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Abstract. The following recurrent relation/partial difference equation

wn,k = awn−1,k−1 + bwn−1,k,

where k, n, a, b ∈ N, appears in a problem in combinatorics. Here we show that an
extension of the recurrent relation is solvable on, the, so called, combinatorial domain
C =

{
(n, k) ∈N2

0 : 0 ≤ k ≤ n
}
\ {(0, 0)}, when its coefficients and the boundary values

wj,0, wj,j, j ∈ N, are complex numbers, by presenting a representation of the general
solution to the recurrent relation on the domain in terms of the boundary values. As
a special case we obtain a solution to the problem in combinatorics in an elegant way.
From the general solution along with an application of the linear first-order difference
equation is also obtained the solution of the recurrent relation in the case wj,j = c ∈ C,
j ∈N.

Keywords: partial difference equation, boundary-value problem, combinatorial do-
main, equation solvable in closed form, method of half-lines.
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1 Introduction

Throughout the paper by Cn
k , 0 ≤ k ≤ n, are denoted the binomial coefficients. Recall that

Cn
0 = Cn

n = 1, n ∈N0,

and
Cn

k = Cn−1
k + Cn−1

k−1 , (1.1)

for every k, n ∈N, such that 1 ≤ k < n. Many other properties and relations of the coefficients,
can be found, for example, in [11,13,15,23,24,43] (some basic ones can be found in [11] and [13],
more complex ones can be found in [15], a list of numerous ones can be found in [23], some
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advanced methods for dealing with the coefficients can be found in [24], for a combinatorial
approach see [43]).

The following recurrent relation

wn,k = awn−1,k−1 + bwn−1,k, (1.2)

where k, n, a, b ∈ N, appears, among others, in a well-known problem from combinatorics.
Namely, if a box contains a white balls and b balls of a different color, then wn,k in (1.2) counts
the number of ways of obtaining k white balls in n draws with replacement. It is clear that the
problem satisfies the following ’boundary-value’ conditions

wj,j = aj and wj,0 = bj, j ∈N0, (1.3)

(see, for example, [10]).
The fact that recurrent relation (1.2) and many related ones model concrete problems from

combinatorics and consequently deal with integer numbers only, seems one of the main rea-
sons why a great majority of mathematicians do not consider them on more general domains.

Our investigations of the solvability of difference equations and systems of difference equa-
tions up to 2013 (see, for example, [3, 25, 26, 33–36] and numerous related references therein),
along with the facts that many combinatorial problems of this kind have solutions in the form
of some closed-form formulas, and that they are frequently presented by some recurrent re-
lations, have suggested us that the closed-form formulas could be special cases of the general
solutions to some problems connected to the recurrent relations. Hence, looking at recurrent
relation (1.1) and its solution in the closed form, which is given by the formula

Cn
k =

n!
k!(n− k)

,

we came up with an idea to try to solve the recurrent relation on its natural domain, which
in this case, as well as for the case of many problems in enumerative combinatorics is the
following one

C =
{
(n, k) ∈N2

0 : 0 ≤ k ≤ n
}
\ {(0, 0)}.

We call it the combinatorial domain. The problem seems classical, but we could not locate the
problem and its solution in the literature and later we published our solution to the problem
in [27]. A more important fact connected to our paper [27], than the solution to the concrete
problem, is that it provides a method for solving related classes of recurrent relations, which
was later used in [28] and [32]. So, it turned out that the method is a general one.

The recurrent relation (1.2) with two independent variables, which is a generalization of
(1.1), is, in fact, a partial difference equation. Unlike difference equations with one indepen-
dent variable these ones are not studied so much, and many books contain just a few of them
or, as usual, appear as models in combinatorics (see, for example, [11, 13, 15, 24, 43]). Some
classical methods for finding solutions to partial difference equations can be found, for exam-
ple, in [9, Chapter 12] and [12, Chapter 8] (see also [10]). For some results up to 2003, see [5]
(see also [16]). A problem connected to solving partial difference equations is that formulas
for their general solutions cannot be easily used to get solutions on concrete domains. Hence,
an equation should be considered on a domain, and tried to use some of its special features
which can help in finding its solutions. For example, for the case of the combinatorial do-
main it should be used its boundary which consists of two discrete half-lines. So, the general
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problem is to find the solution to a partial difference equation in terms of the values on the
boundary on a given domain, that is, to solve a boundary-value problem on the domain.

Since many of the partial difference equations in combinatorics are linear, our idea in
[27] is to consider the equations on some one-dimensional domains and treat them as linear
difference equations of first-order, that is, as special cases of the following equation

xn = αnxn−1 + βn, n ∈N, (1.4)

where x0, (αn)n∈N and (βn)n∈N are real or complex numbers.
The importance of equation (1.4) is in its solvability (in [4, 9, 10, 15] can be found several

methods for solving the equation; book [15] contains a nice presentation of three methods
for solving the equation). No doubt it is one of the most important solvable equations. It
is only enough to note that all the nonlinear equations and systems in the following papers:
[3,21,25,26,33–39] (see also the references therein) are essentially solved by transforming them
to one or several special cases of equation (1.4). Some recent papers consider product-type
equations and systems on the complex domain (see, for example, [29,40–42] and the references
therein). They cannot be easily dealt with by equation (1.4), although at the final steps some
linear difference equations decide their solvability, and essentially the solvability of equation
(1.4) is hidden behind their solvability. In fact, papers [29, 40–42] use, among others, the
solvability of the product-type analog of equation (1.4), that is, of the equation

zn = bnzan
n−1, n ∈N0.

For some recent results and applications of equation (1.4) on various subdomains of Z see
also [30] and [31], which are partly motivated by a problem in [6]. Many other classical
solvable difference equations and systems can be found, for example, in [4, 9, 10, 12, 14, 15],
while numerous related classical problems can be found in [6, 11, 14, 22]. For some related
topis, such as is finding concrete type of solutions or invariants of difference equations and
systems or some applications of solvable difference equations, see, for example, [2,7,8,17–20],
as well as the references therein.

Our aim here is to solve the following extension of equation (1.2)

wn,k = awn−1,k−1 + bnwn−1,k, (1.5)

on domain C, where (bn)n∈N is a sequence of complex numbers. Unlike the equation treated
in [27], where equation (1.4) is used in one of its most simplest forms, that is, when αn = 1,
n ∈ N, so that essentially was used the method of telescoping summation, here we will have
a real application of equation (1.4) in solving equation (1.5). Regarding the case αn = 1,
n ∈ N, recall only that the behavior of the solutions to equation (1.4) can be quite complex
(see [14,22], and [1] for the case of metric spaces), but here we will not deal with the behavior
of the solutions to equation (1.5). As usual, when dealing with finite sums, we will use the
convention ∑l

j=m cj = 0, when l < m. If k, l ∈ Z, are such that k ≤ l, then j = k, l is a notation
for the set of all j ∈ Z such that k ≤ j ≤ l.

2 Main result

In this section we state and prove the main results in this paper. Two cases are considered
separately: a) a = 0; b) a 6= 0.
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Case a = 0. Since a = 0, then equation (1.5) becomes

wn,k = bnwn−1,k, (2.1)

from which it is not difficult to see that

wn,k = w0,k

n

∏
j=1

bj, (2.2)

which is the solution to equation (1.5) in this case.
Formula (2.2) shows that special form of equation (1.5) in this case produces solutions

which depend only on the boundary values w0,k, k ∈ N. Hence, the natural domain for
equation (2.1) is not the combinatorial one, but the following one

Q :=
{
(n, k) ∈N2

0 : k ∈N0, n ∈N
}

.

Case a ∈ C \ {0}. To solve equation (1.5) in this case on domain C, we use our method
of half-lines. A detailed explanation of the method and ideas behind it can be found in our
original source [27] (see, also [28] and [32]). Recall that, as usual, the domain will be sliced by
the lines n = k + s for each (fixed) s ∈ N (the name of the method has been motivated by the
obvious fact that the intersection of the domain with the lines produces discrete half-lines).

Let s = 1, then n = k + 1 and

wk+1,k = awk,k−1 + bk+1wk,k, (2.3)

for k ∈N.
Following the idea in [27], we regard (2.3) as an equation of the form in (1.4), more pre-

cisely, as the one where

xk−1 = wk,k−1, αk = a and βk = bk+1wk,k, k ∈N,

and then we ‘solve’ the equation by one of known methods (see, for example, the ones in [15]).
Namely, multiplying the following equality

wj+1,j = awj,j−1 + bj+1wj,j, (2.4)

by ak−j for each j ∈ {1, . . . , k}, and summing up such obtained k equalities, it follows that

wk+1,k = akw1,0 +
k

∑
j=1

ak−jbj+1wj,j, (2.5)

for k ∈N0.
Now, let s = 2, then n = k + 2 and

wk+2,k = awk+1,k−1 + bk+2wk+1,k, (2.6)

for k ∈N.
By, multiplying the following equality

wl+2,l = awl+1,l−1 + bl+2wl+1,l , (2.7)
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by ak−l for each l ∈ {1, . . . , k}, and summing up such obtained k equalities, it follows that

wk+2,k = akw2,0 +
k

∑
l=1

ak−lbl+2wl+1,l , (2.8)

for k ∈N0.
Combining (2.5) and (2.8), it follows that

wk+2,k = akw2,0 +
k

∑
l=1

ak−lbl+2

(
alw1,0 +

l

∑
j=1

al−jbj+1wj,j

)
= akw2,0 + akw1,0

k

∑
l=1

bl+2 +
k

∑
l=1

ak−lbl+2

l

∑
j=1

al−jbj+1wj,j, (2.9)

for k ∈N0.
Motivated by (2.5) and (2.9), one can assume that for a fixed r ∈N

wk+r,k = akwr,0 + akwr−1,0

k

∑
jr=1

bjr+r + · · ·

+ akw1,0

k

∑
jr=1

bjr+r

jr

∑
jr−1=1

bjr−1+r−1 · · ·
j3

∑
j2=1

bj2+2

+
k

∑
jr=1

ak−jr bjr+r

jr

∑
jr−1=1

ajr−jr−1 bjr−1+r−1 · · ·
j2

∑
j1=1

aj2−j1 bj1+1wj1,j1 , (2.10)

for k ∈N0.
Let s = r + 1, then n = k + r + 1 and

wk+r+1,k = awk+r,k−1 + bk+r+1wk+r,k, k ∈N. (2.11)

By, multiplying the following equalities

wjr+1+r+1,jr+1 = awjr+1+r,jr+1−1 + bjr+1+r+1wjr+1+r,jr+1 , jr+1 = 1, k, (2.12)

by ak−jr+1 , jr+1 = 1, k, and summing up such obtained k equalities, it follows that

wk+r+1,k = akwr+1,0 +
k

∑
jr+1=1

ak−jr+1 bjr+1+r+1wjr+1+r,jr+1 , (2.13)

for k ∈N0.
Using the hypothesis (2.10) in (2.13) and some simple calculation, we have

wk+r+1,k = akwr+1,0

+
k

∑
jr+1=1

ak−jr+1 bjr+1+r+1

(
ajr+1 wr,0 + ajr+1 wr−1,0

jr+1

∑
jr=1

bjr+r + · · ·

+ ajr+1 w1,0

jr+1

∑
jr=1

bjr+r

jr

∑
jr−1=1

bjr−1+r−1 · · ·
j3

∑
j2=1

bj2+2

+
jr+1

∑
jr=1

ajr+1−jr bjr+r

jr

∑
jr−1=1

ajr−jr−1 bjr−1+r−1 · · ·
j2

∑
j1=1

aj2−j1 bj1+1wj1,j1

)



6 S. Stević

= akwr+1,0 + akwr,0

k

∑
jr+1=1

bjr+1+r+1 + · · ·

+ akw1,0

k

∑
jr+1=1

bjr+1+r+1

jr+1

∑
jr=1

bjr+r · · ·
j3

∑
j2=1

bj2+2

+
k

∑
jr+1=1

ak−jr+1 bjr+1+r+1

jr+1

∑
jr=1

ajr+1−jr bjr+r · · ·
j2

∑
j1=1

aj2−j1 bj1+1wj1,j1 , (2.14)

for k ∈N0. Hence, by induction we have shown that (2.10) holds.
By changing the order of summation, (2.10) can be also written in the following form

wk+r,k = akwr,0 + akwr−1,0

k

∑
jr=1

bjr+r + · · ·

+ akw1,0

k

∑
jr=1

bjr+r

jr

∑
jr−1=1

bjr−1+r−1 · · ·
j3

∑
j2=1

bj2+2

+
k

∑
j1=1

ak−j1 bj1+1wj1,j1

k

∑
j2=j1

bj2+2 · · ·
k

∑
jr=jr−1

bjr+r, (2.15)

for k ∈N0.
Due to the above considerations, we are now in a position to formulate and prove the main

result in this paper.

Theorem 2.1. Consider equation (1.5). Assume that a 6= 0, and that (uk)k∈N, (vk)k∈N are given
sequences of complex numbers. Then the solution to the equation on domain C with the following
boundary-value conditions

wk,0 = uk and wk,k = vk, k ∈N, (2.16)

is given by

wn,k = akun−k + akun−k−1

k

∑
jn−k=1

bjn−k+n−k + · · ·

+ aku1

k

∑
jn−k=1

bjn−k+n−k

jn−k

∑
jn−k−1=1

bjn−k−1+n−k−1 · · ·
j3

∑
j2=1

bj2+2

+
k

∑
j1=1

ak−j1 bj1+1vj1

k

∑
j2=j1

bj2+2 · · ·
k

∑
jn−k=jn−k−1

bjn−k+n−k. (2.17)

Proof. If we put r = n− k in (2.15), we get

wn,k = akwn−k,0 + akwn−k−1,0

k

∑
jn−k=1

bjn−k+n−k + · · ·

+ akw1,0

k

∑
jn−k=1

bjn−k+n−k

jn−k

∑
jn−k−1=1

bjn−k−1+n−k−1 · · ·
j3

∑
j2=1

bj2+2

+
k

∑
j1=1

ak−j1 bj1+1wj1,j1

k

∑
j2=j1

bj2+2 · · ·
k

∑
jn−k=jn−k−1

bjn−k+n−k. (2.18)

Using (2.16) in (2.18), the formula (2.17) follows.
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Now we are going to see what Theorem 2.1 gives in the case of equation (1.2), that is, when

bn = b, n ∈N, (2.19)

in equation (1.5).
By using (2.19) in formula (2.18) and some simple calculation, we get

wn,k = akwn−k,0 + akbwn−k−1,0

k

∑
jn−k=1

1 + · · ·

+ akbn−k−1w1,0

k

∑
jn−k=1

jn−k

∑
jn−k−1=1

· · ·
j3

∑
j2=1

1

+ bn−k
k

∑
j1=1

ak−j1 wj1,j1

k

∑
j2=j1

· · ·
k

∑
jn−k=jn−k−1

1. (2.20)

On the other hand, it is known that

k

∑
jm=1

jm

∑
jm−1=1

· · ·
j2

∑
j1=1

1 = Ck+m−1
m , (2.21)

for k, m ∈N, (see, for example, [15]).
By changing the order of summation and by using equality (2.21), we obtain

k

∑
j2=j1

k

∑
j3=j2

· · ·
k

∑
jn−k=jn−k−1

1 =
k

∑
jn−k=j1

jn−k

∑
jn−k−1=j1

· · ·
j3

∑
j2=j1

1

=
k−j1+1

∑
in−k=1

jn−k−j1+1

∑
in−k−1=1

· · ·
j3−j1+1

∑
i2=1

1

= Cn−j1−1
n−k−1 . (2.22)

From (2.20)–(2.22), is obtained

wn,k = akwn−k,0 + akbwn−k−1,0Ck
1 + · · ·+ akbn−k−1w1,0Cn−2

n−k−1

+ bn−k
k

∑
j=1

ak−jCn−j−1
n−k−1wj,j, (2.23)

for 0 ≤ k < n.
From this we obtain the following corollary of Theorem 2.1, which we formulate as a

theorem.

Theorem 2.2. Consider equation (1.2). Assume that a 6= 0, and that (uk)k∈N, (vk)k∈N are given
sequences of complex numbers. Then the solution to the equation on domain C satisfying the boundary-
value conditions in (2.16) is given by

wn,k = akun−k + akbun−k−1Ck
1 + · · ·+ akbn−k−1u1Cn−2

n−k−1 + bn−k
k

∑
j=1

ak−jCn−j−1
n−k−1vj, (2.24)

for (n, k) ∈ C.
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Proof. By using boundary-value conditions (2.16) in formula (2.23) is obtained (2.24).

Corollary 2.3. The solution to partial difference equation (1.2) on domain C satisfying the following
boundary-value conditions

wj,j = caj and wj,0 = cbj, j ∈N, (2.25)

for some a, b, c ∈ C, is given by

wn,k = cakbn−kCn
k . (2.26)

Proof. Using boundary value conditions (2.25) in (2.24), it follows that

wn,k = cakbn−k
( n−k−1

∑
l=0

Ck+l−1
l +

k

∑
j=1

Cn−j−1
n−k−1

)
, (2.27)

for 0 ≤ k < n.
Noticing that Ck−1

0 = Ck
0, and using (1.1), we get

n−k−1

∑
l=0

Ck+l−1
l = Ck

0 + Ck
1 + Ck+1

2 + · · ·+ Cn−2
n−k−1 = Cn−1

n−k−1. (2.28)

Further, we have

Cn−1
n−k−1 +

k

∑
j=1

Cn−j−1
n−k−1 =

k

∑
j=0

Cn−j−1
n−k−1 =

k

∑
i=0

Ci+n−k−1
n−k−1 . (2.29)

By using recurrent relation (1.1), we have

k

∑
i=0

Ci+n−k−1
n−k−1 =

k

∑
i=0

(
Ci+n−k

n−k − Ci+n−k−1
n−k

)
= Cn

n−k − Cn−k−1
n−k = Cn

n−k, (2.30)

for 0 ≤ k < n.
Employing (2.28)–(2.30) in (2.27), and the following well-known fact

Cn
n−k = Cn

k ,

is obtained (2.26), as desired.

If in Corollary 2.3 is chosen c = 1, we obtain the following result which solves the combi-
natorial problem mentioned in introduction.

Corollary 2.4. The solution to partial difference equation (1.2) on domain C satisfying the boundary-
value conditions in (1.3) is given by

wn,k = akbn−kCn
k . (2.31)

Remark 2.5. Formula (2.31) presents the well-known solution to the combinatorial problem
mentioned in introduction, which is usually obtained by some combinatorial arguments.
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One of the interesting cases of equation (1.2) is obtained for the following conditions

wk,k = c ∈ C, k ∈N. (2.32)

Note that they are only given on the diagonal half-line.
Namely, then from (2.24) with n = k + r, is get

wk+r,k = akwr,0 + akbwr−1,0Ck
1 + · · ·+ akbr−1w1,0Ck+r−2

r−1 + cbr
k−1

∑
s=0

Cs+r−1
r−1 as, (2.33)

for k ∈N0 and r ∈N.
Hence, of some interest is to know the exact value of the sum

S(r)
k (z) =

k−1

∑
s=0

Cs+r
r zs, (2.34)

for r ∈N0.
It is clear that

S(0)
k (z) =

1− zk

1− z
, (2.35)

for k ∈N and z ∈ C \ {1}.
One way to calculate the sum (2.34) is to note that

S(r)
k (z) =

1
r!

k−1

∑
s=0

(s + r) · · · (s + 1)zs =
1
r!

( r+k−1

∑
j=0

zj
)(r)

=
1
r!

(
1− zr+k

1− z

)(r)

,

and then to calculate the derivative.
Another way for calculating the sum S(r)

k (z) is to note that the following relations hold

(1− z)S(r)
k (z) =

k−1

∑
s=0

Cs+r
r zs −

k−1

∑
s=0

Cs+r
r zs+1

= Cr
r +

k−1

∑
s=1

(Cr+s
r − Cr+s−1

r )zs − Cr+k−1
r zk

= Cr−1
r−1 +

k−1

∑
s=1

Cr+s−1
r−1 zs − Cr+k−1

r zk

= S(r−1)
k (z)− Cr+k−1

r zk, (2.36)

for z 6= 1.
From the point of view of difference equations the way is nicer. Namely, from equality

(2.36), we see that sequence (S(r)
k (z))r∈N, for the case z 6= 1, satisfies the following difference

equation

S(r)
k (z) =

1
1− z

S(r−1)
k (z)− Cr+k−1

r zk

1− z
, (2.37)

which for a fixed k is a special case of equation (1.4). So, this is another of many existing
examples where equation (1.4) appears, which shows a huge influence and applicability of



10 S. Stević

the equation, as well as its importance, which was also pointed out in the introduction of this
paper.

Let us solve equation (2.37) by the above method. By multiplying the following equality

S(j)
k (z) =

1
1− z

S(j−1)
k (z)−

Cj+k−1
j zk

1− z
,

by (1− z)−(r−j) for each j ∈ {1, . . . , r}, and summing up such obtained r equalities, we get

S(r)
k (z) =

S(0)
k (z)

(1− z)r − zk
r−1

∑
j=0

Ck+j
j+1

(1− z)r−j . (2.38)

From (2.35) and (2.38), it follows that

S(r)
k (z) =

1− zk

(1− z)r+1 − zk
r−1

∑
j=0

Ck+j
j+1

(1− z)r−j

=
1− zk ∑r−1

j=−1(1− z)j+1Ck+j
j+1

(1− z)r+1 , (2.39)

for k, r ∈N0 and z ∈ C \ {1}.
On the other hand, if a = 1, then by using (1.1), we have

k−1

∑
s=0

Cs+r−1
r−1 =

k−1

∑
s=0

(
Cs+r

r − Cs+r−1
r

)
= Ck+r−1

r . (2.40)

From (2.33), (2.39) and (2.40), is obtained the following result.

Corollary 2.6. The solution to partial difference equation (1.2) on domain C satisfying the boundary-
value conditions in (2.32) is given by

wn,k = ak
n−k

∑
j=1

wj,0Cn−1−j
n−k−j b

n−k−j + cbn−k
1− ak ∑n−k−2

j=−1 (1− a)j+1Ck+j
j+1

(1− a)n−k ,

when a 6= 1, while it is given by

wn,k = ak
n−k

∑
j=1

wj,0Cn−1−j
n−k−j b

n−k−j + cbn−kCn−1
n−k ,

when a = 1.

Remark 2.7. The trick/method in (2.36) appears in the literature for calculating the sums of
the form

S̃(i)
n (z) :=

n

∑
j=1

jizj−1, (2.41)

for concrete values of i ∈ N0 ([11, 14, 15]). In fact, there is a recurrent formula for calculating
the sums in (2.41) (see [29]), which has motivated us to get the recurrent relation in (2.37).
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Remark 2.8. By suitable choosing of sequences (uk)k∈N and (vk)k∈N, it can be obtained many
sums of the following forms

n−k−1

∑
j=0

djC
k−1+j
j and

k

∑
j=1

d̂jC
n−j−1
n−k−1,

which can be summated in closed-form [15, 24]. We leave the choice of suitable sequences to
the imagination of the reader.
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