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Abstract. In this paper, we study the boundedness of the sublinear operators, gener-
ated by Calderón–Zygmund operators in local generalized Morrey spaces. By using
these results we prove the solvability of the Dirichlet boundary value problem for a
polyharmonic equation in modified local generalized Sobolev–Morrey spaces. We ob-
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defined on bounded smooth domains.
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1 Introduction

The classical Morrey spaces Lp,λ are originally introduced in order to study the local behavior
of solutions to elliptic partial differential equations. In fact, the better inclusion between the
Morrey and Hölder spaces permits to obtain regularity of the solution to elliptic boundary
value problems. For the properties and applications of the classical Morrey spaces we refer
the readers to [30, 34].

In [8] Chiarenza and Frasca showed boundness of the Hardy–Littlewood maximal oper-
ator in Lp,λ(R

n) that allows them to prove continuity in these spaces of some classical in-
tegral operators. The results in [8] allow us to study the regularity of the solutions of of
elliptic/parabolic equations and systems in Lp,λ (see [9, 11, 12, 33, 35–37] and the references
therein). In [31] Mizuhara extended the Morrey’s concept of integral average over a ball with
a certain growth, taking a weight function ϕ(x, r) : Rn ×R+ → R+ instead of rλ. So he put
the beginning of the study of the generalized Morrey spaces Mp,ϕ, p > 1 with ϕ belonging to
various classes of weight functions. In [32] Nakai proved boundedness of the maximal and
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Calderón–Zygmund operators in Mp,ϕ imposing suitable integral and doubling conditions on
ϕ. Taking a weight w(x, t) = ϕ(x, t)ptn the conditions of Mizuhara–Nakai become∫ ∞

r
ϕ(x, τ)p dτ

τ
≤ Cϕ(x, r)p, C−1 ≤ ϕ(x, t)

ϕ(x, r)
≤ C, ∀r ≤ t ≤ 2r,

where the constants do not depend on t, r and x ∈ Rn.
In series of works, the first author studies the continuity in generalized Morrey spaces

of sublinear operators generated by various integral operators as Calderón–Zygmund, Riesz
and others (see [4, 21, 23]). The following theorem obtained in [21, 23] extends the results of
Nakai to the generalized Morrey spaces with weight w(x, t) = ϕ(x, t)tn (for the definition of
the spaces see Section 2).

Theorem A ([23, Theorem 6.2]). Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition∫ ∞

r
ϕ1(x, τ)

dτ

τ
≤ Cϕ2(x, r), (1.1)

where C does not depend on x and r. Then the Calderón–Zygmund operators are bound from Mp,ϕ1(R
n)

to Mp,ϕ2(R
n) for p > 1 and from M1,ϕ1(R

n) to the weak space WMp,ϕ2(R
n).

This result is extended on spaces with weaker condition on the weight pair (ϕ1, ϕ2)

(see [4]). A further development of the generalized Morrey spaces can be found in the works
[4, 24] and the references therein. In [4, 24], Guliyev et al. obtained a weaker than (1.1) condi-
tion on the pair (ϕ1, ϕ2) which is optimal and ensure the boundedness of the classical integral
operators from Mp,ϕ1(R

n) to Mp,ϕ2(R
n). Precisely, if

∫ ∞

r

ess supt<s<∞ ϕ1(x, s)s
n
p

t
n
p+1 dt ≤ Cϕ2(x, r), (1.2)

then the Calderón–Zygmund operators are bound from Mp,ϕ1(R
n) to Mp,ϕ2(R

n) for p > 1 and
from M1,ϕ1(R

n) to the weak space WMp,ϕ2(R
n).

We use this integral inequality to obtain the Calderón–Zygmund type estimate for the
Mp,ϕ-regularity of the solution. These results allow us to study the regularity of the solutions
of various linear elliptic and parabolic boundary value problems in Mp,ϕ (see [27, 28, 38]).

Later these results are extended on the local generalized Morrey spaces, which is obtained
the boundedness of the Calderón–Zygmund operators from one local generalized Morrey
space LM{x0}

p,ϕ1 (R
n) to another LM{x0}

p,ϕ2 (R
n), x0 ∈ Rn (see [25, 26]), if the pair functions (ϕ1, ϕ2)

satisfy the following condition

∫ ∞

r

ess supt<s<∞ ϕ1(x0, s)s
n
p

t
n
p+1 dt ≤ Cϕ2(x0, r), (1.3)

where C does not depend on r.
In this paper we study the boundedness of the sublinear operators, generated by Calderón–

Zygmund operators in local generalized Morrey spaces. By using these results we obtain
the regularity of the solutions of higher order uniformly elliptic boundary value problem in
modified local generalized Sobolev–Morrey spaces defined on bounded smooth domains.

The paper is organized as follows. In Section 2 we give some definitions and some esti-
mates of the Green function and the Poisson kernels. In Section 3 we prove the boundedness of
the sublinear operators, generated by Calderón–Zygmund operators in the local generalized
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Morrey spaces. Further, we obtain the regularity estimates for the solvability of the Dirichlet
boundary value problem for polyharmonic equation in modified local generalized Sobolev–
Morrey spaces. In Section 4 we prove a priori estimates for the solutions of the Dirichlet
boundary value problems for the uniformly elliptic equations in modified local generalized
Sobolev–Morrey spaces defined on bounded smooth domains.

By A . B we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.

2 Definitions and statement of the problem

Definition 2.1. Let ϕ : Ω × R+ → R+ be a measurable function and 1 ≤ p < ∞. For
any domain Ω the generalized Morrey space Mp,ϕ(Ω) (the weak generalized Morrey space
WMp,ϕ(Ω) ) consists of all f ∈ Lloc

p (Ω) such that

‖ f ‖Mp,ϕ(Ω) = sup
x∈Ω, 0<r<d

1
ϕ(x, r)

1

|B(x, r)|
1
p
‖ f ‖Lp(Ω(x,r)) < ∞,(

‖ f ‖WMp,ϕ(Ω) = sup
x∈Ω, 0<r<d

1
ϕ(x, r)

1

|B(x, r)|
1
p
‖ f ‖WLp(Ω(x,r)) < ∞

)

where d = supx,y∈Ω |x− y|, B(x, r) = {y ∈ Rn : |x− y| < r} and Ω(x, r) = Ω
⋂

B(x, r).

In the case ϕ(x, r) = r
λ−n

p , Mp,ϕ = Lp,λ, where 0 < λ < n. If λ = 0, then Lp,0(Rn) = Lp(Rn),
if λ = n, then Lp,n(Rn) = L∞(Rn). In the case λ < 0 or λ > n, Lp,λ(R

n) = Θ, where Θ is the
set of all functions equivalent to 0 on Rn.

Definition 2.2. Let ϕ(x, r) be a positive measurable function on Ω× (0, d) and 1 ≤ p < ∞.
Fixed x0 ∈ Ω, we denote by LM{x0}

p,ϕ (Ω) (WLM{x0}
p,ϕ (Ω)) the local generalized Morrey space

(the weak local generalized Morrey space), the space of all functions f ∈ Lloc
p (Ω) with finite

quasinorm

‖ f ‖
LM{x0}

p,ϕ (Ω)
= sup

0<r<d

1
ϕ(x0, r)

1

|B(x0, r)|
1
p
‖ f ‖Lp(Ω(x0,r))(

‖ f ‖
WLM{x0}

p,ϕ (Ω)
= sup

0<r<d

1
ϕ(x0, r)

1

|B(x0, r)|
1
p
‖ f ‖WLp(Ω(x0,r))

)
.

Definition 2.3. Let ϕ(x, r) be a positive measurable function on Ω× (0, d) and 1 ≤ p < ∞.
We denote by M̃p,ϕ(Ω)

(
M̃p,ϕ(Ω)

)
the modified generalized Morrey space (the modified weak

generalized Morrey space), the space of all functions f ∈ Lp(Ω) with finite norm

‖ f ‖M̃p,ϕ(Ω) = ‖ f ‖Mp,ϕ(Ω) + ‖ f ‖Lp(Ω)(
‖ f ‖WM̃p,ϕ(Ω) = ‖ f ‖WMp,ϕ(Ω) + ‖ f ‖WLp(Ω)

)
.

Definition 2.4. Let ϕ(x, r) be a positive measurable function on Ω× (0, d) and 1 ≤ p < ∞.

Fixed x0 ∈ Ω, we denote by L̃M
{x0}
p,ϕ (Ω)

(
L̃M

{x0}
p,ϕ (Ω)

)
the modified local generalized Morrey

space (the modified weak local generalized Morrey space), the space of all functions f ∈ Lp(Ω)
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with finite norm

‖ f ‖
L̃M

{x0}
p,ϕ (Ω)

= ‖ f ‖
LM{x0}

p,ϕ (Ω)
+ ‖ f ‖Lp(Ω)(

‖ f ‖
WL̃M

{x0}
p,ϕ (Ω)

= ‖ f ‖
WLM{x0}

p,ϕ (Ω)
+ ‖ f ‖WLp(Ω)

)
.

Definition 2.5. The modified generalized Sobolev–Morrey space W2m
p,ϕ(Ω) consist of all func-

tions u ∈W2m
p (Ω) with distributional derivatives Ds

u ∈ M̃p,ϕ(Ω), 0 ≤ |s| ≤ 2m, endowed with
the norm

‖u‖W2m
p,ϕ(Ω) = ∑

0≤|s|≤2m
‖Dsu‖M̃p,ϕ(Ω) .

The modified local generalized Sobolev–Morrey space W2m,{x0}
p,ϕ (Ω) consist of all functions

u ∈ W2m
p (Ω) with distributional derivatives Ds

u ∈ L̃M
{x0}
p,ϕ (Ω), 0 ≤ |s| ≤ 2m, endowed with

the norm
‖u‖

W2m,{x0}
p,ϕ (Ω)

= ∑
0≤|s|≤2m

‖Dsu‖
L̃M

{x0}
p,ϕ (Ω)

.

The space W2m,{x0}
p,ϕ (Ω)∩ W̊1

p(Ω) consists of all functions u ∈ W̊1
p(Ω) with Ds

u∈LM{x0}
p,ϕ (Ω),

0 ≤ |s| ≤ 2m and is endowed by the same norm. Recall that W̊1
p(Ω) is the closure of C∞

0 (Ω)

with respect to the norm in W1
p(Ω).

At first we consider the Dirichlet boundary value problem for polyharmonic equation{
(−∆)mu = f in Ω,

u = ∂u
∂n = · · · = ∂m−1u

∂nm−1 = g on ∂Ω,
(2.1)

where Ω ⊂ Rn, n ≥ 2 is a bounded domain with sufficiently smooth boundary.
For the solutions of the problem (2.1) we give some estimates for the Green function and

the Poisson kernels. Later we obtain a priori estimates for solvability of problem (2.1) in the
local generalized Morrey spaces.

Let Gm(x, y) be the Green function and Kj(x, y), j = 0, m− 1 be the Poisson kernels of
problem (2.1). Then the solution of problem (2.1) can be written as

u(x) =
∫

Ω
Gm(x, y) f (y)dy +

m−1

∑
j=0

∫
∂Ω

Kj(x, y)g(y)dσy

for correspondingly f and g. For example, when m = 2 and n = 2 we will used that there is
a constant C(Ω) such that

|G2(x, y)| ≤ C(Ω)d(x)d(y)min

{
1,

d(x)d(y)

|x− y|2

}
, (2.2)

which was proved in [29], where d is the distance of x to the boundary ∂Ω

d(x) = inf
˜̃x∈∂Ω
|x− x̃| . (2.3)

However, we would like to mention that for Gm and Kj estimates are the optimal tools for
deriving regularity results in spaces that involve to behavior at the boundary. Coming back
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to the m = n = 2 it follows from (2.2) that the solution of problem (2.1) satisfies the following
estimates for appropriate f at g = 0∥∥ud−2∥∥

L∞(Ω)
≤ C(Ω) ‖ f ‖L1(Ω) ,

‖u‖L∞(Ω) ≤ C(Ω)
∥∥ f d 2∥∥

L1(Ω)
.

We also derive estimates for derivative of kernels. We will focus on estimate that contain
growth rates near the boundary. These estimates are optimal. Indeed, when we consider
Gm(x, y) for Ω = B(x, r) a ball in Rn the growth rates near the boundary are sharp (see [18]).
For m = 1 or m ≥ 2 and Ω = B(x, r) it is known that the Green function is positive and can
even be estimated from below by a positive function with the same singular behavior (see [19]).
Let us remind that for m ≥ 2 the Green function in general is not positive. For general
domains the optimal behavior in absolute values is captured in our estimates. Sharp estimates
for Km−1 and Km−2 in the case of a ball can be found in [20]. In [5] Barbatis considered the
pointwise estimates for the Green function of higher order parabolic problems on domains and
derived pointwise estimates for the kernel. For higher order parabolic systems the classical
estimates obtained by Eidelman [17] were not considered in domains with boundary. For a
survey on spectral theory of higher order elliptic operators, including some estimates for the
corresponding kernels, we refer to [14].

Let G a function on Ω×Ω and α, β ∈Nn. Derivatives of G are denoted by

Dα
x Dβ

y f (x, y) =
∂|α|

∂xα1
1 ∂xα2

2 · . . . · ∂xαn
n

∂|β|

∂yβ1
1 ∂yβ2

2 · . . . · ∂yβn
n

G(x, y),

where |α| = ∑n
k=1 αk, |β| = ∑n

k=1 βk.
For completeness we will give some estimates for Gm(x, y) and Kj(x, y) depending on the

distance to the boundary and auxiliary results with proof. We will do by estimating the j-th
derivative through an integration of the (j + 1)-th derivative along a path to the boundary.
The dependence on the distance to the boundary d(x) will appear closing a path which length
is proportional to d(x). The path will be constructed in Lemma 2.10.

Theorem 2.6 ([15,29]). Let Gm(x, y) be the Green function of problem (2.1). Then for every x, y ∈ Ω
the following estimates hold:

1. if 2m− n > 0, then

|Gm(x, y)| ≤ dm− n
2 (x) · dm− n

2 (y)min
{

1,
d(x)d(y)
|x− y|2

} n
2

;

2. if 2m− n = 0, then

|Gm(x, y)| ≤ log
(

1 + min
{

1,
d(x)d(y)
|x− y|2

}m)
;

3. if 2m− n < 0, then

|Gm(x, y)| ≤ |x− y|2m−n min
{

1,
d(x)d(y)
|x− y|2

}m

.

Theorem 2.7 ([15, 29]). Let Kj(x, y), j = 0, m− 1 be the Poisson kernels of problem (2.1). Then for
every x ∈ Ω, y ∈ ∂Ω the following estimates hold:∣∣Kj(x, y)

∣∣ ≤ dm(x)
|x− y|n−j+m−1 . (2.4)
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Remark 2.8. If n− 1 < j ≤ m− 1, then from (2.4) we get the inequality∣∣Kj(x, y)
∣∣ ≤ d1+j−n(x) (2.5)

on Ω× ∂Ω.

Remark 2.9. The estimates in Theorem 2.7 hold for any uniformly elliptic operator of order 2m.

In [19] the estimates in Theorem 2.6 are given for the case that Ω = B(x, r) in Rn. In there
the authors use an explicit formula for the Green’s function, given in [6].

For general domains one cannot expect an explicit formula for the Green’s functions and
the Poisson kernels. We will use the estimates for Gm(x, y) and Kj(x, y) given in [29]. In
[29] for sufficiently regular domains Ω some estimates for the Green’s function and Poisson
kernels was proved.

The following lemma is valid.

Lemma 2.10. Let x ∈ Ω and y ∈ Ω. There exists a curve γ
y
x : [0, 1] → Ω with γ

y
x(0) = x, γ

y
x(1) ∈

∂Ω and

1.
∣∣γy

x(t)− y
∣∣ ≥ 1

2
|x− y| for every t ∈ [0, 1], (2.6)

2. l ≤ (1 + π)d(x), where l is the legth of γ
y
x. (2.7)

Moreover, if γ̃
y
x : [0, l] → Ω is the parametrization by arc length of γ

y
x, then the following inequalities

hold

3. 1
5

s ≤
∣∣x− γ̃

y
x(s)

∣∣ ≤ s for s ∈ [0, l]. (2.8)

We proceed with the proof of Theorem 2.6 and start from the estimates in [29] of the m-th
derivative of Gm(x, y).

Integrating this function along the path γ
y
x of Lemma 2.10. We find the estimates of the

(m− 1)-th derivative of Gm(x, y) in terms of the distance to the boundary. Iterating the pro-
cedure m times we find the results as stated in Theorem 2.6.

We use some auxiliary results which can easy obtain from [29]. From these results we get
the following theorem.

Theorem 2.11 ([15, 29]). Let Gm(x, y) be the Green’s function of problem (2.1), k ∈ Nn. Then for
every x, y ∈ Ω, the following estimates hold.

1. For |k| ≥ m: if 2m− n− |k| < 0, then∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C|x− y|2m−n−|k|min
{

1,
d(y)
|x− y|

}m

;

if 2m− n− |k| = 0, then∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C log
(

1 +
dm(y)
|x− y|m

)
≈ log

(
2 +

d(y)
|x− y|

)
min

{
1,

d(y)
|x− y|

}m

; (2.9)

if 2m− n− |k| > 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ Cd2m−n−|k|(y)min
{

1,
d(y)
|x− y|

}n+|k|−m

.
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2. For |k| < m: if 2m− n− |k| < 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C|x− y|2m−n−|k|min
{

1,
d(x)
|x− y|

}m−|k|
min

{
1,

d(y)
|x− y|

}m

.

If 2m− n− |k| = 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C log

(
1 +

dm(y)dm−|k|(x)
|x− y|2m−|k|

)

≈ log
(

2 +
d(y)
|x− y|

)
min

{
1,

d(y)
|x− y|

}m

min
{

1,
d(x)
|x− y|

}m−|k|
.

(2.10)

If 2m− n− |k| > 0, and moreover

a) m− n
2
≤ |k|, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C d2m−n−|k|(y)min
{

1,
d(x)
|x− y|

}m−|k|
min

{
1,

d(y)
|x− y|

}n−m+|k|
;

b) |k| < m− n
2

, then

|Dk
xGm(x, y)| ≤ C d(y)m− n

2 d2m− n
2−|k|(x)min

{
1,

d(x)d(y)
|x− y|2

} n
2

.

Proof. Let x, y ∈ Ω. We use the estimates derivatives of Gm(x, y) from [29]. The estimates
for the lower order derivatives of Gm(x, y) will be obtained by integrating the higher order
derivatives along the path γ

y
x from Lemma 2.10. This lemma corresponds to one of the in-

tegration steps. For example, with α, β ∈ Nn and if x̃ ∈ ∂Ω the endpoint of γ
y
x, then we

find
Dα

x Dβ
y Gm(x, y) = Dα

x Dβ
y Gm(x̃, y) +

∫
γ

y
x

∇zDα
z Dβ

y Gm(z, y)dz. (2.11)

If |α| ≤ m− 1, then the first term on the right hand side of (2.11) equals to zero and we get∣∣∣Dα
x Dβ

y Gm(x, y)
∣∣∣ ≤ ∫ l

0

∣∣∣∇xDα
x Dβ

y Gm(γ
y
x(s), y)

∣∣∣ ds. (2.12)

If |β| ≤ m− 1, then similarly by integrating with respect to y we find∣∣∣Dα
x Dβ

y Gm(x, y)
∣∣∣ ≤ ∫ l

0

∣∣∣∇yDβ
y Dα

x Gm(x, γx
y(s)

∣∣∣ ds. (2.13)

We distinguish the cases as in the statement of the theorem.
Case 1. Let |k| = r ≥ m and β ∈ Nn with |β| = m− 1. Then from k = α and using the

estimates from [29], we get

|Dα
x Dβ

y Gm(x, y)| ≤ |x− y|m−n−r.

Case 2. Let |k| = r < m. Also we using the estimates for
∣∣Dβ

y Dα
x Dk

xGm(x, y)
∣∣ from [29] and

then integrates m times with respect of y and m− r times with respect to x.
Thus the theorem is proved.
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The proof of Theorem 2.7. The method of proof is similar to the one used in Theorem 2.6. A
difference is that in this case there is no symmetry between x and y. The following lemma,
that corresponds to one integration step is as follows.

Lemma 2.12. Let ν1, k ∈N with k ≥ 2. If

|∇x H(x, y)| . |x− y|−kdν1(x)

for x ∈ Ω, y ∈ ∂Ω and H(x̃, y) = 0 for every x̃ ∈ ∂Ω with x̃ 6= y, then the following inequality
holds

|H(x, y)| . |x− y|−kdν1+1(x)

for x ∈ Ω, y ∈ ∂Ω.

If we use previous auxiliary results, then we can easily prove Lemma 2.12.
The Lemma 2.12 allow us to prove the following theorem for which Theorem 2.7 is a

special case.

Theorem 2.13. ([15, 29]) Let Kj(x, y), j = 0, m− 1 be the Poisson kernels of problem (2.1) and
α ∈Nn with |α| ≤ m− 1. Then the following estimate

∣∣Dα
xKj(x, y)

∣∣ . dm−|α|(x)
|x− y|n−j+m−1

holds for x ∈ Ω and y ∈ ∂Ω.

Remark 2.14. The estimates of Dα
xKj(x, y) for |α| ≥ m can be found from [29]. Following

estimate is valid ∣∣Dα
xKj(x, y)

∣∣ . |x− y|−n+j−|α|+1.

3 Sublinear operators, generated by Calderón–Zygmund operators
in local generalized Morrey spaces

Let Ω be an open bounded subset of Rn. Suppose that T represents a linear or a sublinear
operator, which satisfies that for any f ∈ L1(Ω)

|T f (x)| ≤ c0

∫
Ω

| f (y)|dy
|x− y|n , x 6∈ supp( f ), (3.1)

where c0 is independent of f and x.
The following local estimates for the sublinear operator satisfying condition (3.1) are valid.

Lemma 3.1. Let 1 ≤ p < ∞, Ω be an open bounded subset of Rn, x0 ∈ Ω, 0 < r ≤ d, d =

supx,y∈Ω |x− y| < ∞. Let also T be a sublinear operator satisfying condition (3.1), and bounded from
Lp(Ω) to WLp(Ω), and bounded on Lp(Ω) for p > 1.

(i) Then the inequality

‖T f ‖WLp(Ω(x0,r)) . r
n
p

∫ d

r
t−

n
p−1‖ f ‖Lp(Ω(x0,t)) dt + r

n
p ‖ f ‖Lp(Ω) (3.2)

holds for any Ω(x0, r) and for any f ∈ Lp(Ω).
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(ii) Moreover, for p > 1 the inequality

‖T f ‖Lp(Ω(x0,r)) . r
n
p

∫ d

r
t−

n
p−1‖ f ‖Lp(Ω(x0,t)) dt + r

n
p ‖ f ‖Lp(Ω) (3.3)

holds for any Ω(x0, r) and for any f ∈ Lp(Ω).

Proof. Let 1 ≤ p < ∞. Since

r
n
p

∫ d

r
t−

n
p−1‖ f ‖Lp(Ω(x0,t)) dt ≥ r

n
p ‖ f ‖Lp(Ω(x0,r))

∫ d

r
t−

n
p−1 dt

≈ ‖ f ‖Lp(Ω(x0,r))(d
n
p − r

n
p ), r ∈ (0, d),

we get that

‖ f ‖Lp(Ω(x0,r)) . r
n
p

∫ d

r
t−

n
p−1‖ f ‖Lp(Ω(x0,t)) dt + r

n
p ‖ f ‖Lp(Ω), r ∈ (0, d). (3.4)

(i). Assume that 1 ≤ p < ∞. Let r ∈ (0, d/2). We write f = f1 + f2 with f1 = f χΩ(x0,2r)
and f2 = f χΩ\Ω(x0,2r). Taking into account the linearity of T, we have

‖T f ‖WLp(Ω(x0,r)) ≤ ‖T f1‖WLp(Ω(x0,r)) + ‖T f2‖WLp(Ω(x0,r)). (3.5)

Since f1 ∈ Lp(Ω), in view of (3.4), the boundedness of T from Lp(Ω) to WLp(Ω) implies that

‖T f1‖WLp(Ω(x0,r)) ≤ ‖T f1‖WLp(Ω) . ‖ f1‖Lp(Ω) ≈ ‖ f ‖Lp(Ω(x0,2r))

. r
n
p

∫ d

r
t−

n
p−1‖ f ‖Lp(Ω(x0,t)) dt + r

n
p ‖ f ‖Lp(Ω), (3.6)

where the constant is independent of f , x0 and r.
We have

|T f2(x)| .
∫

Ω\Ω(x0,2r)

| f (y)|dy
|x− y|n−1 , x ∈ Ω(x0, r).

It’s clear that x ∈ Ω(x0, r), y ∈ Ω\Ω(x0, 2r) implies (1/2)|x0 − y| ≤ |x − y| < (3/2)|x0 − y|.
Therefore we obtain that

‖T f2‖Lp(Ω(x0,r)) . r
n
p

∫
Ω\Ω(x0,2r)

| f (y)|dy
|x0 − y|n−1 .

By Fubini’s theorem, we get that∫
Ω\Ω(x0,2r)

| f (y)|
|x0 − y|n−1 dy ≈

∫
Ω\Ω(x0,2r)

| f (y)|
(

1 +
∫ d

|x0−y|

ds
sn

)
dy

=
∫

Ω\Ω(x0,2r)
| f (y)| dy +

∫
Ω\Ω(x0,2r)

| f (y)|
(∫ d

|x0−y|

ds
sn

)
dy

=
∫

Ω\Ω(x0,2r)
| f (y)| dy +

∫ d

2r

(∫
2r≤|x0−y|≤s

| f (y)| dy
)

ds
sn

≤
∫

Ω
| f (y)| dy +

∫ d

2r

(∫
Ω(x0,s)

| f (y)| dy
)

ds
sn .

Applying Hölder’s inequality, we arrive at∫
Ω\Ω(x0,2r)

| f (y)|dy
|x0 − y|n . ‖ f ‖Lp(Ω) +

∫ d

2r
s−

n
p−1‖ f ‖Lp(Ω(x0,s)) ds.
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Thus the inequality

‖T f2‖Lp(Ω(x0,r)) . r
n
p

∫ d

r
s−

n
p−1‖ f ‖Lp(Ω(x0,s)) ds + r

n
p ‖ f ‖Lp(Ω) (3.7)

holds for all r ∈ (0, d/2).
On the other hand, since

‖T f2‖WLp(Ω(x0,r)) ≤ ‖T f2‖Lp(Ω(x0,r))

using (3.7), we get that

‖T f2‖WLp(Ω(x0,r)) . r
n
p

∫ d

r
s−

n
p−1‖ f ‖Lp(Ω(x0,s)) ds + r

n
p ‖ f ‖Lp(Ω) (3.8)

holds true for all r ∈ (0, d/2).
Finally, combining (3.6) and (3.8), we obtain that

‖T f ‖WLp(Ω(x0,r)) . r
n
p

∫ d

r
s−

n
p−1‖ f ‖Lp(Ω(x0,s)) ds + r

n
p ‖ f ‖Lp(Ω)

holds for all r ∈ (0, d/2) with a constant independent of f , x0 and r.
Let now r ∈ [d/2, d). Then, using (Lp(Ω), WLp(Ω))-boundedness of T, we obtain

‖T f ‖WLp(Ω(x0,r)) ≤ ‖T f ‖WLp(Ω) . ‖ f ‖Lp(Ω) ≈ r
n
p ‖ f ‖Lp(Ω),

and, inequality (3.2) holds.
(ii). Assume that 1 < p < ∞. Let again r ∈ (0, d/2). We write f = f1 + f2 with f1 =

f χΩ(x0,2r) and f2 = f χΩ\Ω(x0,2r). Taking into account the linearity of T, we have

‖T f ‖Lp(Ω(x0,r)) ≤ ‖T f1‖Lp(Ω(x0,r)) + ‖T f2‖Lp(Ω(x0,r)). (3.9)

Since f1 ∈ Lp(Ω), in view of (3.4), the boundedness of T on Lp(Ω) implies that

‖T f1‖Lp(Ω(x0,r)) ≤ ‖T f1‖Lp(Ω) . ‖ f1‖Lp(Ω) ≈ ‖ f ‖Lp(Ω(x0,2r))

. r
n
p

∫ d

r
t−

n
p−1‖ f ‖Lp(Ω(x0,t)) dt + r

n
p ‖ f ‖Lp(Ω), (3.10)

where the constant is independent of f , x0 and r.
Combining (3.9), (3.10) and (3.7), we get inequality (3.3) holds for all r ∈ (0, d/2) with a

constant independent of f , x0 and r.
If r ∈ [d/2, d), then, using the boundedness of T on Lp(Ω), we obtain that

‖T f ‖Lp(Ω(x0,r)) ≤ ‖T f ‖Lp(Ω) . ‖ f ‖Lp(Ω) ≈ r
n
p ‖ f ‖Lp(Ω),

and, inequality (3.3) holds.

Now we are going to use the following statement on the boundedness of the weighted
Hardy operator

H∗wg(t) :=
∫ d

t
g(s)w(s)ds, 0 < t ≤ d < ∞,

where w is a fixed function non-negative and measurable on (0, d).
The following theorem was proved in [25].
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Theorem 3.2. Let v1, v2 and w be positive almost everywhere and measurable functions on (0, d). The
inequality

ess sup
0<t<d

v2(t)H∗wg(t) ≤ C ess sup
0<t<d

v1(t)g(t) (3.11)

holds for some C > 0 for all non-negative and non-decreasing g on (0, d) if and only if

B := ess sup
0<t<d

v2(t)
∫ d

t

w(s)ds
ess sups<τ<d v1(τ)

< ∞. (3.12)

Moreover, if C∗ is the minimal value of C in (3.11), then C∗ = B.

Remark 3.3. In (3.11) and (3.12) it is assumed that 1
∞ = 0 and 0 ·∞ = 0.

Theorem 3.4. Let 1 ≤ p < ∞, Ω be an open bounded subset of Rn, x0 ∈ Ω, and (ϕ1, ϕ2) satisfy the
condition ∫ d

r

ess inft<τ<∞ ϕ1(x0, τ) τ
n
p

t
n
p+1 dt ≤ C ϕ2(x0, r), (3.13)

where C does not depend on r. Let also T be a sublinear operator satisfying condition (3.1), and bounded
from Lp(Ω) to WLp(Ω), and bounded on Lp(Ω) for p > 1. Then there exists c = c(p, ϕ1, ϕ2, n) > 0
such that

‖T f ‖
WL̃M

{x0}
p,ϕ2

(Ω)
≤ c‖ f ‖

L̃M
{x0}
p,ϕ1

(Ω)
.

Moreover, for p > 1 there exists c = c(p, ϕ1, ϕ2, n) > 0 such that

‖T f ‖
L̃M

{x0}
p,ϕ2

(Ω)
≤ c‖ f ‖

L̃M
{x0}
p,ϕ1

(Ω)
.

Proof. By Theorem 3.2 and Lemma 3.1 with v2(r) = ϕ2(x0, r)−1, v1(r) = ϕ1(x0, r)−1r−
n
p and

w(r) = r−
n
p we have

‖T f ‖
WL̃M

{x0}
p,ϕ2

(Ω)
. sup

0<r<d
ϕ1(x0, r)−1

∫ d

r
‖ f ‖WLp(Ω(x0,t))

dt

t
n
p+1 + ‖T f ‖WLp(Ω)

. sup
0<r<d

ϕ1(x0, r)−1 r−
n
p ‖ f ‖Lp(Ω(x0,r)) + ‖ f ‖Lp(Ω)

= ‖ f ‖
LM{x0}

p,ϕ1 (Ω)
+ ‖ f ‖Lp(Ω) = ‖ f ‖

L̃M
{x0}
p,ϕ1

(Ω)

and for 1 < p < ∞

‖T f ‖
L̃M

{x0}
p,ϕ2

(Ω)
. sup

0<r<d
ϕ1(x0, r)−1

∫ d

r
‖ f ‖Lp(Ω(x0,t))

dt

t
n
p+1 + ‖T f ‖Lp(Ω)

. sup
0<r<d

ϕ1(x0, r)−1 r−
n
p ‖ f ‖Lp(Ω(x0,r)) + ‖ f ‖Lp(Ω)

= ‖ f ‖
LM{x0}

p,ϕ1 (Ω)
+ ‖ f ‖Lp(Ω) = ‖ f ‖

L̃M
{x0}
p,ϕ1

(Ω)
.

From Theorem 3.4 we get the following corollary.
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Corollary 3.5. Let 1 ≤ p < ∞, Ω be an open bounded subset of Rn, x0 ∈ Ω, and (ϕ1, ϕ2) satisfy the
condition ∫ d

r

ess inft<τ<∞ ϕ1(x, τ) τ
n
p

t
n
p+1 dt ≤ C ϕ2(x, r), (3.14)

where C does not depend on x and r. Let also T be a sublinear operator satisfying condition (3.1),
and bounded from Lp(Ω) to WLp(Ω), and bounded on Lp(Ω) for p > 1. Then there exists c =

c(p, ϕ1, ϕ2, n) > 0 such that
‖T f ‖WM̃p,ϕ2 (Ω) ≤ c‖ f ‖M̃p,ϕ1 (Ω).

Moreover, for p > 1 there exists c = c(p, ϕ1, ϕ2, n) > 0 such that

‖T f ‖M̃p,ϕ2 (Ω) ≤ c‖ f ‖M̃p,ϕ1 (Ω).

4 Dirichlet boundary value problem for polyharmonic equation in
modified local generalized Sobolev–Morrey spaces

Now we will derive regularity estimates for solution of problem (2.1) when g = 0{
(−∆)mu = f in Ω,
∂ku
∂nk = 0 on Ω,

(4.1)

where 0 ≤ k ≤ m− 1, Ω ⊂ Rn is bounded.
We get the estimates of solution problem (4.1) in modified local generalized Sobolev–

Morrey spaces
‖u‖

W2m,{x0}
p,ϕ2 (Ω)

. ‖ f ‖
L̃M

{x0}
p,ϕ1

(Ω).

Note that
K f (x) = lim

ε→0

∫
|x−y|>ε

∑
|α|=2m

Dα
xi

Gm(x− y) f (y)dy

is the Calderón–Zygmund operator. Here and later we take, that function f define in Rn,
also this function is continuity extended to exterior of domain Ω with zero. The function
Dm

xi
Gm(x, y) ∈ C∞(Rn\ {0}) and this function is homogeneous of order m− n. Hence conse-

quence, that D2m
xi

Gm(x, y) homogeneous of order 2m− n and tends to zero on unit sphere (see
[15]). Then from general theory giving in [7] consequence that K bounded operator on Lp(Rn)

for 1 < p < ∞. Moreover, maximal singularity operator

K̃ f (x) = sup
ε>0

∣∣∣∣∣
∫
|x−y|>ε

∑
|α|=2m

DαGm(x, y) f (y)dy

∣∣∣∣∣
also a bounded on Lp(Rn) for 1 < p < ∞.

From Theorem 3.4 we get the following corollary.

Corollary 4.1. Let 1 < p < ∞, Ω be an open bounded subset of Rn, x0 ∈ Ω, and (ϕ1, ϕ2) satisfy the

condition (3.13). Then operators M and K are bounded from L̃M
{x0}
p,ϕ1

(Ω) to L̃M
{x0}
p,ϕ2

(Ω).

From Corollary 3.5 we get the following.

Corollary 4.2. Let 1 < p < ∞, Ω be an open bounded subset of Rn, and (ϕ1, ϕ2) satisfy the condition
(3.14). Then operators M and K are bounded from M̃p,ϕ1(Ω) to M̃p,ϕ2(Ω).
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Theorem 4.3. Let 1 < p < ∞, x0 ∈ Ω, Ω ⊂ Rn be a bounded domain with ∂Ω ⊂ C2, and (ϕ1, ϕ2)

satisfy the condition (3.13). Let also f ∈ L̃M
{x0}
p,ϕ1

(Ω) and function u is a solution of problem (4.1).
Then there is exist constant C which dependent only at n, ϕ and Ω such that

‖u‖
W2m,{x0}

p,ϕ2 (Ω)
≤ C‖ f ‖

L̃M
{x0}
p,ϕ1

(Ω)
. (4.2)

Proof. The proved consequence from the above estimates of the Green’s function from [27]:
the following inequalities

|u(x)|+
∣∣∣Dxi u(x)

∣∣∣ . M f (x), (4.3)∣∣∣Dxixj u(x)
∣∣∣ . K f (x) + M f (x) + | f (x)| (4.4)

hold uniformly for any x ∈ Ω.
With similarly ideas can be proved estimates

|u(x)|+
∣∣∣∣∣ ∑
|α|≤m

Dα
xi

u(x)

∣∣∣∣∣ . M f (x), (4.5)∣∣∣∣∣ ∑
|α|≤2m

Dαu(x)

∣∣∣∣∣ . K̃ f (x) + M f (x) + | f (x)|. (4.6)

Now we passing to prove of Theorem 4.3. From Corollary 4.1 imply that the operators M
and K̃ are bounded in LM{x0}

p,ϕ (Ω). Therefore statement of Theorem 4.3 and estimate (4.2) the
immediately consequence from inequalities (4.5), (4.6) and Corollary 4.1.

Theorem 4.3 is proved.

From inequalities (4.5), (4.6) and Corollary 4.2 we get the following corollary.

Corollary 4.4. Let 1 < p < ∞, Ω ⊂ Rn be a bounded domain with ∂Ω ⊂ C2, and (ϕ1, ϕ2) satisfy
the condition (3.14). Let also f ∈ M̃p,ϕ1(Ω) and function u is a solution of problem (4.1). Then there
is exist constant C which dependent only at n, ϕ and Ω such that

‖u‖W2m
p,ϕ2

(Ω) ≤ C‖ f ‖M̃p,ϕ1 (Ω).

5 Estimates of solutions any higher order uniformly elliptic
equation with smooth coefficients in modified local generalized
Sobolev–Morrey spaces

Consider the boundary value problem{
Lu = f in Ω

Bju = ψj on ∂Ω
(5.1)

for j = 0, . . . , m− 1. The following assumptions hold.

1. The operator
Lu = ∑

|α|≤2m
aα,j(x)Dαu
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is uniformly elliptic: there exists a constant γ > 0, such that

γ−1 |ξ|2 ≤∑
α,j

aα,j(x)ξαξ j ≤ γ |ξ|2 , a.e. x ∈ Ω, ∀ξ ∈ Rn

aα,j(x) = aj,α(x)

2. The boundary operators

Bj = ∑
|β|≤mj

bjβDβ, for j = 0, m− 1

satisfy the complementing condition relative to L (see the complementing condition on
page 663 of [17]).

3. Let l1 > maxj(2m− mj) and l0 = maxj(2m− mj). The coefficients aαj belong to Cl1+1(Ω)

and bjβ belong to Cl1+1(∂Ω).

4. The boundary ∂Ω is Cl1+2m+1.

5. f ∈ LM{x0}
p,ϕ (Ω) with 1 < p < ∞ and ϕ : Ω×R+→ R+ measurable.

Theorem 5.1. Let us consider the boundary value problem (5.1) and satisfy conditions 1–5 and also
condition of Theorem 4.3. Then there is exist constant C which dependent only at n, ϕ and Ω such that

‖u‖
W2m,{x0}

p,ϕ2

≤ C‖ f ‖
L̃M

{x0}
p,ϕ1

(Ω)
. (5.2)

Theorem 5.1 similarly ideas of Theorem 4.3 is proved.
For this it will be enough to consider the Krasovsky work [29]. We will recall the theorem

in [29] which gives the estimates of the Green’s function and the Poisson kernels. The proved
consequence from this estimates. As in proof of Theorem 4.3 we use estimates (4.5), (4.6) and
Corollary 4.1. Therefore statement of theorem and estimate (5.2) the immediately consequence
from inequalities (4.5), (4.6). Theorem 5.1 is proved.

From inequalities (4.5), (4.6) and Corollary 4.2 we get the following corollary.

Corollary 5.2. Let us consider the boundary value problem (5.1) and satisfy conditions 1–5 and also
condition of Corollary 4.4. Then there is exist constant C which dependent only at n, ϕ and Ω such
that

‖u‖W2m
p,ϕ2
≤ C‖ f ‖M̃p,ϕ1 (Ω).
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