωc

3cωc3(ωc cos ωc + sin ωc)
(b− bc) . (3.20)

The sign of Re ∆ determines the sense of Hopf bifurcation: if Re ∆ < 0 (Re ∆ > 0), it is
supercritical (subcritical), i.e. the bifurcated periodic solutions are stable (unstable). The sense
of Hopf bifurcations for equations (1.1) is summarized in Table 3.1.

ωc ∈ sgn Re (∆) Sense
(0, 2.03) positive subcritical
(2.03, π) negative supercritical

Table 3.1: Sense of Hopf bifurcations for c > 0.

3.2 Method of multiple scales

To study the small amplitude oscillation, let

x(t) =
√

εϕ(t) , µ = εµ̄ , (3.21)

where ε is a nondimensional bookkeeping parameter, 0 < ε � 1. µ̄ = O(1) is the detuning
parameter. Then equation (1.1) is transformed into the form

ϕ̇(t)− ac ϕ̇(t− 1)− bcϕ(t− 1) = ε(µ̄ϕ(t− 1) + cϕ̇3(t− 1)) . (3.22)

The multiple time scales are defined as Tk = εkt, k = 0, 1, 2, . . . To study the Hopf bifurcation,
a two scale expansion of the solution is assumed as

ϕ(t) = ϕ0(T0, T1) + εϕ1(T0, T1) + O(ε2) . (3.23)
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By using the differential operators [7]

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ O(ε2) =: D0 + εD1 + O(ε2) ,

d2

dt2 =: D0
2 + 2εD0D1 + O(ε2) ,

(3.24)

the delayed terms can be expressed as

ϕ(t− 1) = ϕ0(T0 − 1, T1 − ε ) + εϕ1(T0 − 1, T1 − ε) + · · ·
= ϕ0(T0 − 1, T1) + ε(ϕ1(T0 − 1, T1)− D1ϕ0(T0 − 1, T1)) + O(ε2).

(3.25)

Substituting equations (3.23), (3.24) and (3.25) into equation (3.22) and equating the same
powers of ε, a set of linear partial differential equations can be obtained in the form

D0ϕ0 − acD0ϕ0τ − bcϕ0τ = 0 , (3.26)

D0 ϕ1 − acD0ϕ1τ − bcϕ1τ = (ac − bc)D1ϕ0τ − acD0D1ϕ0τ + µ̄ϕ0τ −D1ϕ0 + c(D0ϕ0τ)
3 , (3.27)

where ϕi = ϕi(T0, T1), ϕiτ = ϕi(T0 − 1, T1). At the stability boundary (the red line in Fig. 2.1),
only one pair of pure imaginary characteristic roots ±iωc exists, while all other eigenvalues
have negative real parts. All the solution terms related to eigenvalues with negative real parts
decay with time. Thus, to study the long-time behavior of the system, the solution of equation
(3.26) can be assumed as

ϕ0 = R(T1)eiωcT0 + R(T1)e−iωcT0 . (3.28)

Substituting equation (3.28) into equation (3.27), the secular term can be found

(ac − bc − iaωc − eiωc)Ṙ(T1) + 3icω2
c R2(T1)R(T1) + µ̄R(T1) = 0 . (3.29)

Ṙ(T1) is determined by

Ṙ(T1) =
R(T1)µ̄ + 3icω3

c R2(T1)R(T1)

iacωc + eiωc − ac + bc
. (3.30)

With
ỹ1 =

1√
ε

R(εt)eiωct , (3.31)

the normal form equation (3.30) is transformed to the exact same formula as the normal form
equation (3.16) derived by using the centre manifold reduction and normal form theory.

3.3 Case study ac = 1/
√

2, c = 0.1

To see whether the analytical results agree with numerical results, numerical analysis is also
presented for the case ac = 1/

√
2, c = 0.1 with the help of collocation method combined with

path-following techniques [1, 2]. Based on equation (2.6), one can have

bc = −
π

4
√

2
, ωc =

π

4
.

According to Table 3.1, the analysis indicates that a subcritical Hopf bifurcation occurs since
ωc ∈ (0, 2.03), which is in good agreement with the numerical result shown in Figure 3.1.
This illustrates the validity of the two normal form calculation methods for implicit NDDEs.
Moreover, two time domain simulations with b = −0.5 and different initial conditions (x0(t) ≡
0.1; x0(t) ≡ 1, t ∈ [−1, 0]) are presented in Figure 3.2 to demonstrate the characteristic of the
subcritical Hopf bifurcation.



8 L. Zhang and G. Stépán

Figure 3.1: Bifurcation diagram with respect to b. a = 1/
√

2. Continuous lines
refer to analytical results, series of circles refer to numerical results obtained by
collocation method and path following. Red color represents unstable branches.

Figure 3.2: Time history with different initial conditions; x0(t) ≡ 0.1 (black line),
x0(t) ≡ 1 (red line), t ∈ [−1, 0], a = 1/

√
2, b = −0.5.

4 Conclusion

It is shown that both center manifold reduction combined with normal form theory and the
method of multiple scales can be extended and applied for Hopf bifurcation analysis of im-
plicit NDDEs.
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