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Abstract. In the work we proposed the model of immunosensor, which is based on
the system of lattice differential equations with delay. The conditions of local asymp-
totic stability for endemic state are gotten. For this purpose we have used method
of Lyapunov functionals. It combines general approach to construction of Lyapunov
functionals of the predator–prey models with lattice differential equations. Numerical
examples have showed the influence on stability of model parameters. From our nu-
merical simulations, we have found evidence that chaos can occur through variation in
the time delay. Namely, as the time delay was increased, the stable endemic solution
changed at a critical value of τ to a stable limit cycle. Further, when increasing the time
delay, the behavior changed from convergence to simple limit cycle to convergence to
complicated limit cycles with an increasing number of local maxima and minima per
cycle until at sufficiently high time delay the behavior became chaotic.
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1 Introduction

With the growing pace of life and the need for more and more accurate detection methods,
interest in biosensors is rising among science and industry as well. Biosensors are an alterna-
tive to commonly used measurement methods, which are characterized by: poor selectivity,
high cost, poor stability, slow response and often can be performed only by highly trained
personnel. They are a new generation of sensors, which use in their construction a biological
material that provides a very high selectivity, also allow very quick and simple measurement
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[40]. Biosensors are characterized by high versatility and therefore they are widely used in
food industry [2] environmental protection [23], the defense industry, [9], but are most com-
monly used in medicine as a tool supporting making diagnoses [37]. In whole biosensor
family there are two divisions. The first is related to the receptor layer and to the biologi-
cal material used in its construction, which may be: enzyme, protein, porphyrin, antigen or
antibody. The second is bound to the traducer layer, where the biological effect is converted
on the measurable signal (electrochemical, impedance, amperometric, potentiometric optical
biosensors or based on weight changed -piezoelectric biosensors).

1.1 Immunosensors structure and characteristics

Among large families of biosensors, immunosensors can be distinguished. In this type of sen-
sor, receptor layer (sensitive, selective) contains an immobilized biological element (antibody,
antigen or hapten), which are an immunological receptor for measurable molecules (analytes).
In immunsor, the reaction based on the interaction between the antibody (Ab) and antigen
(Ag) or small molecules (haptens) takes place. Antibodies are often called immunoglobulins,
because they are proteins associated with the immune system. Immunoglobulins are used
by the immune system to identify and neutralize foreign objects, they exhibit antigen binding
properties. Both antigens and antibodies can be used in the receptor layer in biosensors. How-
ever, because of the loss of antibodies attractive properties during the immobilization process
the antigens are used in receptor layer construction, whereas antibodies generally play a func-
tion of analytes (molecules subject to detection) [39]. During the detection process, combining
antibodies with antigen leads to complex formation The binding between the antigen and the
antibody is very strong, the binding constant is Ka = 10−12 − 10−14 [24].

1.2 Qualitative investigations of predator–prey models

Since a predator–prey model is the main counterpart of the proposed model in the work, that
will be used for description of immunosensor pixel, we present here the main results dealing
with its stability investigation.

The most of results dealing with stability investigation of predator–prey models are stated
with help of the basic reproduction numbers. There are different approaches to calculate
the basic reproduction number. Below we pay Your attention to ones which are dealt with
our problem. One of the most common definition of the basic reproduction number was
introduced in [13]. The basic reproduction number is mathematically defined as the dominant
eigenvalue of a positive linear operator (so called next-generation operator). It was shown that
in certain special cases one can easily compute or estimate this eigenvalue.

In [35] they used approach based on next-generation operator [13] for computing the basic
reproduction numbers for SI epidemic models with distributed and discrete delays. The orig-
inality of the works, which study epidemic systems with distributed delay [6, 32], is to have a
basic reproduction number R0 which depends on the distribution of the latent period. So, in
[32] the model of infectious disease with distributed delays is considered which uses gamma
function as distribution functions. For the different values of the basic reproduction number
and the second basic reproduction number, there are investigated the stability of the infection-
free equilibrium, the single-infection equilibrium and the double infection equilibrium. It was
concluded that increasing delays will decrease the values of the basic reproduction number
and the second basic reproduction number.
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One of the most general models with discrete time delays is considered in [38]. The
basic reproduction numbers are introduced for all five counterparts of the model. In [18] the
model makes use of the more realistic standard incidence function and explicitly incorporates
a discrete time delay in virus production. As a result, the infection reproduction number is
explicitly dependent on the time delay. But we note that this is only a consequence of the
explicit incorporation of the time delay into the parameters of the model.

In [21] the basic reproduction numbers are introduced for SIR epidemic model with dis-
tributed time delay on complex population networks. Under this framework, each node of
the network represents an individual in its corresponding state (susceptible, infected, or re-
moved), possible contacts between two individuals are linked by an edge, and these two nodes
are called neighbors of each other. Each edge is a connection along which the infection can
spread, thus a node can acquire infection only from one of its neighbors, in other words, the
contact rate is proportional to the number of neighbors, i.e. the degree of a node. Despite the
complex population networks are close to lattices, this approach is not appropriate for our
work because it describes only amount of the nodes of the certain degree. Further in the work
we will use an approach which is offered in [54] for delayed system. In order to calculate R0

it does not use the values of parameters directly, but the steady states themselves. We will try
to extend it to lattice equations.

We pay especial attention primarily on approaches of Lyapunov functional construction
[1, 16, 46–48]. One of the current survey on Lyapunov functional for predator–prey models
with delays you can find in [49] (see pp. 43–44). When considering predator–prey models
without delay, then using the direct Lyapunov method with Volterra type Lyapunov functions,
we can establish conditions for the global stability of an endemic steady state [25, 26, 28]. The
most general results were received by A. Korobeinikov for functional responses of a general
nonlinear form without delays in [27].

There were a few attempts to develop Lyapunov functionals for predator–prey models with
delays using Volterra type Lyapunov functions as prototypes. Here we present two the most
significant of them. The papers [35, 36] presented an SIR model of disease transmission with
delay and nonlinear incidence. The analysis there resolves the global stability of the endemic
equilibrium for the case where the reproduction number R0 is greater than one. In such a
case the global dynamics are fully determined for R0 > 1 by using a Lyapunov functional. It
was shown that the endemic equilibrium is globally asymptotically stable whenever it exists.

In [49] the global asymptotic stability of delay Lotka–Volterra-type cooperative systems
with discrete delays are carried out via the construction of a suitable Lyapunov functional,
obtained from the appropriate combination of the elegant Lyapunov function

L̃(t) = ln
n
n?

+
n?

n
− 1

and the Volterra-type Lyapunov functional

W+(t) =
∫ τ

0

[
n(t− w)

n?
− 1− ln

n(t− w)

n?

]
dw

In the work [19] sufficient conditions for both local and global stability of the positive
equilibrium in a predator–prey system with time delays

dN1(t)
dt

= N1(t)
[
a1 − b1N1(t− τ)− c1N2(t− σ)

]
,

dN2(t)
dt

= N2(t)
[
− a2 + c2N1(t− σ)− b2N2(t)

] (1.1)
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with nonnegative initial conditions (positive at t = 0) are obtained by constructing suitable
Lyapunov functionals.

In [51] this technique of construction of Lyapunov functionals was applied for the
predator–prey system with Michaelis–Menten type functional response

ẋ1 = x1(t)
(

a1 − a11x1

(
t− τ11 −

a12x2(t)
m1 + x1(t)

))
,

ẋ2 = x2(t)
(
−a2 +

a21x1(t− τ21)

m1 + x1(t− τ21)
− a22x2(t− τ22)−

a23x3(t)
m2 + x2(t)

)
,

ẋ3 = x3(t)
(
−a3 +

a32x2(t− τ32)

m2 + x2(t− τ32)
− a33x3(t− τ33)

)
.

In [52] it was used for Holling-type 3 functional response

ẋ1(t) = x1(t)
(

a1 − a11x1(t− τ1)− a12
x1(t)x2(t)
m + x2

1(t)

)
,

ẋ2(t) = x2(t)
(
−a2 + a21

x2
1(t− τ2)

m + x2
1(t− τ2)

− a22x2(t− τ3)

)
.

The last approach will be partially used for lattice model offered further in the given paper.
Bifurcation and chaos are important phenomena affecting many predator–prey systems.

They are also related to the stability and multiplicity phenomena associated with these sys-
tems. The phenomena are not only of theoretical or mathematical interest but are also im-
portant for experimental research and design (for example, biosensor design). In the last
few years, researchers have been showing keen interest to investigate the bifurcations and the
transition to chaos arising from the delayed predator–prey systems.

In [4,53] it was proved that the ratio-dependent predator–prey systems with constant delay
undergoes a Hopf bifurcation at the positive equilibrium. Using the normal form theory
and the center manifold reduction, explicit formulae were derived to determine the direction
of bifurcations and the stability and other properties of bifurcating periodic solutions. A
chaotic behavior occurs in the ratio-dependent predator–prey model with stage-structured
predators and constant delay. Numerical simulations of the work [8] showed that the behavior
of such system can become extremely complicated as the time delay is increased, with the
long-time behavior changing from a stable coexistence equilibrium, to a limit cycle with one
local maximum and minimum per cycle (Hopf bifurcation), to limit cycles with an increasing
number of local maxima and minima per cycle, and finally to chaotic-type solutions. In
the works [10, 29] predator–prey models with distributed delay were investigated. For such
systems numerical solutions revealed the existence of stable periodic attractors, attractors at
infinity, as well as bounded chaotic dynamics in various cases.

1.3 Lattice differential equations

Lattice differential equations arise in many applied subjects, such as chemical reaction, image
processing, material science, and biology [42]. In the models of lattice differential equations,
the spatial structure has a discrete character, and lattice dynamics have recently been exten-
sively used to model biological problems [11, 20, 42, 44, 50, 55] since the environment in which
the species population lives may be discrete but not continuous.
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2 Lattice model of antibody–antigen interaction for two-dimensional
biopixels array

Let Vi,j(t) be concentration of antigens, Fi,j(t) be concentration of antibodies in biopixel (i, j),
i, j = 1, N.

The model is based on the following biological assumptions for arbitrary biopixel (i, j).

1. We have some constant birthrate β > 0 for antigen population.

2. Antigens are detected, binded and finally neutralized by antibodies with some probabil-
ity rate γ > 0.

3. We have some constant death rate of antibodies µ f > 0.

4. We assume that when the antibody colonies are absent, the antigen colonies are governed
by the well known delay logistic equation:

dVi,j(t)
dt

= (β− δvVi,j(t− τ))Vi,j(t), (2.1)

where β and δv are positive numbers and τ ≥ 0 denotes delay in the negative feedback
of the antigen colonies.

5. The antibody decreases the average growth rate of antigen linearly with a certain time
delay τ; this assumption corresponds to the fact that antibodies cannot detect and bind
antigen instantly; antibodies have to spend τ units of time before they are capable of de-
creasing the average growth rate of the antigen colonies; these aspects are incorporated
in the antigen dynamics by the inclusion of the term −γFi,j(t− τ) where γ is a positive
constant which can vary depending on the specific colonies of antibodies and antigens.

6. In the absence of antigen colonies, the average growth rate of the antibody colonies
decreases exponentially due to the presence of −µ f in the antibody dynamics and so
as to incorporate the negative effects of antibody crowding we have included the term
−δ f Fi,j(t) in the antibody dynamics.

7. The positive feedback ηγVi,j(t − τ) in the average growth rate of the antibody has a
delay since mature adult antibodies can only contribute to the production of antibody
biomass; one can consider the delay τ in ηγVi,j(t− τ) as a delay in antibody maturation.

8. While the last delay need not be the same as the delay in the hunting term and in the
term governing antigen colonies, we have retained this for simplicity. We remark that the
delays in the antibody term, antibody replacement term and antigen negative feedback
term can be made different and a similar analysis can be followed.

9. We have some diffusion of antigens from four neighboring pixels (i − 1, j), (i + 1, j),
(i, j − 1), (i, j + 1) (see Fig. 2.1) with diffusion D > 0. Here we consider only diffu-
sion of antigens, because the model describes so-called “competitive” configuration of
immunosensor [12]. When considering competitive configuration of immunosensor, the
factors immobilized on the biosensor matrix are antigens, while the antibodies play the
role of analytes or particles to be detected.
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Pixel
(i− 1, j)

Pixel
(i, j)

Pixel
(i, j− 1)

Pixel
(i, j + 1)

Pixel
(i + 1, j)

Dvi−1,j(t)Dnvi,j(t)

Dvi,j+1(t)

Dnvi,j(t)Dvi,j−1(t)

Dnvi,j(t)

Dnvi,j(t)Dvi+1,j(t)

Figure 2.1: Linear lattice interconnected four neighboring pixels model, n > 0 is
the disbalance constant

10. We consider surface lateral diffusion (movement of molecules on the surface on solid
phase toward an immobilizated molecules) [43]. Moreover, there are works [5, 7] which
assume and consider surface diffusion as an entirely independent stage.

11. We extend definition of usual diffusion operator in case of surface diffusion in the fol-
lowing way. Let n ∈ (0, 1] be a factor of diffusion disbalance. It means that only nth
portion of antigens of the pixel (i, j) may be included into diffusion process to any
neighboring pixel as a result of surface diffusion.

For the reasonings given we consider a very simple delayed antibody–antigen competition
model for biopixels two-dimensional array which is based on well-known Marchuk model
[15, 33, 34, 41] and using spatial operator Ŝ offered in [45] (Supplementary information, p. 10).

dVi,j(t)
dt

= (β− γFi,j(t− τ)− δvVi,j(t− τ))Vi,j(t) + Ŝ{Vi,j},

dFi,j(t)
dt

= (−µ f + ηγVi,j(t− τ)− δ f Fij(t)
)

Fi,j(t)
(2.2)

with given initial functions

Vi,j(t) = V0
i,j(t) ≥ 0, Fi,j(t) = F0

i,j(t) ≥ 0, t ∈ [−τ, 0),

Vi,j(0), Fi,j(0) > 0.
(2.3)

For a square N × N array of traps, we use the following discrete diffusion form of the
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spatial operator [45]

Ŝ{Vi,j} =



D
[
V1,2 + V2,1 − 2nV1,1

]
, i, j = 1

D
[
V2,j + V1,j−1 + V1,j+1 − 3nVi,j

]
, i = 1, j ∈ 2, N − 1

D
[
V1,N−1 + V2,N − 2nV1,N

]
, i = 1, j = N

D
[
Vi−1,N + Vi+1,N + Vi,N−1 − 3nVi,N

]
, i ∈ 2, N − 1, j = N

D
[
VN−1,N + VN,N−1 − 2nVN,N

]
i = N, j = N

D
[
VN−1,j + VN,j−1 + VN,j+1 − 3nVN,j

]
, i = N, j ∈ 2, N − 1

D
[
VN−1,1 + VN,2 − 2nVN,1

]
, i = N, j = 1

D
[
Vi−1,1 + Vi+1,1 + Vi,2 − 3nVi,1

]
, i ∈ 2, N − 1, j = 1

D
[
Vi−1,j + Vi+1,j + Vi,j−1 + Vi,j+1 − 4nVi,j

]
, i, j ∈ 2, N − 1.

(2.4)

Each colony is affected by the antigen produced in four neighboring colonies, two in each
dimension of the array, separated by the equal distance ∆. We use the boundary condition
Vi,j = 0 for the edges of the array i, j = 0, N + 1. Further we will use the following notation of
the constant

k(i, j) =


2, i, j = 1; i = 1, j = N; i = N, j = N; i = N, j = 1,

3, i = 1, j ∈ 2, N − 1; i ∈ 2, N − 1, j = N; i = N, j ∈ 2, N − 1;

i ∈ 2, N − 1, j = 1

4, i, j ∈ 2, N − 1

(2.5)

which will be used in manipulations with the spatial operator (2.4).
Results of modeling (2.2) are presented in Section 4. It can be seen that qualitative behav-

ior of the system is determined mostly by the time of immune response τ (or time delay),
diffusion D and constant n.

3 Stability problem in immunosensors

In the context of biosensors two types of stability can be distinguished: self stability and
operational stability. Self stability is defined as the enhancement or improvement of activity
retention of an enzyme, protein, diagnostic or device when stored under specific condition.
Operational stability is the retention of activity when in use [17]. The stability of the sensible
element located in the biosensor receptor layer and the stability associated with the activity of
the biosensor matrix components during use, determine the usefulness of the device

Qualitative results which are obtained hereinafter can be applied for both types of stabil-
ity. Namely, simulation of different types of stability problems can be implemented through
different initial conditions for pixels (especially for boundary pixels).
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3.1 Steady states

The steady states of the model (2.2) are the intersection of the null-clines dVi,j(t)/dt = 0 and
dFi,j(t)/dt = 0, i, j = 1, N.

Antigen-free steady state. If Vi,j(t) ≡ 0, the free antigen equilibrium is at E0
i,j ≡

(
0, 0
)
,

i, j = 1, N or E0
i,j ≡

(
0,− µ f

δ f

)
, i, j = 1, N. The last solution does not have biological sense and

can not be reached for nonnegative initial conditions (2.3).
When considering endemic steady state E∗i,j ≡

(
V∗i,j, F∗i,j

)
, i, j = 1, N for (2.2) we get the

algebraic system: (
β− γF∗i,j − δvV∗i,j

)
V∗i,j + Ŝ

{
V∗i,j
}
= 0,(

− µ f + ηγV∗i,j − δ f F∗i,j
)

F∗i,j = 0, i, j = 1, N.
(3.1)

The solutions
(
V∗i,j, F∗i,j

)
of (3.1) can be found as a result of solving lattice equation with respect

to V∗i,j, and using relation F∗i,j =
−µ f +ηγV∗i,j

δ f

Then we have to differ two cases.

Identical endemic state for all pixels. Let us assume there is the solution of (3.1) V∗i,j ≡ V∗,
F∗i,j ≡ F∗, i, j = 1, N, i.e., Ŝ

{
V∗i,j
}
≡ 0. Then E∗i,j =

(
V∗, F∗

)
, i, j = 1, N can be calculated as

V∗ =
−βδ f − γµ f

δvδ f − ηγ2 , F∗ =
δvµ f − ηγβ

δvδ f − ηγ2 . (3.2)

provided that δvδ f − ηγ2 < 0.

Nonidentical endemic state for pixels. In general case we have endemic steady state which is
different from (3.2). It is shown numerically in Section 4 that it appears as a result of diffusion
between pixels D.

At absence of diffusion, i.e. D = 0, we have only identical endemic state for pixels of
external layer. At presence of diffusion D > 0 nonidentical endemic states tends to identical
one (3.2) at internal pixels, which can be observed at numerical simulation. This phenomenon
is clearly appeared at bigger amount of pixels.

3.2 Basic reproduction numbers

Here we define the basic reproduction number for antigen colony which is localized in pixel
(i, j).

When considering epidemic models, the basic reproduction number, R0, is defined as the
expected number of secondary cases produced by a single (typical) infection in a completely
susceptible population. It is important to note that R0 is a dimensionless number [22]. When
applying this definition to the pixel (i, j), which is described by the equation (2.2), we get

R0,i,j = Ti,jci,j, di,j

where Ti,j is the transmissibility (i.e., probability of binding given constant between an antigen
and antibody), ci,j is the average rate of contact between antigens and antibodies, and di,j is
the duration of binding of antigen by antibody till deactivation.
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Unfortunately, the lattice system (2.2) does not include all parameters, which allow to
calculate the basic reproduction numbers in a clear form. Firstly, let us consider pixel (i?, j?)
without diffusion, i.e., Ŝ

{
Vi?,j?

}
≡ 0. In this case the non-negative equilibria of (2.2) are

E0
i?,j? =

(
V0, 0

)
:=
(

β

δv
, 0
)

, E?i?,j? =
(
V?, F?

)
.

Due to the approach which was offered in [54] (in pages 4 for ordinary differential equations,
5 for delay model), we introduce the basic reproduction number for pixel (i?, j?) without
diffusion, which is given by expression

R0,i?,j? :=
V0

V?
=

β

δvV?
=

β(ηγ2 − δvδ f )

δv(βδ f + γµ f )
.

Its biological meaning is given as being the average number of offsprings produced by a
mature antibody in its lifetime when introduced in a antigen-only environment with antigen
at carrying capacity.

According to the common theory it can be shown that antibody-free equilibrium E0
i?,j? is

locally asymptotically stable if R0,i?,j? < 1 and it is unstable if R0,i?,j? > 1. It can be done with
help of analysis of the roots of characteristic equation (similarly to [54, p. 5]). Thus, R0,i?,j? > 1
is sufficient condition for existence of the endemic equilibrium E?i?,j? .

We can consider the expression mentioned above for the general case of the lattice system
(2.2), i.e., when considering diffusion. In this case we have the “lattice” of the basic reproduc-
tion numbers R0,i,j, i, j = 1, N satisfying to

R0,i,j :=
V0

i,j

V?
i,j

, i, j = 1, N, (3.3)

where E0
i,j, i, j = 1, N are nonidentical steady states, which are found as a result of solution of

the algebraic system (
β− δvV0

i,j

)
V0

i,j + Ŝ
{

V0
i,j

}
= 0, i, j = 1, N, (3.4)

endemic states E?i,j =
(
V?

i,j, F?
i,j
)
, i, j = 1, N are found using (3.1).

It is worth to say that due to the common theory the conditions R0,i,j > 1, i, j = 1, N are
sufficient for the existence of endemic state E?i,j. We will check it only in the Section 4 with
help of numerical simulations.

3.3 Local asymptotic stability

In this subsection we discuss the local asymptotic stability of the positive equilibrium E∗i,j =(
V∗i,j, F∗i,j

)
, i, j = 1, N.

Linearising system (2.2) at E∗i,j, i, j = 1, N, we obtain for vi,j(t) = Vi,j(t)− V∗i,j and fi,j(t) =
Fi,j(t)− F∗i,j

dvi,j(t)
dt

= −
(

Ŝ{V∗i,j}
V∗i,j

+ k(i, j)Dn

)
vi,j(t)− δvV∗i,jvi,j(t− τ)

− γV∗i,j fi,j(t− τ) + ˆ̂S(i, j, t),

d fi,j(t)
dt

= ηγF∗vi,j(t− τ)− δ f F∗i,j fi,j(t),

i, j = 1, N. (3.5)
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where ˆ̂S(i, j, t) = Ŝ{Vi,j(t)}+ k(i, j)DnVi,j(t). We note that the locally uniformly asymptotic
stability of the endemic equilibrium E∗i,j =

(
V∗i,j, F∗i,j

)
, i, j = 1, N of system (2.2) follows from

that of the zero solution of system (3.5) (see [30], Theorem 4.2, page 26).

Theorem 3.1. Assume that:

1. The basic reproduction numbers satisfy

R0,i,j > 1, i, j = 1, N, (3.6)

2. The value of time delay τ is less than τ?. Here τ? = min{τ1, τ2}, where

τ1 := min
i,j∈1,N

[
2K1(i,j)−k(i,j)D2−1

γV?
i,j

[(
δv
γ +1
)

k(i,j)D2+

(
2δv
γ +1

)
K1(i,j)+δvV?

i,j+
δv
γ +(2ηγ+δ f )F?

i,j

]] > 0, (3.7)

τ2 := min
i,j∈1,N

[
2δ f

K1(i,j)+(δv+2γ)V?
i,j+1+δ f F?

i,j

]
> 0, (3.8)

where K1(i, j) :=
Ŝ{V∗i,j}

V∗i,j
+ k(i, j)Dn + δvV∗i,j.

Then the positive equilibrium E∗i,j =
(
V∗i,j, F∗i,j

)
, i, j = 1, N of system (2.2) is uniformly asymptoti-

cally stable.

Proof. The assumption (3.6) enables existence of the endemic steady state E∗i,j =
(
V∗i,j, F∗i,j

)
,

i, j = 1, N.
Let us rewrite equations (2.2) in the following way

d
dt

[
vi,j(t)− δvV∗i,j

∫ t

t−τ
vi,j(s)ds− γV∗i,j

∫ t

t−τ
fi,j(s)ds

]
= − K1(i, j)vi,j(t)

− γV∗i,j fi,j(t) + ˆ̂S(i, j, t),

d
dt

[
fi,j(t)ηγF∗i,j

∫ t

t−τ
vi,j(s)ds

]
= ηγF∗i,jvi,j(t)− δ f F∗i,j fi,j(t).

(3.9)

We will use Lyapunov functional for the entire system (2.2) of the following form1

W(t) =
N

∑
i,j=1

{
1

γV∗i,j
Wi,j,1(t) +

1
ηγF∗i,j

Wi,j,2(t)

}
.

It summarizes Lyapunov functionals for all pixels i, j = 1, N. Lyapunov functionals Wi,j,1(t)
are constructed basing on the first equation from (2.2), Wi,j,2(t) use the second ones.

Let us define functional Wi,j,1(t) = Wi,j,1,1(t) + Wi,j,1,2(t), where

Wi,j,1,1(t) =
[

vi,j(t)− δvV∗i,j
∫ t

t−τ
vi,j(s)ds− γV∗i,j

∫ t

t−τ
fi,j(s)ds

]2

,

1 Note that we denote the value of functional W : C[−τ, 0)→ R+, which is calculated at vector-interval x(t+ s),
s ∈ [τ, 0], by W(t) (or sometimes W(x(t))).
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and

Wi,j,1,2(t) =
(

δvV∗i,jK1(i, j) + δvγ(V∗i,j)
2 + δvV∗i,j

) ∫ t

t−τ

∫ t

s
v2

i,j(ξ)dξds

+
(

γV∗i,jK1(i, j) + γ2(V∗i,j)
2 + γV∗i,j

) ∫ t

t−τ

∫ t

s
f 2
i,j(ξ)dξds

Such form of Wi,j,1,1(t) allows us to use the first equation of (3.9) for getting derivative.
Lyapunov functionals Wi,j,1,2(t) are chosen in such a form in order to reduce the derivative2

of Wi,j,1(t) to quadratic form of vi,j(t) and fi,j(t) as close as possible.
We define Wi,j,2(t) = Wi,j,2,1(t) + Wi,j,2,2(t). Considering the second equation of (3.9) we

define

Wi,j,2,1(t) =
[

fi,j(t) + ηγF∗i,j
∫ t

t−τ
vi,j(s)ds

]2
.

Wi,j,2,2(t) is defined in the following form

Wi,j,2,2(t) = ηγF∗i,j(ηγF∗i,j + F∗i,jδ f )
∫ t

t−τ

∫ t

t−τ
v2

i,j(ξ)dξds, (3.10)

allowing to reduce the derivative of Wi,j,2(t) to quadratic form of vi,j(t) and fi,j(t).
Further let us find derivatives of Lyapunov functionals and estimate them comparing with

some quadratic form of vi,j(t) and fi,j(t).
Calculating the derivative of Wi,j,1,1 along solutions of (3.9), we have

dWi,j,1,1(t)
dt

= 2
[
vi,j(t)− δvV∗i,j

∫ t

t−τ
vi,j(s)ds− γV∗i,j

∫ t

t−τ
fi,j(s)ds

]
×
[
− K1(i, j)vi,j(t)− γV∗i,j fi,j(t) + ˆ̂S(i, j, t)

]
Using the inequality 2ab ≤ a2 + b2, we get

dWi,j,1,1(t)
dt
≤ − 2K1(i, j)v2

i,j(t)− 2γV∗i,jvi,j(t) fi,j(t)

+ 2δvV∗i,jK1(i, j)
∫ t

t−τ
|vi,j(s)||vi,j(t)|ds + 2γV∗i,jK1(i, j)

∫ t

t−τ
| fi,j(s)||vi,j(t)|ds

+ 2δvγ(V∗i,j)
2
∫ t

t−τ
|vi,j(s)|| fi,j(t)|ds + 2γ2(V∗i,j)

2

×
∫ t

t−τ
| fi,j(s)|| fi,j(t)|ds + 2vi,j(s) ˆ̂S{i, j, t}

+ 2δvV∗i,j
∫ t

t−τ
|vi,j(s)|| ˆ̂S{i, j, t}|ds + 2γV∗i,j

∫ t

t−τ
| fi,j(s)|| ˆ̂S{i, j, t}|ds

2 Note, that in general this derivative may not exist for delayed differential equations. To avoid this difficulty,
R. D. Driver [14] offered a “constructive” definition of a quantity which will always exist and which will play
the role of a derivative in delayed differential equations. Namely, it is the upper right-hand-side derivative. Due
to the definition [14] (page 414) the upper right-hand-side derivative of a locally Lipschitz continuous function
W : RN → R+ along trajectory x(·) is defined by D+W = lim sup∆t→0+

W(x(t+∆t))−W(x(t))
∆t . Hereinafter, for

simplicity we call the upper right-hand-side derivative of Lyapunov functional as the derivative of Lyapunov
functional.
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≤ − 2K1(i, j)v2
i,j(t)− 2γV∗i,jvi,j(t) fi,j(t) + δvV∗i,jK1(i, j)

[
τv2

i,j(t) +
∫ t

t−τ
v2

i,j(s)ds
]

+ γV∗i,jK1(i, j)
[

τv2
i,j(t) +

∫ t

t−τ
f 2
i,j(s)ds

]
+ δvγ(V∗i,j)

2
[

τ f 2
i,j(t) +

∫ t

t−τ
v2

i,j(s)ds
]

+ γ2(V∗i,j)
2
[

τ f 2
i,j(t) +

∫ t

t−τ
f 2
i,j(s)ds

]
+ v2

i,j(t) +
ˆ̂̂
S{i, j, t}

+ δvV∗i,j

[
τ

ˆ̂̂
S{i, j, t}+

∫ t

t−τ
v2

i,j(s)ds
]
+ γV∗i,j

[
τ

ˆ̂̂
S{i, j, t}+

∫ t

t−τ
f 2
i,j(s)ds

]
(3.11)

Here
ˆ̂̂
S(i, j, t) := D2[V2

i−1,j(t) + V2
i+1,j(t) + V2

i,j−1(t) + V2
i,j+1(t)

]
.

Then we derive from (3.11) that

dWi,j,1(t)
dt

≤ (−2K1(i, j) + 2δvV∗i,jK1(i, j)τ + γV∗i,jK1i, jτ + δvγ(V∗i,j)
2τ + 1 + δvV∗i,jτ)v

2
i,j

− 2γV∗i,jvi,j(t) fi,j(t) + (γV∗i,jK1τ + δvγ(V∗i,j)
2τ + 2γ2(V∗i,j)

2τ + γV∗i,jτ) f 2
i,j

+ (1 + δvV∗i,jτ + γV∗i,jτ + γV∗i,jτ)
ˆ̂̂
S{i, j, t}.

(3.12)

Then, calculating the derivative of Wi,j,2,1(t) along solutions of (3.9), we derive that

dWi,j,2,1(t)
dt

= 2
[

fi,j(t) + ηγF∗i,j
∫ t

t−τ
vi,j(s)

]
×
[
ηγF∗i,jvi,j(t)− δ f F∗i,j fi,j(t)

]
≤ 2ηγF∗i,jvi,j fi,j(t)− 2δ f F∗i,j f 2

i,j(t) + 2(ηγF∗i,j)
2
∫ t

t−τ
|vi,j(s)||vi,j(t)|ds

+ 2ηγ(F∗i,j)
2δ f

∫ t

t−τ
|vi,j(s)|| fi,j(t)|ds

≤ 2ηγF∗i,jvi,j fi,j(t)− 2δ f F∗i,j f 2
i,j(t) + (ηγF∗i,j)

2
[

τv2
i,j(t) +

∫ t

t−τ
v2

i,j(s)ds
]

+ ηγ(F∗i,j)
2δ f

[
τ f 2

i,j(t) +
∫ t

t−τ
v2

i,j(s)ds
]

(3.13)

It follows from (3.13) and (3.10) that

dWi,j,2(t)
dt

≤ 2ηγF∗i,jvi,j(t) fi,j(t)− (2δ f F∗i,j − ηγ(F∗i,j)
2δ f τ) f 2

i,j(t)

+ (2(ηγF∗i,j)
2τ + ηγ(F∗i,j)

2τ)v2
i,j(t).

(3.14)

Finally, calculating the derivative of W(t) along solutions of (3.9) and rearranging counter-
parts D2v2

i,j(t), we have3

3Here we take into account the fact that as a result of interconnection we have additional value 4Dv2
i,j(t)

“flowing” into pixel (i, j) from two-three-four neighboring pixels: two pixels for pixels (1, 1), (N, 1), (N, N),
(1, N), three pixels for pixels (1, j), j = 2, N − 1, (i, 1), i = 2, N − 1, (N, j), j = 2, N − 1, (i, N), i = 2, N − 1 and
four pixels due to figure 2.1 for the rest “internal” pixels.
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dW(t)
dt

≤
N

∑
i,j=1

{[
1

γV∗i,j

(
− 2K1(i, j) + 2δvV∗i,jK1(i, j)τ + γV∗i,jK1(i, j)τ + δvγ(V∗i,j)

2τ + 1 + δvV∗i,jτ
)

+
1

ηγF∗i,j

(
2(ηγF∗i,j)

2τ + ηγ(F∗i,j)
2δ f τ

)]
v2

i,j(t)

+

[
1

γV∗i,j

(
γV∗i,jK1(i, j)τ + δvγ(V∗i,j)

2τ + 2γ2(V∗i,j)
2τ + γV∗i,jτ

)
+

1
ηγF∗i,j

(
− 2δ f F∗i,j + ηγ(F∗i,j)

2δ f τ
)]

f 2
i,j(t)

+
1

γV∗i,j
(1 + δvV∗i,jτ + γV∗i,jτ)

ˆ̂̂
S{i, j, t}

}

=
N

∑
i,j=1

{[
1

γV∗i,j

(
− 2K1(i, j) + k(i, j)D2(1 + δvV∗i,jτ + γV∗i,jτ) + 2δvV∗i,jK1(i, j)τ

+ γV∗i,jK1(i, j)τ + δvγ(V∗i,j)
2τ + 1 + δvV∗i,jτ

)
+

1
ηγF∗i,j

(
2(ηγF∗i,j)

2τ + ηγ(F∗i,j)
2δ f τ

)]
v2

i,j(t)

+

[
1

γV∗i,j

(
γV∗i,jK1(i, j)τ + δvγ(V∗i,j)

2τ + 2γ2(V∗i,j)
2τ + γV∗i,jτ

)
+

1
ηγF∗i,j

(
− 2δ f F∗i,j + ηγ(F∗i,j)

2δ f τ
)]

f 2
i,j(t)

}
.

Applying the assumption τ < τ? we get

dW(t)
dt

≤
N

∑
i,j=1

{[
1

γV∗i,j

(
− 2K1(i, j) + k(i, j)D2(1 + δvV∗i,jτ1 + γV∗i,jτ1) + 2δvV∗i,jK1(i, j)τ1

+ γV∗i,jK1(i, j)τ1 + δvγ(V∗i,j)
2τ1 + 1 + δvV∗i,jτ1

)
+

1
ηγF∗i,j

(
2(ηγF∗i,j)

2τ1 + ηγ(F∗i,j)
2δ f τ1

)]
v2

i,j(t)

+

[
1

γV∗i,j

(
γV∗i,jK1(i, j)τ2 + δvγ(V∗i,j)

2τ2 + 2γ2(V∗i,j)
2τ2 + γV∗i,jτ2

)
+

1
ηγF∗i,j

(
− 2δ f F∗i,j + ηγ(F∗i,j)

2δ f τ2

)]
f 2
i,j(t)

}
.

After substitution of estimates of τ1 and τ2 due to (3.7), (3.8), we can see that there are negative
constants α1,i,j, α2,i,j < 0, i, j = 1, N such that

dW(t)
dt

≤
N

∑
i,j=1

{
α1,i,jv2

i,j(t) + α2,i,j f 2
i,j(t)

}
.
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V0
i,j 1 2 3 4
1 5.951989 7.420163 7.659892 5.966077
2 5.907517 6.180657 6.183041 5.718244
3 5.703791 5.772168 5.737166 5.500841
4 5.322284 5.459773 5.440191 5.254434

Table 4.1: The values of V0
i,j, i, j = 1, 4.

V?
i,j 1 2 3 4
1 1.8491747 2.1662985 2.2047148 1.8500473
2 1.8628235 1.9105332 1.9105342 1.8289965
3 1.8445217 1.8573021 1.8527207 1.8092236
4 1.7757109 1.8073319 1.8056241 1.7683109

Table 4.2: The values of V?
i,j, i, j = 1, 4.

Corollary 3.2. Assume that the conditions (3.6) of Theorem 3.1 are true. Then positive equilibrium
state E∗i,j =

(
V∗, F∗

)
, i, j = 1, N of system (2.2) is locally asymptotic stable if

α1 := max
i,j∈1,N

[
1

γV∗i,j
(−2K1(i, j) + k(i, j)D2(1 + δvV∗i,jτ + γV∗i,jτ)

+ 2δvV∗i,jK1(i, j)τ + γV∗i,jK1(i, j)τ + δvγ(V∗i,j)
2τ + 1 + δvV∗i,jτ)

+ 2ηγF∗i,jτ + F?
i,jδ f τ

]
< 0,

α2 := max
i,j∈1,N

[
K1(i, j)τ + δvV∗i,jτ + 2γV∗i,jτ + τ +

1
ηγ

(−2δ f + ηγF∗i,jδ f τ)

]
< 0,

Remark 3.3. Conditions of local asymptotic stability of positive equilibrium state E∗i,j =(
V∗i,j, F∗i,j

)
, i, j = 1, N of system (2.2) are dependent on diffusion D and factor n also.

4 Numerical simulations

We consider model (2.2) at N = 4, β = 2 min−1, γ = 2 mL
min·µg , µ f = 1 min−1, η = 0.8/γ,

δv = 0.5 mL
min·µg , δ f = 0.5 mL

min·µg , D = 2.22 min−1.

4.1 Numerical simulation of 4 × 4 pixels array

First of we calculate the basic reproductive numbers R0,i,j, i, j = 1, 4. Solving (3.4) we have the
values of equilibrium without antibodies V0

i,j, i, j = 1, 4 (see Table 4.1).
The values of V?

i,j, i, j = 1, 4 for the endemic steady state are presented in the Table 4.2.
Hence, the basic reproductive numbers which are calculated due to (3.3) are shown in the
Table 4.3. We see that the conditions (3.6) hold. Thus, equilibrium without antibodies E0

i,j,
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R?
0,i,j 1 2 3 4
1 3.218727 3.425273 3.474323 3.224824
2 3.171270 3.235043 3.236289 3.126438
3 3.092287 3.107824 3.096617 3.040443
4 2.997269 3.020902 3.012915 2.971442

Table 4.3: The values of R0,i,j, i, j = 1, 4.

i, j = 1, 4 is unstable and there exists endemic equilibrium E?i,j, i, j = 1, 4.
The following numerical simulations were implemented at different values of n ∈ (0, 1].

For example, at n = 0.9 corresponding simulations for τ > 0 (min) are presented (see Figs. 4.1,
4.2, 4.3, 4.4)

Here we can see that when changing the value of τ we have changes of qualitative behav-
ior of pixels and entire immunosensor. We considered the parameter value set given above
and computed the long-time behavior of the system (2.2) for τ = 0.05, 0.22, 0.23, 0.2865, and
0.28725. The phase diagrams of the antibody vs. antigen populations for the pixel (1, 1) for
these values of τ are shown in Figs. 4.1, 4.2, 4.3, 4.4, 4.5.

For example, at τ ∈ [0, 0.22] we can see trajectories corresponding to stable node for all
pixels (see Figs. 4.1, 4.2). At values τ near 0.2223 min Hopf bifurcation occurs and further
trajectories correspond to stable limit cycles of ellipsoidal form for all pixels (see Fig. 4.3 for
τ = 0.23). We note that in order that the numerical solutions regarding Hopf bifurcation
were in agreement with the theoretical results, we should look for a complex conjugate pair
of purely imaginary solutions of the corresponding characteristic equation of the linearized
system (3.5).

For τ = 0.23, the phase diagrams in Fig. 4.3 show that the solution is a limit cycle with two
local extrema (one local maximum and one local minimum) per cycle. Then for τ = 0.2825 the
solution is a limit cycle with four local extrema per cycle, and, for τ = 0.2868, 0.2869, 0.28695
the solutions are limit cycles with 8, 16 and 32 local extrema per cycle, respectively. Finally,
for τ = 0.28725, the behavior shown in Figs. 4.5 is obtained which looks like chaotic behavior.
In this paper, we have regarded behavior as “chaotic” if no periodic behavior could be found
in the long-time behavior of the solutions.

As a check that the solution is chaotic for τ = 0.28725, we perturbed the initial conditions
to test the sensitivity of the system. Fig. 4.6 shows a comparison of the solutions for the
antigen population V1,3 with initial conditions V1,3(t) = 1 and V1,3(t) = 1.001, t ∈ [−τ, 0], and
identical all the rest ones. Near the initial time the two solutions appear to be the same, but as
time increases there is a marked difference between the solutions supporting the conclusion
that the system behavior is chaotic at τ = 0.28725.

We have also checked numerically that the solutions for the limit cycles are periodic and
computed the periods for each of the local maxima and minima in the cycles. Fig. 4.7 shows a
plot of the number of local minima and maxima in limit cycles of the V1,3 as τ increases from 0
to 0.28725. In the chaotic solution region, the numerical calculations (not shown in this paper)
confirmed that no periodic behavior could be found.

A bifurcation diagram showing the maximum and minimum points for the limit cycles
for the antigen population V1,3 as a function of time delay is given in Fig. 4.7. The Hopf
bifurcation from the stable equilibrium point to a simple limit cycle and the sharp transitions
at critical values of the time delay between limit cycles with increasing numbers of maximum
and minimum points per cycle can be clearly seen.
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Figure 4.1: The phase planes of the system (2.2) for antibody populations Fi,j
versus antigen populations Vi,j, i, j = 1, 4. Numerical simulation of the system
(2.2) at n = 0.9, τ = 0.05. Here • indicates initial state, • indicates identical
steady state, • indicates nonidentical steady state. The solution converges to the
nonidentical steady state which is stable focus when τ = 0.05 < τ0 ≈ 0.2223.
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Figure 4.2: The phase plane plots of the system (2.2) for antibody populations Fi,j
versus antigen populations Vi,j, i, j = 1, 4. Numerical simulation of the system
(2.2) at n = 0.9, τ = 0.22. Here • indicates initial state, • indicates identical
steady state, • indicates nonidentical steady state. The solution converges to the
nonidentical steady state which is stable focus when τ = 0.22 < τ0 ≈ 0.2223.
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Figure 4.3: The phase planes of the system (2.2) for antibody populations Fi,j
versus antigen populations Vi,j, i, j = 1, 4. Numerical simulation of the system
(2.2) at n = 0.9, τ = 0.23. Here • indicates initial state, • indicates identical
steady state, • indicates nonidentical steady state. The solution converges to a
stable limit cycle.
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Figure 4.4: The limit cycles on the phase plane plots of the system (2.2) for
antibody populations Fi,j versus antigen populations Vi,j, i, j = 1, 4. Numerical
simulation of the system (2.2) at n = 0.9, τ = 0.2865. Here • indicates identical
steady state, • indicates nonidentical steady state. Limit cycles are obtained as
trajectories for t ∈ [550, 800]. The solution converges to a stable limit cycle with
four local extrema per cycle.
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Figure 4.5: The phase plane plots of the system (2.2) for antibody populations Fi,j
versus antigen populations Vi,j, i, j = 1, 4. Numerical simulation of the system
(2.2) at n = 0.9, τ = 0.28725. Here • indicates identical steady state, • indicates
nonidentical steady state. Trajectories are constructed for t ∈ [550, 800]. The
solution behavior looks chaotic.
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Figure 4.6: The time series of the solutions to the system 2.2 for the antigen
population V1,3 from t = 0 to 700 with τ = 0.28725 for initial conditions V1,3(t) =
1 and V1,3(t) = 1.001 (deviated), t ∈ [−τ, 0], and identical all the rest ones. At
the beginning the two solutions appear to be the same, but as time increases
there is a marked difference between the solutions supporting the conclusion
that the system behavior is chaotic.
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Figure 4.7: Number of local extrema per cycle. No periodic behavior could be
found at τ ≈ 0.28725.
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Figure 4.8: A bifurcation diagram showing the "bifurcation path to chaos" as
the time delay is increased. The points show the local extreme points per cycle
for the V1,3 population. Chaotic-type solutions occur at τ ≈ 0.28725 and are
indicated in red in the figure with value 0 for the number of extreme points.
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τ? 0.05 0.22 0.23 0.2865
α1 -2.037159 1.300445 1.496775 1.357042
α2 -0.3894881 2.536252 2.708355 3.284341

Table 4.4: The values of τ?, α1 and α2 which are calculated based on the Theo-
rem 3.1 and Corollary 3.2 for N = 4.

τ? 0.05 0.22 0.23 0.2865
α1 -2.927095 0.9655621 1.194542 2.488278
α2 -0.2742058 3.043494 3.238653 4.341301

Table 4.5: The values of τ?, α1 and α2 which are calculated based on the Theo-
rem 3.1 and Corollary 3.2 for N = 16.

When checking conditions of the Theorem 3.1 we obtained that they are satisfied for the
values τ ≤ τ? = 0.05 (see Table 4.4)

4.2 Numerical simulation of 16 × 16 pixels array

We consider model (2.2) at N = 16 and all the rest parameters are as mentioned above. We see
that increasing number of pixels affects in “acceleration” of appearance of chaotic behavior.
For example, at n = 0.9 we have limit cycle at τ = 0.23, N = 4. Pay attention that it will be a
series of cycle duplication or even chaos at N = 16 (see Figs. 4.9, 4.10).

5 Conclusions

In the work we offered model of immunosensor which is based on the system of lattice dif-
ferential equations with delay. The main result of the work is conditions of local asymptotic
stability for endemic state. For this purpose we have used method of Lyapunov functionals. It
combines general approach for construction of Lyapunov functionals of predator–prey models
with lattice differential equations. As compared with stability conditions which are based on
the basic reproduction numbers it allows to estimate the values of delay admitting stability.

Numerical examples showed us influence on stability of different parameters. Increasing
time delay we transmit from stable node to limit cycle and finally to chaotic behavior. Dis-
balance constant n ∈ (0, 1] also affects on stability characteristics. Decreasing n we narrow
interval of asymptotic stability for delay τ. For some values of parameters, we found numer-
ically that the behavior of the system became increasingly complicated as the time delay was
increased. In this case, we found that for small delay the system could have a stable steady
solution. Then, as the time delay was increased, the stable steady solution changed at a critical
value of τ to a stable limit cycle.

However, the numerical simulations showed much more complicated behavior. Then as
the time delay was increased, the behavior changed from convergence to simple limit cycle to
convergence to complicated limit cycles with an increasing number of local maxima and min-
ima per cycle until at sufficiently high time delay the behavior became chaotic. This change
in behavior can be called a bifurcation path to chaos. From our analysis and numerical simu-
lations, we have found no evidence that chaos can occur except through variation in the time
delay. It would clearly be desirable if some analytical conditions could be found that could
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Figure 4.9: Numerical simulation of changes of populations in pixel (2,2) at
N = 16, τ = 0.23.
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Figure 4.10: Numerical simulation of the system (2.2) at N = 16, n = 0.9,
τ = 0.23. The values of population V.
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predict the “bifurcation path to chaos” that we have observed in the numerical simulations.
The theory for the bifurcation path to chaos is, of course, well understood for difference equa-
tion systems. The authors would greatly appreciate receiving any suggestions that could lead
to an analytical understanding of the observed behavior for the lattice differential equation
systems.

Our results could be taken into consideration in biosensor design, for fluorescence base
biosensor. In this case we can interpret the response time τ as the time after fluorescence
emission occurs. The phenomenon of fluorescence occurs when fluorescence labeled antibody
(analits) are bind to receptor layer, on which immobilized antigens are found (competitive
combination). The faster response (in the form of fluorescent emission) the better stability
of the matrix. Therefore, for the values of τ satisfying to conditions of the Theorem 3.1 the
stability is observed and this feature may be reached with a higher probability (the biosensor
response is cleaner and more readable). As τ increases, the stability is lost until finally chaos
occurs.

We have gotten interesting experimental results when taking into account the number of
pixels described by the value N. This interpretation can also be related to the increasing
number of pixels. We see that amount of pixels in immunosensor narrows the range of τ

enabling local asymptotic stability. The higher the number of pixels (e.g., N = 16) then
the potential binding sites of the antibody with the antigen are more, which also makes the
biosensor response “less stable”.

We left open problems for the next studies: conditions for global asymptotic stability and
the taking into consideration of some biological phenomena of population growth (e.g., Allee
effect [31], age-structured growth [3] etc.)
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