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Abstract. We establish a new technique for deducing oscillation of the second order
advanced differential equation(

r(t)u′(t)
)′
+ p(t)u(σ(t)) = 0

with help of a suitable equation of the form(
r(t)u′(t)

)′
+ q(t)u(t) = 0.

The comparison principle obtained fills the gap in the theory of oscillation and essen-
tially improves existing criteria. Our technique is based on new monotonic properties
of nonoscillatory solutions, and iterated exponentiation is employed. The results are
supported with several illustrative examples.
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1 Introduction

We consider the second order functional advanced differential equation(
r(t)u′(t)

)′
+ p(t)u(σ(t)) = 0, (E)

where

(H1) r(t), p(t) ∈ C([t0, ∞)) are positive;

(H2) σ(t) ∈ C1([t0, ∞)), σ′(t) > 0, σ(t) ≥ t for t ≥ t0.

Throughout the paper we assume that (E) is in a canonical form, that is,

(H3) R(t) =
∫ t

t0

1
r(s)

ds→ ∞ as t→ ∞.
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By a solution of (E) we mean a function u(t) with r(t)u′(t) ∈ C1([t0, ∞)), which sat-
isfies equation (E) on [t0, ∞). We consider only those solutions u(t) of (E) which satisfy
sup{|u(t)| : t ≥ T} > 0 for all T ≥ t0. A solution of (E) is said to be oscillatory if it has
arbitrarily large zeros, and otherwise it is called nonoscillatory. Equation (E) is said to be
oscillatory if all its solutions are oscillatory.

There are numerous results dealing with the oscillation of (E) (see [1–10]) for delay case,
i.e. σ(t) ≤ t. The authors especially paid attention to a comparison technique which is the
most effective tool in the theory of oscillation. Mahfoud in [9] deduced oscillation of the delay
equation

y′′(t) + p(t)u(σ(t)) = 0, (E0)

from that of the ordinary equation without deviating argument

y′′(t) +
p(σ−1(t))
σ′(σ−1(t))

u(t) = 0.

Yang [10] studied oscillation of delay equation (E0) via oscillation of

y′′(t) +
σ(t)

t
p(t)u(t) = 0.

Many authors used the Riccati transformation to get oscillatory criteria for delay equations.
On the other hand, these techniques established for delay equations fail for advanced

differential equations. In particular, there is no corresponding comparison result for advanced
equations except that of Kusano [7], where oscillation of functional equation (E) follows from
the oscillation of the ordinary equation(

r(t)u′(t)
)′
+ p(t)u(t) = 0. (E1)

But, here the informations about value of σ(t) are lost.
In this paper, we would like to fill this gap in oscillation theory and to establish a new

comparison principle for advanced equations.

Remark 1.1. We assume that all functional inequalities hold eventually, i.e., they are satisfied
for all t large enough.

2 Preliminary results

Without loss of generality, considering nonoscillatory solutions of (E), we can restrict our
attention only to positive ones.

Lemma 2.1. Assume that u(t) is a positive solution of (E). Then

r(t)u′(t) > 0 and
(
r(t)u′(t)

)′
< 0, (2.1)

eventually.

Proof. Assume that u(t) is a positive solution of (E). Then (r(t)u′(t))′ < 0, which implies
that r(t)u′(t) is decreasing. If we admit that r(t)u′(t) < 0 for t ≥ t1 ≥ t0, then there exists a
constant c > 0 such that r(t)u′(t) ≤ −c for t ≥ t1. An integration from t1 to t yields

u(t) ≤ u(t1)− c
∫ t

t1

1
r(s)

ds→ −∞ as t→ ∞.

This is a contradiction and we conclude that r(t)u′(t) > 0.
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We establish the following basic oscillatory criterion that will be improved in successive
steps.

Theorem 2.2. Assume that there exists a constant α such that

R(t)
∫ ∞

t
p(s)ds ≥ α >

1
4

, (2.2)

eventually. Then (E) is oscillatory.

Proof. Condition (2.2) guarantees oscillation of (E1), which implies oscillation of (E) (see
e.g. [3, 7]).

The above criterion does not include the advanced argument σ(t) and so it is more suitable
for (E1). But in view of Theorem 2.2, we may assume that the condition (opposite to (2.2))
holds, namely

R(t)
∫ ∞

t
p(s)ds ≥ α but α ≤ 1

4
.

In our main results, we adapt criterion (2.2) from Theorem 2.2 to contain also information
about the advanced argument.

3 Main results

Our intended comparison technique is based on the new monotonic properties of nonoscilla-
tory solutions.

Theorem 3.1. Assume that u(t) is a positive solution of (E) and

R(t)
∫ ∞

t
p(s)ds ≥ α > 0, (3.1)

eventually. Then there is t∗ such that for t ≥ t∗

u(t)
Rα(t)

x.

Proof. Assume that u(t) > 0 is a solution of (E). An integration of (E) yields

r(t)u′(t) ≥
∫ ∞

t
p(s)u(σ(s))ds ≥ u(σ(t))

∫ ∞

t
p(s)ds

≥ u(t)
∫ ∞

t
p(s)ds.

Thus, (
u(t)

Rα(t)

)′
=

1
r(t)Rα+1(t)

[
R(t)r(t)u′(t)− αu(t)

]
≥ u(t)

r(t)Rα+1(t)

[
R(t)

∫ ∞

t
p(s)ds− α

]
≥ 0.

The proof is complete.

Remark 3.2. Theorem 3.1 provides a new monotonic property of positive solution of (E). In
earlier results it is only known that u(t) ↑ and u(t)/R(t) ↓ . This new information permits us
to essentially improve oscillatory criteria for advanced differential equations.
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We are now prepared to establish a new comparison result that really contains advanced
argument.

Theorem 3.3. Let (3.1) hold. Assume that differential equation

(
r(t)u′(t)

)′
+

(
R(σ(t))

R(t)

)α

p(t)u(t) = 0 (E2)

is oscillatory. Then (E) is oscillatory.

Proof. To the contrary, assume that (E) possesses an eventually positive solution u(t). Since
u(t)/Rα(t) is increasing, we conclude that u(t) is a positive solution of the differential in-
equality (

r(t)u′(t)
)′
+

(
R(σ(t))

R(t)

)α

p(t)u(t) ≤ 0.

By Corollary 2 in [7], the corresponding differential equation (E2) also has a positive solution.
This is a contradiction and the proof is complete.

Employing any oscillatory criterion for the oscillation of (E2), we immediately obtain an
oscillation result for (E).

Theorem 3.4. Let (3.1) hold. Assume that there exists a constant α1 such that

R(t)
∫ ∞

t

(
R(σ(t))

R(t)

)α

p(s)ds ≥ α1 >
1
4

, (3.2)

eventually. Then (E) is oscillatory.

Proof. Condition (3.2) guarantees (see e.g. [3]) oscillation of (E2), which implies oscillation
of (E).

We support the results obtained with a series of illustrative examples.

Example 3.5. Consider the second order advanced Euler differential equation

y′′(t) +
a
t2 y(λ t) = 0, (Ex)

with a > 0, λ > 1. Now α = a and by Theorem 3.4, Eq. (Ex) is oscillatory provided that

aλa >
1
4

.

For e.g. a = 0.2 it is required λ ≥ 3.051758 or conversely for given λ = 1.8 we need a ≥
0.219712.

Remark 3.6. It is useful to notice that Koplatadze et al. [6] studied oscillation of advanced dif-
ferential equations and provided the oscillatory criterion that for (Ex) takes the form
a(2 + ln λ) > 1. Instead of ln λ our criterion contains the power λa.

Remark 3.7. Agarwal et al. [1] studied (E) by comparing it with the first order advanced
equation. But this technique again leads to criterion that for (Ex) uses ln λ instead of λa. So
our criterion essentially improves known results.
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If the criterion (3.2) fails ( α1 ≤ 1/4), then we are able to derive new oscillatory criterion
that makes use of the constant α1.

Theorem 3.8. Let (3.1) hold. Assume that u(t) is a positive solution of (E) and

R(t)
∫ ∞

t

(
R(σ(s))

R(s)

)α

p(s)ds ≥ α1 > 0, (3.3)

eventually. Then there is t∗ such that for t ≥ t∗

u(t)
Rα1(t)

x.

Proof. Assume that (E) possesses a positive solution u(t). Since u(t)/Ra(t) is increasing, we
see that

r(t)u′(t) ≥
∫ ∞

t
p(s)u(σ(s))ds ≥

∫ ∞

t

(
R(σ(s))

R(s)

)α

u(s)p(s)ds

≥ u(t)
∫ ∞

t

(
R(σ(s))

R(s)

)α

p(s)ds.

Therefore, (
u(t)

Rα1(t)

)′
=

1
r(t)Rα1+1(t)

[
R(t)r(t)u′(t)− α1u(t)

]
≥ u(t)

r(t)Rα1+1(t)

[
R(t)

∫ ∞

t

(
R(σ(s))

R(s)

)α

p(s)ds− α1

]
≥ 0.

The proof is complete.

Theorem 3.9. Let (3.1) and (3.3) hold. Assume that differential equation

(
r(t)u′(t)

)′
+

(
R(σ(t))

R(t)

)α1

p(t)u(t) = 0 (E3)

is oscillatory. Then (E) is oscillatory.

Theorem 3.10. Let (3.1) and (3.3) hold. Assume that there exists a constant α2 such that

R(t)
∫ ∞

t

(
R(σ(t))

R(t)

)α1

p(s)ds ≥ α2 >
1
4

, (3.4)

eventually. Then (E) is oscillatory.

The proofs of the above theorems are similar to those of Theorem 3.3 and 3.4 and so they
are omitted.

Example 3.11. Consider once more the differential equation (Ex). For this equation α1 = aλa.
By Theorem 3.10, Eq. (Ex) is oscillatory provided that

aλα1 >
1
4

.

Since α1 > a, Theorem 3.10 improves Theorem 3.4. Now for a = 0.2 it is needed only λ ≥
2.5267188.
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We can repeat the above process and improve our oscillatory criteria again and again. To
simplify our considerations we use the additional condition that there is a positive constant λ

such that
R(σ(t))

R(t)
≥ λ > 1, (3.5)

eventually. Then, in view of (3.1), conditions (3.3) and (3.4) can be written in simpler forms as

α1 = λαα >
1
4

,

α2 = λα1 α >
1
4

,

respectively. Repeating the above process, we get the increasing sequence {αn}∞
n=0 defined as

follows:

α0 = α,

αn+1 = λαn α.
(3.6)

Now, we can generalise the oscillatory criteria presented in Theorems 3.4 and 3.10.

Theorem 3.12. Let (3.1) and (3.5) hold. Assume that there exists a positive integer n such that
αj ≤ 1/4 for j = 0, 1, . . . , n− 1 and

αn >
1
4

,

Then (E) is oscillatory.

Example 3.13. Consider the second order advanced differential equation

y′′(t) +
0.222

t2 y(1.61 t) = 0, (Ex1)

For this equation α0 = 0.222 and λ = 1.61. Simple computations show that

α1 = 0.2467563 and α2 = 0.2496828,

so Theorems 3.4 and 3.10 fail for (Ex1). But

α3 = 0.2500310 >
1
4

and Theorem 3.12 guarantees the oscillation of (Ex1).
If we consider the modified equation

y′′(t) +
0.21894135

t2 y(1.7 t) = 0, (Ex2)

then some suitable software (e.g. Matlab) is needed to verify that αi < 1/4 for i = 0, 1, . . . , 7
and α8 = 0.250000006 > 1/4 and to conclude that (Ex2) is oscillatory.

Since the sequence {αn}∞
n=0 is increasing, there exists

ρ = lim
t→∞

αn (3.7)

and Theorem 3.12 can be reformulated as follows.
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Theorem 3.14. Let (3.1) and (3.5) hold. Assume ρ is defined by (3.7). If

ρ >
1
4

, (3.8)

then (E) is oscillatory.

Since for α and λ given by (3.1) and (3.5) the calculation of ρ is not easy, the above criterion
is only theoretical. At the same time it yields an easily verifiable oscillation criterion.

But at first we recall some facts concerning iterated exponentiation. The problem of iter-
ated exponentiation is the evaluation

δ = zzz
. . .

(3.9)

whenever it makes the sense. Euler was the first to prove that this iteration converges for
z ∈

(
e−e, e1/e). From our point of view it is important for desired δ to find z such that (3.9)

holds.
Since (3.9) can be written in the form δ = zδ, then necessarily

z = δ1/δ. (3.10)

Employing criteria for convergence of iterative exponentiation, we obtain a sufficient condition
for the iterations of z given by (3.10) to converge to σ.

Lemma 3.15. Assume that z = δ1/δ, where δ < e and z > e−e. Then (3.9) holds.

We rewrite the iteration process (3.6) in term of iterated exponentiation to be able to apply
Lemma 3.15. It is easy to see that ρ given by (3.7) is the limit of the iterations

ρ = αzzz
. . .

, where z = λα.

Theorem 3.16. Let (3.1) and (3.5) hold. If

α >
1
4e

(3.11)

and
αλ1/4 >

1
4

, (3.12)

then (E) is oscillatory.

Proof. By Theorem 3.14, it is sufficient to show that the corresponding ρ > 1/4. For that
reason, we verify that the condition αλ1/4 = 1/4 yields ρ = 1/4.

It is easy to see that

αλ1/4 = 1/4 ⇔ z = λα =

(
1

4α

)4α

By Lemma 3.15, for z = (1/4α)4α the following iterated exponentiation is convergent and

zzz
. . .

=
1

4α

which yields that

ρ = αzzz
. . .

=
1
4

.

The proof is complete.
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Although Theorem 3.16 is based on all previous consecutive improvements of Theorem 3.4,
it provides simple easily verifiable oscillatory criterion that do not require any mathematical
software for verification.

Example 3.17. Consider again the advanced Euler differential equation (Ex). By Theorem 3.16,
Eq. (Ex) is oscillatory provided that

aλ1/4 >
1
4

and a >
1
4e

.

For a = 0.2 it is sufficient that λ ≥ 2.4414063.

The following example is intended to show that condition (3.11) cannot be relaxed.

Example 3.18. We consider advanced equation

y′′(t) +
0.043240136481863

t2 y(1526 t) = 0, (Ex4)

It is easy to verify that (3.12) holds, but (3.11) fails and (Ex4) has a positive solution y(t) = t0.1.

4 Summary

In the paper, as a consequence of new monotonic properties of nonoscillatory solutions, we
introduce a new comparison technique for studying oscillation of second order advanced
differential equations. Our results fulfil the gap in oscillation theory.
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