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Abstract. We consider a nonlinearizable eigenvalue problem for the beam equation
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1 Introduction

We consider the following fourth order boundary value problem

(`u) ≡ (p(t)u′′)′′ − (q(t)u′)′ = λr(t)u + h(t, u, u′, u′′, u′′′, λ), t ∈ (0, 1), (1.1)

u′(0) cos α− (pu′′)(0) sin α = 0,

u(0) cos β + Tu(0) sin β = 0,

u′(1) cos γ + (pu′′)(1) sin γ = 0,

u(1) cos δ− Tu(1) sin δ = 0,

(1.2)

where λ ∈ R is a spectral parameter, Ty ≡ (pu′′)′ − qu′, the function p(t) is strictly posi-
tive and continuous on [0, 1], p(t) has an absolutely continuous derivative on [0, 1], q(t) is
nonnegative and absolutely continuous on [0, 1], the weight function r(t) is sign-changing
continuous on [0, 1] (i.e. meas{t ∈ (0, 1) : σr(t) > 0} > 0 for each σ ∈ {+ , −}) and α, β, γ, δ

are real constants such that 0 ≤ α, β, γ, δ ≤ π/2 except the cases α = γ = 0, β = δ = π /2
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and α = β = γ = δ = π /2. The nonlinear term has the representation h = f + g, where
f , g ∈ C([0, 1]×R5) are real-valued functions satisfying the following conditions:

u f (t, u, s, v, w, λ) ≤ 0, (t, u, s, v, w, λ) ∈ [0, 1]×R5, (1.3)

there exists constants M > 0 such that∣∣∣∣ f (t, u, s, v, w, λ)

u

∣∣∣∣ ≤ M, (t, u, s, v, w, λ) ∈ [0, 1]×R5, (1.4)

and
g(t, u, s, v, w, λ) = o(|u|+ |s|+ |v|+ |w|) (1.5)

in a neighborhood of (u, s, v, w) = (0, 0, 0, 0) uniformly in t ∈ [0, 1] and in λ ∈ Λ, for every
bounded interval Λ ⊂ R.

It is well known that fourth-order problems arise in many applications (see [7,21]) and the
references therein); problem (1.1)–(1.2) in particular, is often used to describe the deformation
of an elastic beam, which is subject to axial forces (see [7]). Problems with sign-changing
weight arise from population modeling. In this model, weight function g changes sign corre-
sponding to the fact that the intrinsic population growth rate is positive at same points and is
negative at others, for details, see [9, 14].

The purpose of this work is to study the global bifurcation of solutions of problem (1.1)–
(1.2) in the classes of positive and negative functions, bifurcating from the intervals of the line
of trivial solutions.

The problem (1.1)–(1.2) for the case of f ≡ 0 is studied in [16]. In the case of f ≡ 0 the
linearization of (1.1)–(1.2) at u = 0 is the linear eigenvalue problem

(p(t)u′′(t))′′ − (q(t)u′(t))′ = λr(t)u(t), t ∈ (0, 1),

u ∈ B.C. ,
(1.6)

where by B.C. we denote the set of boundary conditions (1.2). In [16] it was shown that
there exist two positive and negative principal eigenvalues (i.e., eigenvalues corresponding to
eigenfunctions which have no zeros in (0, 1)), λ+

1 and λ−1 , of problem (1.6). Moreover, in [16]
it was also proved that for each σ ∈ {+ , −} and each ν ∈ {+ , −} there exists a continuum
(connected closed set) Cσ, ν

1 of solutions of problem (1.1)–(1.2) with f ≡ 0 bifurcating from
the point (λσ

1 , 0), which is unbounded in R× C3[0, 1], and ν sgn u(t) = 1, t ∈ (0, 1), for each
(λ, u) ∈ Cσ, ν

1 .
Because of the presence of the term f , problem (1.1)–(1.2) does not in general have a lin-

earization about zero. For this reason, the set of bifurcation points for (1.1)–(1.2) with respect
to the line of trivial solutions need not be discrete (cf. the example in [6, p. 381]). Therefore,
to investigate bifurcation for (1.1)–(1.2), one has to consider bifurcation from intervals rather
than from bifurcation points. We say that bifurcation occurs from an interval if this interval
contains at least one bifurcation point [6].

The problem (1.1)–(1.2) with r > 0 was considered in a recent paper [3] where, in particular,
it was shown that for each k ∈ N and ν = + or −, there exists a connected component
(maximal connected subset) Dν

k of the set of solutions that emanating from the bifurcation
interval

[
λk − K

r0
, λk − K

r0

]
× {0} (r0 = mint∈[0,1] r(t)) of the line of trivial solutions, has the

standard oscillation properties (the number of zeros of a function is equal to the index of the
eigenvalue of the corresponding linear problem minus one), is unbounded in R× C3, and
limt→0 ν sgn u(t) = 1 for each (λ, u) ∈ Dν

k . Similar results on global bifurcation of solutions
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of nonlinear Sturm–Liouville problems obtained before by Rabinowitz [22], Berestycki [6],
Schmitt and Smith [24], Chiappinelli [10], Aliyev and Mamedova [4], Rynne [23] and Dai [12].

It should be noted that to study the global bifurcation of solutions of problem (1.1)–(1.2)
in the classes of positive and negative functions the method of [3] cannot be applied. This
is due to the fact that the weight function r(x) changes sign in the interval (0, 1) and the
eigenfunctions of linear problem (1.6) corresponding to the principal eigenvalues have no
zeros in the interval (0, 1). Therefore, in investigating global bifurcation in the nonlinear
problem (1.1)–(1.2) the following questions must be addressed: using new approaches to
finding bifurcation intervals of solutions to (1.1)–(1.2) and to the study of the behavior of the
connected components of the set of solutions emanating from these intervals.

The structure of this paper is as follows.
In Section 2, a family of sets to exploit oscillatory properties of eigenfunctions of problem

(1.6) and their derivatives is introduced. Although problem (1.1)–(1.2) is not linearizable in a
neighborhood of the origin (when f 6≡ 0), it is nevertheless related to a linear problem which
is perturbation of problem (1.6). In Section 3, we estimate the distance between the principal
eigenvalues of the perturbed and unperturbed problem. Using this estimation in Section 4
we find the bifurcation intervals. We show the existence of two pair of unbounded continua
of solutions emanating from the bifurcation intervals and contained in the classes of positive
and negative functions.

2 Preliminary

Let E = C3[0, 1] ∩ B.C. be a Banach space with the norm ‖u‖3 = ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ +

‖u′′′‖∞, where ‖ · ‖∞ is the standard sup-norm in C[0, 1].
Let

S = S1 ∪ S2,

where

S1 = {u ∈ E : u(i)(t) 6= 0, Tu(t) 6= 0, t ∈ [0, 1], i = 0, 1, 2 }

and

S2 =
{

u ∈ E : there exists i0 ∈ {0, 1, 2} and t0 ∈ (0, 1) such that u(i0)(t0) = 0,

or Tu(t0) = 0 and if u(t0)u′′(t0) = 0, then u′(t)Tu(t) < 0 in a neighborhood of t0,

and if u′(t0)Tu(t0) = 0, then u(t)u′′(t) < 0 in a neighborhood of t0
}

.

Note that if u ∈ S then the Jacobian J = ρ3 cos ψ sin ψ (see [2, 3, 5]) of the Prüfer-type transfor-
mation 

u(t) = ρ(t) sin ψ(t) cos θ(t),

u′(t) = ρ(t) cos ψ(t) sin ϕ(t),

(pu′′)(t) = ρ(t) cos ψ(t) cos ϕ(t),

Tu(t) = ρ(t) sin ψ(t) sin θ(t),

(2.1)

does not vanish on (0, 1).
For each u ∈ S we define ρ(u, t), θ(u, t), ϕ(u, t) and w(u, t) to be the continuous functions



4 Z. S. Aliyev and R. A. Huseynova

on [0, 1] satisfying

ρ(u, t) = u2(t) + u′2(t) + (p(t)u′′(t))2 + (Tu(t))2,

θ(u, t) = arctan
Tu(t)
u(t)

, θ(u, 0) = β− π/2 ,

ϕ(u, t) = arctan
u′(t)

(pu′′)(t)
, ϕ(u, 0) = α ,

w(u, t) = cot ψ(u, t) =
u′(t) cos θ(u, t)
u(t) sin ϕ(u, t)

, w(u, 0) =
u′(0) sin β

u(0) sin α
,

and ψ(u, t) ∈ (0, π
/

2), t ∈ (0, 1), in the cases of u(0)u′(0) > 0; u(0) = 0; u′(0) = 0
and u(0)u′′(0) > 0, ψ(u, t) ∈ (π

/
2, π), t ∈ (0, 1), in the cases u(0)u′(0) < 0; u′(0) =

0 and u(0)u′′(0) < 0; u′(0) = u′′(0) = 0, β = π/2 in the case ψ(u, 0) = 0 and α = 0 in
the case ψ(u, 0) = π/2.

It is obvious that ρ, θ, ϕ, w : S× [0, 1]→ R are continuous.

Remark 2.1. By (2.1) for each u ∈ S the function w(u, t) can be determined from one of the
following relations:

(a) w(u, t) = cot ψ(u, t) =
(pu′′)(t) cos θ(u, t)

u(t) cos ϕ(u, t)
, w(u, 0) =

(pu′′)(0) sin β

u(0) cos α
,

(b) w(u, t) = cot ψ(u, t) =
(pu′′)(t) sin θ(u, t)

Tu(t) cos ϕ(u, t)
, w(u, 0) = − (pu′′)(0) cos β

Tu(0) cos α
,

(c) w(u, t) = cot ψ(u, t) =
u′(t) sin θ(u, t)
Tu(t) sin ϕ(u, t)

, w(u, 0) = − u′(0) cos β

Tu(0) sin α
.

For each ν ∈ {+ , −} let Sν
1 denote the subset of such u ∈ S that:

1) θ(u, 1) = π/2− δ, where δ = π/2 in the case ψ(u, 1) = 0 ;

2) ϕ(u, 1) = 2π − γ or ϕ(u, 1) = π − γ in the case ψ(u, 0) ∈ [0, π/2); ϕ(u, 1) = π − γ in the
case ψ(y, 0) ∈ [π/2, π), where γ = 0 in the case ψ(y, l) = π/2 ;

3) for fixed u, as t increases from 0 to 1, the function θ(u, t) (ϕ(u, t)) strictly increasingly
takes values of mπ/2, m ∈ {−1, 0, 1} (sπ, s ∈ {0, 1, 2}) ; as t decreases from 1 to 0, the
function θ(u, t) (ϕ(u, t)), strictly decreasing takes values of mπ/2, m ∈ {−1, 0, 1} (sπ, s ∈
{0, 1, 2}) ;

4) the function νu(t) is positive in a neighborhood of t = 0.

By the results [2, 3, 5] it follows that the sets S+
1 and S−1 are nonempty. It immediately

follows from the definition of these sets that they are disjoint and open in E. Moreover, by
[2, Lemma 2.2], if u(t) ∈ ∂Sν

1 ∩ C4[0, 1], ν ∈ {+ , −}, then u(t) has at least one zero of
multiplicity 4 in (0, 1).

Lemma 2.2. If (λ, u) ∈ R× E is a solution of (1.1)–(1.2) and u ∈ ∂Sν
1, ν ∈ {+ , −}, then u ≡ 0.

The proof of this lemma is similar to that of [3, Lemma 1.1] (see also [2]).
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3 Principal eigenvalues of perturbation linear problem

For the linear eigenvalue problem (1.6) we have the following result.

Theorem 3.1 ([16, Theorem 2.1]). The spectral problem (1.6) has two sequences of real eigenvalues

0 < λ+
1 < λ+

2 ≤ . . . ≤ λ+
k 7→ +∞,

and
0 > λ−1 > λ−2 ≥ . . . ≥ λ−k 7→ −∞

and no other eigenvalues. Moreover, λ+
1 and λ−1 are simple principal eigenvalues, i.e. the corresponding

eigenfunctions u+
1 (t) and u−1 (t) have no zeros in the interval (0, 1).

Similar problems have been considered in [1, 8, 13, 15, 18].

Remark 3.2. The problem (1.6) with r > 0 is a completely regular Sturmian system as defined
by S. A. Janczewsky (see [17, p. 523]) provided that the excluded the cases α = γ = 0, β = δ =

π /2 and α = β = γ = δ = π /2. Then the eigenvalues of this problem are positive, simple
and form an infinitely increasing sequence 0 < λ1 < λ2 < · · · < λk < · · · The eigenfunction
uk(t), corresponding to λk, has exactly k− 1 simple zeros in (0, 1) (more precisely, u1(t) ∈ S1)
(see [3, 5]). Therefore, leaving these exceptional cases out of our consideration is essential.

Note that the proof of Theorem 3.1 is based on a method used by Brown and Lin [8]. Now
we analyze the existence of principal eigenvalues using the method of Hess and Kato [15]
(see also [1]). This is due to the fact that we will need further reasoning in order to find the
bifurcation intervals of problem (1.1)–(1.2) corresponding to the principal eigenvalues of (1.6).

Define the linear differential operator L : D(L)→ L2(0, 1) by

(Lu)(t) = (`u)(t)

and
D(L) = {u ∈ L2(0, 1) : u ∈W4

2 (0, 1), `u ∈ L2(0, 1), u ∈ B.C.}.

It is known that the differential operator L is a densely defined self-adjoint operator on H
whose spectrum contains only positive eigenvalues [5] (see also Remark 3.2).

For fixed λ ∈ R we consider the following eigenvalue problem

(`u)(t)− λr(t)u(t) = µu(t), t ∈ (0, 1),

u ∈ B.C.
(3.1)

By [3, Theorem 1.2] the problem has a sequence of real and simple eigenvalues

µ1(λ) < µ2(λ) < . . . < µk(λ) 7→ +∞ .

Moreover, for each k ∈ N the eigenfunction uk(t, λ) corresponding to the eigenvalue µk(λ)

has k− 1 simple zeros in the interval (0, 1) (it should be noted that u1(t, λ) ∈ S1). Let

Tλ =
{∫ 1

0 {p(t)|u′′(t)|2+q(t)|u′(t)|2}dt+N(u)−λ
∫ 1

0 r(t)|u(t)|2dt : u ∈ D(L),
∫ 1

0 |u(t)|
2dt=1

}
,

where N(u) = [u′(0)]2 cot α + [u(0)]2 cot β + [u′(1)]2 cot γ + [u(1)]2 cot δ. It is clear that Tλ

is bounded below. It is shown in Courant and Hilbert [11] by variational arguments that
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µ1(λ) = min Tλ. Moreover, it follows by the above argument that the eigenfunction u1(t, λ)

corresponding to µ1(λ) does not vanish on (0, 1). Thus, clearly, λ is a principal eigenvalue of
(1.6) if and only if µ1(λ) = 0. For fixed u ∈ D(L) the mapping

λ→
∫ 1

0

{
p(t)|u′′(t)|2 + q(t)|u′(t)|2

}
dt + N(u)− λ

∫ 1

0
r(t)|u (t)|2dt

is an affine and therefore a concave function. Since the minimum of any collection of concave
functions is concave, it follows that λ → µ1(λ) is a concave function. Besides, by considering
test functions u1, u2 such that

∫ 1
0 r(t)|u1(t)|2dt > 0 and

∫ 1
0 r(t)|u2(t)|2dt < 0, it is easy to

see that µ1(λ) → −∞ as λ → ±∞. Thus µ1(λ) is an increasing function until it attains its
maximum, and is a decreasing function thereafter.

Then, as can be seen from the variational characterization of µ1(λ) or the fact that L has
a positive principal eigenvalue, µ1(0) > 0 and thus µ1(λ) must has a graph which intersects
the real axis in two points first of which is to the left, and second to the right from origin
of coordinates. Hence, problem (1.6) has exactly two simple principal eigenvalues, one pos-
itive and one negative, which coincide with the λ+

1 and λ−1 , respectively. Moreover, we have
u1(t, λ+

1 ) = u+
1 (t) and u1(t, λ−1 ) = u−1 (t), t ∈ [0, 1].

Lemma 3.3. For each σ ∈ {+ , −} the following relation is true:

dµ1(λ
σ
1 )

dλ
= −

∫ 1
0 r(t) (uσ

1 (t))
2 dt∫ 1

0

(
uσ

1 (t)
)2 dt

. (3.2)

Proof. By (3.1) we have

`u1(t, λ)− λr(t)u1(t, λ) = µ1(λ)u1(t, λ), t ∈ (0, 1),

u1(t, λ) ∈ B.C.
(3.3)

Let v1(t, λ) = du1(t,λ)
dλ . Then, by virtue of (3.3), v1(t, λ) satisfies

`v1(t, λ)− λr(t)v1(t, λ)− µ1(λ)v1(t, λ) = r(t)u1(t, λ) +
dµ1(λ)

dλ
u1(t, λ), t ∈ (0, 1),

v1(t, λ) ∈ B.C.
(3.4)

Multiplying (3.4) by u1(t, λ) and integrating this relation from 0 to 1 while taking into account
the self-adjointness of the operator L we obtain

−µ1(λ)

1∫
0

v1(t, λ) u1(t, λ)dt =
1∫

0

r(t) u2
1(t, λ)dt +

dµ1(λ)

dλ

1∫
0

u2
1(t, λ)dt.

Since µ1(λ
σ
1 ) = 0, σ ∈ {+ ,−}, it follows that

0 =

1∫
0

r(t) u2
1(t, λσ

1 )dt +
dµ1(λ

σ
1 )

dλ

1∫
0

u2
1(t, λσ

1 )dt,

which implies (3.2). The proof of this lemma is complete.
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Together with problems (1.6) and (3.1) we consider the following spectral problems

`u(t) + ϕ(t)u(t) = λr(t)u(t), t ∈ (0, 1),

u ∈ B.C. ,
(3.5)

(`u)(t)− λr(t)u(t) + ϕ(t)u(t) = µu(t), t ∈ (0, 1),

u ∈ B.C.,
(3.6)

where ϕ(t) ∈ C[0, 1] and ϕ(t) ≥ 0, t ∈ [0, 1].
By ϕ(t) ≥ 0, t ∈ [0, 1], it follows from the proof of [3, Lemma 4.2] that

0 ≤ µ̃1(λ)− µ1(λ) ≤ K̃, (3.7)

where µ̃1(λ) is the smallest eigenvalue of problem (3.6) and K̃ = maxt∈[0,1] ϕ(t).

Remark 3.4. Since λ → µ̃1(λ) is also a concave function on R and µ̃1(λ) ≥ µ1(λ) for any
λ ∈ R it follows that λ̃+

1 > λ+
1 and λ̃−1 < λ−1 , where λ̃+

1 and λ̃−1 are the positive and negative
principal eigenvalues of problem (3.5), respectively.

We need the following result which is basic in the sequel.

Lemma 3.5. For each σ ∈ {+,−} the following relation is true:

|λ̃σ
1 − λσ

1 | ≤
σK̃
∫ 1

0 (uσ
1 (t))

2 dt∫ 1
0 r(t)

(
uσ

1 (t)
)2 dt

. (3.8)

Proof. Let

lσ(λ) = aσ
1 (λ− λσ

1 ), aσ
1 =

dµ1(λ
σ
1 )

dλ
, σ ∈ {+ , −},

i.e. lσ is the line which tangent to the graph of the function µ1(λ) at point λσ
1 . We introduce

the following notation:

A = (λσ
1 , 0), B = (λ̃σ

1 , 0), C = (λ̃σ
1 , lσ(λ̃σ

1 )), and D = (λ̃σ
1 , µ1(λ̃

σ
1 )), σ ∈ {+ , −}.

Note that
|AB| = |λ̃σ

1 − λσ
1 |,

where |AB| is the distance between the points A and B.
Since λ → µ1(λ) is a concave function it follows that the graph of the function µ1(λ) lies

under the tangent lσ for each σ ∈ {+ , −}. Hence, by Remark 3.4, we have

|BC| ≤ |BD|. (3.9)

Moreover, from a right-angled triangle we find that

|AB| = |BC| tan ∠BAC = −σ|BC| dµ1(λ
σ
1 )

dλ
. (3.10)

Combining (3.10), (3.9), (3.7) and (3.2) we obtain (3.8) which completes the proof.

Remark 3.6. Since the class of continuous functions C[0, 1] is dense in L1[0, 1] Lemma 3.5 also
holds for ϕ(t) ∈ L1[0, 1].
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4 Global bifurcation from intervals of the set of solutions of prob-
lem (1.1)–(1.2)

For the problem (1.1)–(1.2) with f ≡ 0 we have the following global result.

Theorem 4.1 ([16, Theorem 3.1]). For each σ ∈ {+,−} and each ν ∈ {+,−} there exists a
continuum Cσ, ν

1 of solutions of problem (1.1)–(1.2) with f ≡ 0 in Sν
1 ∪ {(λσ

1 , 0)} which meets (λσ
1 , 0)

and ∞ in R× E.

Now we consider problem (1.1)–(1.2) with f 6≡ 0.
We say that (λ, 0) is a bifurcation point of (1.1)–(1.2) with respect to the set Sν

1 if in every
small neighborhood of this point there is a solution to this problem which is contained in
R× Sν

1.

Lemma 4.2. For each ν ∈ {+ , −} and for each sufficiently small τ > 0 problem (1.1)–(1.2) has a
solution (λτ, vτ) such that vτ ∈ Sν

1 and ‖vτ‖3 = τ.

Proof. We consider the following approximation problem{
`u = λr(t)u + f (t, |u|εu, u′, u′′, u′′′, λ) + g(t, u, u′, u′′, u′′′, λ), t ∈ (0, 1),

u ∈ B.C. ,
(4.1)

where ε ∈ (0, 1].
By virtue of (1.4) the function f (t, |u|εu, u′, u′′, u′′′, λ) satisfies the condition (1.5), i.e.

f (t, |u|εu, s, v, w, λ) = o (|u|+ |s|+ |v|+ |w|) (4.2)

in a neighborhood of (u, s, v, w) = (0, 0, 0, 0) uniformly in t ∈ [0, 1] and in λ ∈ Λ, for every
bounded interval Λ ⊂ R. Then by Theorem 4.1, for each σ ∈ {+ , −} and each ν ∈ {+ , −}
there exists an unbounded continuum Cσ, ν

1, ε of solutions of (4.1) such that

(λσ
1 , 0) ∈ Cσ, ν

1, ε ⊂ Sν
1 ∪ {(λσ

1 , 0)}.

Then for any ε ∈ (0, 1] there exists a solution (λτ, ε, vτ, ε) ∈ R× E of (4.1) such that vτ, ε ∈
∂Bτ ∩ Sν

1, where ∂Bτ is the boundary of the open ball Bτ ⊂ E of radius τ centered at 0. Clearly,
(λτ, ε, vτ, ε) solves the nonlinear problem{

`u + ϕε(t)u = λr(t)u + g(t, u, u′, u′′, u′′′, λ), t ∈ (0, 1),

u ∈ B.C. ,
(4.3)

where

ϕε(t) =

{
− f (t, |vτ, ε(t)|εvτ, ε(t), v′τ, ε(t), v′′τ, ε(t), v′′′τ, ε(t), λ)

vτ, ε(t)
, if vτ, ε(t) 6= 0,

0, if vτ, ε(t) = 0.
(4.4)

By (1.3) and (1.4), from (4.4) we obtain

ϕε(t) ≥ 0 and |ϕε(t)| ≤ K| vτ, ε(t)|ε ≤ K for all t ∈ [0, 1]. (4.5)

Since vτ, ε does not vanish in (0, 1) and is bounded on the closed interval [0, 1], Remark 3.6
shows that the result of Lemma 3.5 also holds for the following linear problem{

`u + ϕε(t)u = λr(t)u, t ∈ (0, 1),

u ∈ B.C.
(4.6)
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Then, taking (4.5) into account it follows from (3.8) that the principal eigenvalue λσ
1,ε , σ ∈

{+,−}, of the linear problem (4.6) lies in Jσ
1 , where

J+1 = [λ+
1 , λ+

1 + d+1 ], J−1 = [λ−1 − d−1 , λ−1 ], dσ
1 =

σK
∫ 1

0 (uσ
1 (t))

2 dt∫ 1
0 r(t)

(
uσ

1 (t)
)2 dt

.

By [19, Ch. 4, § 2, Theorem 2.1] and Theorems 3.1 and 4.1, for each σ ∈ {+,−}, (λσ
1,ε, 0)

is the bifurcation point of (4.3) with respect to the set of Sν
1 and a continuous branch of

nontrivial solutions corresponds to this point. Hence to each small τ > 0 we can assign a
small ρσ

τ, ε > 0, σ ∈ {+,−} such that

λτ, ε ∈ (λ+
1, ε − ρ+τ, ε, λ+

1, ε + ρ+τ, ε) ⊂ [λ+
1 − ρ+0 , λ+

1 + d+0 + ρ+0 ],

or

λτ, ε ∈ (λ−1, ε − ρ−τ, ε, λ−1, ε + ρ−τ, ε) ⊂ [λ−1 − d−0 − ρ−0 , λ−1 + ρ−0 ],

where ρσ
0 = sup

τ, ε
ρσ

τ, ε > 0.

Since {vτ, ε ∈ E : 0 < ε ≤ 1} is a bounded subset of C3[0, 1], the functions f and g are
continuous in [0, 1]×R5, and the set {λτ, ε ∈ R : 0 < ε ≤ 1} is bounded in R, it follows from
(4.1) that {vτ, ε ∈ E : 0 < ε ≤ 1} is also bounded in C4[0, 1]. Hence it is precompact in E by
the Arzelà–Ascoli theorem.

Let {εn}∞
n=1 ⊂ (0, 1) be a sequence such that εn → 0 and (λτ, εn vτ, εn)→ (λτ, vτ) as n→ ∞.

Taking the limit in (4.1) we see that (λτ, vτ) is a solution of (1.1)–(1.2). Since ‖vτ‖3 = τ > 0, it
follows from Lemma 2.2 that vτ ∈ Sν

1. The proof of Lemma 4.2 is complete.

Corollary 4.3. The set of bifurcation points for problem (1.1)–(1.2) with respect to the set Sν
1 is

nonempty.

Lemma 4.4. Let {εn}∞
n=1 ⊂ [0, 1] and εn → 0. If (ζn, wn) ∈ R× Sν

1 is a solution of (4.1) for ε = εn

and {(ζn, wn)}∞
n=1 converges to (ζ, 0) in R× E, then ζ ∈ J+1 or ζ ∈ J−1 .

The proof of this lemma is similar to that of [3, Lemma 5.4] with considering of Lemma 4.2
and Corollary 4.3.

Corollary 4.5. If (λ, 0) is a bifurcation point for (1.1)–(1.2) with respect to the set Sν
1, then λ ∈

J+1 ∪ J−1 .

Let L denote the closure of the set of nontrivial solutions of (1.1)–(1.2).
For each σ ∈ {+,−} and ν ∈ {+,−}, let D̃σ, ν

1 denote the union of the connected compo-
nents Dσ, ν

1, λ of the set of solutions of (1.1)–(1.2) emanating from bifurcation points (λ, 0) ∈ Jσ
1

with respect to Sν
1. It is clear that D̃σ, ν

1 6= ∅. Note that Dσ, ν
1 = D̃σ, ν

1 ∪ (Jσ
1 × {0}) is a connected

subset of R× E, but D̃σ, ν
1 is not necessarily connected in R× E.

Let
I1 = [λ−1 − d−0 , λ+

1 + d+0 ].

Remark 4.6. Since J+1 ⊂ I1 and J−1 ⊂ I1 it follows from Corollary 4.5 that all bifurcation points
of (1.1)–(1.2) with respect to the set Sν

1 lie in I1 × {0}.

Let Dν, ν ∈ {+,−}, denote the union of the sets D+, ν
1 , D−, ν

1 and I1 × {0}, i.e.

Dν
1 = D+, ν

1 ∪ D−, ν
1 ∪ (I1 × {0}).
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Theorem 4.7. For each ν ∈ {+ , −} the connected component Dν
1 of L, containing I1 × {0}, lies in

(R× Sν
1) ∪ (I1 × {0}) and is unbounded in R× E.

The proof of this theorem is similar to that of [3, Theorem 1.3] with considering of
Lemma 2.2, Theorem 3.1, Theorem 4.1, Lemma 4.2, Corollary 4.3 and Remark 4.6.

The main result of this paper is the following theorem.

Theorem 4.8. For each ν ∈ {+, −} and each ν ∈ {+ ,−} the connected component Dσ, ν
1 of L,

containing Jσ
1 × {0}, lies in (R× Sν

1) ∪ (Jσ
1 × {0}) and is unbounded in R× E.

Proof. It follows from Corollary 4.5 that

Dσ, ν
1 ∩

(
R\(J+1 ∪ J−1 )

)
= ∅, σ ∈ {+,−}.

Then, by [20, Theorem 3.1], for each σ ∈ {+,−} either Dσ,+
1 ∪ Dσ,−

1 is unbounded in R× E,
or Dσ,+

1 ∪ Dσ,−
1 meets J−σ

1 × {0}. Since

(Dσ,+
1 \(R× {0}) ∩ (Dσ,−

1 \(R× {0}) = ∅ for each σ ∈ {+ ,−},

it follows that if Dσ,+
1 ∪ Dσ,−

1 meets J−σ
1 × {0} (where −σ is interpreted in the natural way),

then
D+, ν

1 = D−, ν
1 for each ν ∈ {+ ,−}.

Hence it follows that for each ν ∈ {+ ,−} the set Dν
1 is bounded in R× E which contradicts

Theorem 4.7. The proof of this theorem is complete.

Corollary 4.9. Let g ≡ 0. Then for each ν ∈ {+, −} and each ν ∈ {+ ,−} the connected component
Dσ, ν

1 of L, containing (Jσ
1 × {0}), lies in (Jσ

1 × Sν
1) ∪ (Jσ

1 × {0}) and is unbounded in R× E.

The proof of this corollary follows from Theorem 4.8 with considering the following
lemma.

Lemma 4.10. Let g ≡ 0 and (λ, u) is a solution of problem (1.1)–(1.2) such that u ∈ S1. Then λ ∈ J+1
or λ ∈ J−1 .

Proof. Let (λ, u) ∈ R× S1. Then (λ, u) solves the linear problem{
`u + ϕ(t)u = λr(t)u, t ∈ (0, 1),

u ∈ B.C. ,
(4.7)

where

ϕ(t) =

{
− f (t,u(t),u′(t),u′′(t),u′′′(t),λ)

u(t) , if u(t) 6= 0,

0, if u(t) = 0.
(4.8)

Taking (1.3) and (1.4) into account, (4.8) yields

ϕ(t) ≥ 0 and |ϕ(t)| ≤ K, t ∈ [0, 1].

Hence λ is a principal eigenvalue of problem (4.7). By Remark 3.6 it follows from Lemma 3.5
that λ ∈ J+1 or λ ∈ J−1 . The proof of Lemma 4.10 is complete.
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