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Abstract. The paper deals with a singular nonlinear initial value problem with a
φ-Laplacian

(p(t)φ(u′(t)))′ + p(t) f (φ(u(t))) = 0, t > 0, u(0) = u0 ∈ [L0, L], u′(0) = 0.

Here, f is a continuous function with three roots φ(L0) < 0 < φ(L), φ : R → R is
an increasing homeomorphism and function p is positive and increasing on (0, ∞).
The problem is singular in the sense that p(0) = 0 and 1/p may not be integrable
in a neighbourhood of the origin. The goal of this paper is to prove the existence of
unbounded solutions. The investigation is held in two different ways according to the
Lipschitz continuity of functions φ−1 and f . The case when those functions are not
Lipschitz continuous is more involved that the opposite case and it is managed by
means of the lower and upper functions method. In both cases, existence criteria for
unbounded solutions are derived.
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1 Introduction

The aim of this paper is to analyse the singular nonlinear equation

(p(t)φ(u′(t)))′ + p(t) f (φ(u(t))) = 0, t > 0, (1.1)
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with the initial conditions

u(0) = u0, u′(0) = 0, u0 ∈ [L0, L]. (1.2)

Here we focus our attention on unbounded solutions of problem (1.1), (1.2) and provide
sufficient conditions for their existence, while in [6] we discussed the existence and properties
of bounded solutions of problem (1.1), (1.2). So, in a way, this paper completes results obtained
in [6].

Problem (1.1), (1.2) is investigated under the basic assumptions

φ ∈ C1(R), φ′(x) > 0 for x ∈ (R \ {0}), (1.3)

φ(R) = R, φ(0) = 0, (1.4)

L0 < 0 < L, f (φ(L0)) = f (0) = f (φ(L)) = 0, (1.5)

f ∈ C[φ(L0), ∞), x f (x) > 0 for x ∈ ((φ(L0), φ(L)) \ {0}), f (x) ≤ 0 for x > φ(L), (1.6)

p ∈ C[0, ∞) ∩ C1(0, ∞), p′(t) > 0 for t ∈ (0, ∞), p(0) = 0. (1.7)

As a model example, we can consider problem (1.1), (1.2) with α-Laplacian φ(x) = |x|α sgn x,
α ≥ 1, x ∈ R, and with a three degree polynomial f (x) = x(x− φ(L0))(φ(L)− x), x ∈ R. For
simplicity we can consider function p as a power function p(t) = tβ, β > 0, t ≥ 0.

Definition 1.1. Let [0, b ) ⊂ [0, ∞ ) be a maximal interval such that a function u ∈ C1 [0, b )
with φ(u′) ∈ C1 (0, b) satisfies equation (1.1) for every t ∈ (0, b). Then u is called a solution of
equation (1.1) on [0, b ). If u is a solution of equation (1.1) on [0, ∞ ), then u is called a solution
of equation (1.1). A solution u of equation (1.1) on [0, b ) which satisfies the initial conditions
(1.2) is called a solution of problem (1.1), (1.2) on [0, b ). If u is a solution of problem (1.1), (1.2)
on [0, ∞ ), then u is called a solution of problem (1.1), (1.2).

Definition 1.2. Consider a solution of problem (1.1), (1.2) with u0 ∈ (L0, L) and denote

usup = sup{u(t) : t ∈ [0, ∞)}.

If usup = L, then u is called a homoclinic solution of problem (1.1), (1.2).
If usup < L, then u is called a damped solution of problem (1.1), (1.2).

Remark 1.3. Assumption (1.5) yields that constant functions u(t) ≡ L0, u(t) ≡ 0 and u(t) ≡ L
are solutions of problem (1.1), (1.2) on [0, ∞) with u0 = L0, u0 = 0 and u0 = L, respectively. If
u(0) = 0, then u′ cannot be positive on (0, δ) for any δ > 0, since then u is positive on (0, δ)

and integrating equation (1.1) from 0 to t ∈ (0, δ), we get, by (1.6),

p(t)φ(u′(t)) = −
∫ t

0
p(s) f (φ(u(s)))ds < 0,

a contradiction. Similarly, u′ cannot be negative. Therefore, the solution u(t) ≡ 0 is the unique
solution of problem (1.1), (1.2) with u0 = 0 and clearly, it is a damped solution.

Solutions from Definition 1.2 are bounded. Therefore, we are mostly interested in another
type of solutions specified in the next definition.

Definition 1.4. Let u be a solution of problem (1.1), (1.2) on [0, b ), where b ∈ (0, ∞ ]. If there
exists c ∈ (0, b) such that

u(c) = L, u′(c) > 0, (1.8)

then u is called an escape solution of problem (1.1), (1.2) on [0, b ).
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A special case of equation (1.1) with φ(u) ≡ u and p(t) = tn−1, n ∈N, n ≥ 2(
tn−1u′(t)

)′
+ tn−1 f (u(t)) = 0, t > 0,

arises in many areas. For example in the study of phase transition of Van der Waals fluids [11],
in population genetics, where it serves as a model for the spatial distribution of the genetic
composition of a population [10], in the homogeneous nucleation theory [1], in the relativistic
cosmology for description of particles which can be treated as domains in the universe [17], or
in the nonlinear field theory, in particular, when describing bubbles generated by scalar fields
of the Higgs type in the Minkowski spaces [8]. The above nonlinear equation was replaced
with its abstract and more general form(

p(t)u′(t)
)′
+ q(t) f (u(t)) = 0, t > 0,

which was investigated for p ≡ q in [20–25] and for p 6≡ q in [5, 7, 26, 27]. Other problems
without φ-Laplacian close to (1.1), (1.2) can be found in [2–4,13–15] and those with φ-Laplacian
in [9, 12, 16, 18, 19].

Analytical properties of solutions of problem (1.1), (1.2) with a φ-Laplacian have been
already studied in [6] with a focus on existence of bounded solutions on [0, ∞). In more
details, the existence of damped solutions was proved for u0 ∈ [B̄, L]. Some results derived
in [6] are also useful here when the existence and properties of unbounded solutions are of
interest. Therefore, we recapitulate them in Section 2 for the reader’s convenience.

The goal of this paper is to find conditions which guarantee the existence of escape solu-
tions of problem (1.1), (1.2), which are unbounded. The analysis of problem (1.1), (1.2) with
a general φ-Laplacian includes also φ(x) = |x|α sgn x, for α > 1. Let us emphasise that in
this case, φ−1(x) = |x| 1α sgn x is not locally Lipschitz continuous. Since φ−1 is present in the
integral form of (1.1), (1.2)

u(t) = u0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f (φ(u(τ)))dτ

)
ds, t ≥ 0,

the standard technique based on the Lipschitz property is not applicable here and another
approach needs to be developed. Therefore, we distinguish two cases.

• In the first case, where functions φ−1 and f are Lipschitz continuous, the uniqueness
of a solution of problem (1.1), (1.2) is guaranteed. This considerably helps to derive
conditions when a sequence of solutions contains an escape solution.

• In the second case, functions φ−1 and f do not have to be Lipschitz continuous. The
lack of uniqueness causes difficulties and therefore is more challenging. The problems
are overcome by means of the lower and upper functions method. Also here sufficient
conditions for the existence of escape solutions are derived.

Since in general an escape solution needs not be unbounded, criteria for an escape solution to
tend to infinity are derived. In this manner, we obtain new existence results for unbounded
solutions of problem (1.1), (1.2). The aim of our further research is to analyse the existence of
homoclinic solutions.

The paper is organised in the following manner: Preliminary results for an auxiliary prob-
lem with a bounded nonlinearity are stated in Section 2. Auxiliary lemmas necessary for
proofs of the existence of escape solutions of the auxiliary problem are given in Section 3. The
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existence of escape solutions of this problem is further discussed in Section 4. Namely, the
first existence result in Section 4 is derived by an approach based on the Lipschitz property.
The other case without the Lipschitz condition is studied by means of the lower and upper
functions method. In Section 5, the criteria for escape solutions of the original problem to be
unbounded are proved. The main results about the existence of unbounded solutions with
examples are given in Section 6.

2 Preliminary

In order to derive the main existence results about unbounded solutions of problem (1.1),
(1.2), we first introduce the auxiliary equation with a bounded nonlinearity

(p(t)φ(u′(t)))′ + p(t) f̃ (φ(u(t))) = 0, t ∈ (0, ∞), (2.1)

where

f̃ (x) =

{
f (x) for x ∈ [φ(L0), φ(L)],

0 for x < φ(L0), x > φ(L).
(2.2)

Since f̃ is bounded on R, the maximal interval of existence for each solution of problem (2.1),
(1.2) is [0, ∞ ). In this section, we collect preliminary results for solutions of problem (2.1),
(1.2) derived in [6]. Properties, asymptotic behaviour and a priori estimates of such solutions
are specified in Lemmas 2.1–2.8. The existence and continuous dependence on initial values
of solutions is provided in Theorem 2.9 and Theorem 2.10, respectively.

Lemma 2.1 (Lemma 2.1 b) in [6]). Let (1.3)–(1.7) hold and let u be a solution of equation (2.1).
Assume that there exists a ≥ 0 such that u(a) ∈ (0, L) and u′(a) = 0. Then u′(t) < 0 for t ∈ (a, θ],
where θ is the first zero of u on (a, ∞). If such θ does not exist, then u′(t) < 0 for t ∈ (a, ∞).

Lemma 2.2 (Lemma 2.2 in [6]). Let (1.3)–(1.7) hold and let u be a solution of equation (2.1). Assume
that there exists a ≥ 0 such that u(a) = L and u′(a) = 0.

a) Let θ > a be the first zero of u on (a, ∞). Then there exists a1 ∈ [ a, θ ) such that

u(a1) = L, u′(a1) = 0, 0 ≤ u(t) < L, u′(t) < 0, t ∈ (a1, θ].

b) Let u > 0 on [a, ∞) and u 6≡ L on [a, ∞). Then there exists a1 ∈ [a, ∞) such that

u(a1) = L, u′(a1) = 0, 0 < u(t) < L, u′(t) < 0, t ∈ (a1, ∞).

In both cases, u(t) = L for t ∈ [a, a1].

Lemma 2.3 (Lemma 2.6 in [6]). Assume (1.3)–(1.7),

lim
t→∞

p′(t)
p(t)

= 0, (2.3)

and
∃B̄ ∈ (L0, 0) : F̃ (B̄) = F̃(L), where F̃(x) =

∫ x

0
f̃ (φ(s))ds, x ∈ R. (2.4)

Let u be a solution of equation (2.1) and b ≥ 0 and θ > b be such that

u(b) ∈ [B̄, 0), u′(b) = 0, u(θ) = 0, u(t) < 0, t ∈ [b, θ).

Then there exists a ∈ (θ, ∞) such that

u′(a) = 0, u′(t) > 0, t ∈ (b, a), u(a) ∈ (0, L).
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Lemma 2.4 (Lemma 2.7 in [6]). Assume that (1.3)–(1.7), (2.3) and (2.4) hold. Let u be a solution of
equation (2.1) and a ≥ 0 and θ > a be such that

u(a) ∈ (0, L], u′(a) = 0, u(θ) = 0, u(t) > 0, t ∈ [a, θ).

Then there exists b ∈ (θ, ∞) such that

u′(b) = 0, u′(t) < 0, t ∈ (a, b), u(b) ∈ (B̄, 0).

Lemma 2.5 (Lemma 2.8 in [6]). Assume that (1.3)–(1.7) and (2.3) hold. Let u be a solution of
equation (2.1) and b ≥ 0 be such that

u(b) ∈ (L0, 0), u′(b) = 0, u(t) < 0, t ∈ [b, ∞).

Then
lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0.

Lemma 2.6 (Lemma 3.1 in [6]). Assume that (1.3)–(1.7), (2.3) and (2.4) hold. Let u be a solution of
problem (2.1), (1.2) with u0 ∈ (L0, B̄). Let θ > 0, a > θ be such that

u(θ) = 0, u(t) < 0, t ∈ [0, θ), u′(a) = 0, u′(t) > 0, t ∈ (θ, a).

Then
u(a) ∈ (0, L], u′(t) > 0, t ∈ (0, a).

Lemma 2.7 (Lemma 3.2 in [6]). Let assumptions (1.3)–(1.7), (2.3) and (2.4) hold. Let u be a solution
of problem (2.1), (1.2) with u0 ∈ (L0, 0) ∪ (0, L). Then

u0 ∈ [B̄, 0) ∪ (0, L) ⇒ B̄ < u(t) < L, t ∈ (0, ∞) ,

u0 ∈ (L0, B̄) ⇒ u0 < u(t), t ∈ (0, ∞) .

For the following result, we introduce a function ϕ

ϕ(t) :=
1

p(t)

∫ t

0
p(s)ds, t ∈ (0, T], ϕ(0) = 0. (2.5)

This function is continuous on [0, T] and satisfies

0 < ϕ(t) ≤ t, t ∈ (0, T], lim
t→0+

ϕ(t) = 0. (2.6)

Moreover, we point out that f̃ is bounded and there exists a constant M̃ > 0 such that

| f̃ (x)| ≤ M̃, x ∈ R. (2.7)

Lemma 2.8 (Lemma 3.4 in [6]). Assume (1.3)–(1.7). Let u be a solution of problem (2.1), (1.2) with
u0 ∈ [L0, L]. The inequality ∫ β

0

p′(t)
p(t)

∣∣φ(u′(t))∣∣ dt ≤ M̃(β− ϕ(β))

is valid for every β > 0. If moreover (2.3) and (2.4) hold, then there exists c̃ > 0 such that

|u′(t)| ≤ c̃, t ∈ [0, ∞),

for every solution u of (2.1), (1.2) with u0 ∈ (L0, 0) ∪ (0, L).
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The existence of solutions of the auxiliary problem (2.1), (1.2) is proved in [6] by means of
the Schauder fixed point theorem. We state this existence result in the next theorem.

Theorem 2.9 (Theorem 4.1 in [6]). Assume (1.3)–(1.7). Then, for each u0 ∈ [L0, L], there exists a
solution u of problem (2.1), (1.2).

The uniqueness of solutions of (2.1), (1.2) follows from the continuous dependence on
initial values. This assertion is based on the Lipschitz property, see (2.8) and (2.9).

Theorem 2.10 (Theorem 4.3 in [6]). Assume (1.3)–(1.7) and

f ∈ Lip [φ(L0), φ(L)] , (2.8)

φ−1 ∈ Liploc(R). (2.9)

Let ui be a solution of problem (2.1), (1.2) with u0 = Bi ∈ [L0, L], i = 1, 2. Then, for each β > 0, there
exists K > 0 such that

‖u1 − u2‖C1[0,β] ≤ K|B1 − B2|.
Furthermore, any solution of problem (2.1), (1.2) with u0 ∈ [L0, L] is unique.

Remark 2.11. The above lemmas are proved in [6] under the weaker assumption

lim sup
t→∞

p′(t)
p(t)

< ∞

instead of condition (2.3). Similarly, no sign condition of f (x), x /∈ [L0, L] is needed in [6]
while here we use (1.6). To keep the formulation as simple as possible, we decided to use
these additional conditions in formulations of results in this section, whereas the results are
proved in [6] without it.

3 Auxiliary results

In this section, we provide auxiliary lemmas, which are used in Section 4 for proofs of the
existence of escape solutions of the auxiliary problem (2.1), (1.2).

Note that all solutions of problem (2.1), (1.2) with u0 ∈ [B̄, L) are damped solutions, see
Remark 1.3 and Lemma 2.7. Therefore, we consider only u0 ∈ [L0, B̄) for investigation of
escape solutions of problem (2.1), (1.2). Such solutions can be equivalently characterized as
follows.

Lemma 3.1. Let (1.3)–(1.7), (2.3) and (2.4) hold and let u be a solution of problem (2.1), (1.2). Then
u is an escape solution if and only if

sup{u(t) : t ∈ [0, ∞)} > L. (3.1)

Proof. Let u fulfils (3.1). According to Definition 1.2, u is not a damped solution and hence,
due to Lemma 2.7, u(0) < B̄ < 0. Consequently, there exists a maximal c > 0 such that
u(t) < L for t ∈ [0, c) and

u(c) = L, u′(c) ≥ 0.

Assume that u′(c) = 0. Using Lemma 2.2 (and in the case of more roots of u also Lemma 2.3
and Lemma 2.4), we get that

sup{u(t) : t ∈ [0, ∞)} = u(c) = L,

contrary to (3.1). Therefore, u fulfils (1.8). On the other hand, if u is an escape solution of
problem (2.1), (1.2), then (3.1) follows immediately from Definition 1.4.
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The proofs of the existence of escape solutions are based on Lemma 3.2 and Lemma 3.5.
These lemmas are denoted here as Basic lemmas because they are essential for the proof of
existence of escape solutions. The Basic lemma I, Lemma 3.2, fully covers the case when
the uniqueness of solutions of (2.1), (1.2) is guaranteed. In particular, u ≡ L0 is the unique
solution with u0 = L0. Therefore, u0 = L0 is not discussed in the context of escape solutions.
The situation is different when (2.8) and (2.9) do not hold, see Basic lemma II, Lemma 3.5.

Lemma 3.2 (Basic lemma I). Let (1.3)–(1.7), (2.3) and (2.4) hold. Choose C ∈ (L0, B̄) and a sequence
{Bn}∞

n=1 ⊂ (L0, C). Let for each n ∈ N, un be a solution of problem (2.1), (1.2) with u0 = Bn and let
(0, bn) be the maximal interval such that

un(t) < L, u′n(t) > 0, t ∈ (0, bn). (3.2)

Finally, let γn ∈ (0, bn) be such that

un(γn) = C, ∀ n ∈N. (3.3)

If the sequence {γn}∞
n=1 is unbounded, then the sequence {un}∞

n=1 contains an escape solution of
problem (2.1), (1.2).

Proof. Let the sequence {γn}∞
n=1 be unbounded, then there exists a subsequence going to

infinity as n→ ∞. For simplicity, let us denote it by {γn}∞
n=1. Then we have

lim
n→∞

γn = ∞, γn < bn, n ∈N.

Assume on the contrary that for any n ∈ N, un is not an escape solution of problem (2.1),
(1.2). By Lemma 3.1,

sup{un(t) : t ∈ [0, ∞)} ≤ L, n ∈N. (3.4)

STEP 1. Fix n ∈ N and consider a solution un of problem (2.1), (1.2) with u0 = Bn. First
assume that un < 0 on [0, ∞). Then, by Lemma 2.1, we get u′n > 0 on (0, ∞), and for bn = ∞,
we obtain (3.2). In addition, we get by Lemma 2.5

lim
t→∞

un(t) = 0, lim
t→∞

u′n(t) = 0.

If we put
lim
t→∞

un(t) =: un(bn), lim
t→∞

u′n(t) =: u′n(bn),

we get
un(bn) = 0, u′n(bn) = 0. (3.5)

Now we assume that θ > 0 is the first zero of un. By Lemma 2.1, u′n > 0 on (0, θ].

(i) Let u′n > 0 on (θ, ∞). Then according to (3.4), 0 < un < L on (θ, ∞) and (3.2) is valid for
bn = ∞. First we prove that

lim
t→∞

un(t) = L, lim
t→∞

u′n(t) = 0.

Since un is increasing on (0, ∞), then according to (3.4), 0 < un < L on (0, ∞). We denote

lim
t→∞

un(t) =: ` ∈ (0, L].
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Since un is a solution of equation (2.1), then

φ′(u′n(t)) u′′n(t) +
p′(t)
p(t)

φ(u′n(t)) + f̃ (φ(un(t))) = 0, t ∈ (0, ∞). (3.6)

If we restrict the previous equation to the interval (θ, ∞) then, by (1.3)–(1.7), we have
that

p′(t)
p(t)

φ(u′n(t)) > 0, f̃ (φ(un(t))) > 0, φ′(u′n(t)) > 0,

so we deduce that
u′′n(t) < 0, t ∈ (θ, ∞).

Consequently, u′n is decreasing on (θ, ∞) and so, there must exist limt→∞ u′n(t) ≥ 0. If
limt→∞ u′n(t) = a > 0, then limt→∞ un(t) = ∞, which is a contradiction. Therefore,

lim
t→∞

u′n(t) = 0.

Finally, assume that ` ∈ (0, L). Letting t→ ∞ in (3.6), we get, by (1.4) and (2.3),

φ′(0) · lim
t→∞

u′′n(t) = − f̃ (φ(`)).

Since f̃ (φ(`)) ∈ (0, ∞), we get limt→∞ u′′n(t) < 0, contrary to limt→∞ u′n(t) = 0. There-
fore, ` = L. Then

un(bn) = L, u′n(bn) = 0. (3.7)

(ii) Let a > θ be the first zero of u′n. By (3.4) we have un(a) ≤ L. For bn = a we get (3.2) and

un(bn) ∈ (0, L], u′n(bn) = 0. (3.8)

To summarize (3.5), (3.7), (3.8), we see that un fulfils:

un(bn) ∈ [0, L], u′n(bn) = 0. (3.9)

STEP 2. Let n be fixed. We define

En(t) :=
∫ u′n(t)

0
xφ′(x)dx + F̃(un(t)), t ∈ (0, bn),

and

Kn := sup
{

p′(t)
p(t)

: t ∈ [γn, bn)

}
.

Due to (2.3), limn→∞ Kn = 0. In addition,

∃γn ∈ [γn, bn) : u′n(γn) = max{u′n(t) : t ∈ [γn, bn)}. (3.10)

Then, by (3.6), the following holds

dEn(t)
dt

= u′n(t) φ′(u′n(t)) u′′n(t) + f̃ (φ(un(t))) u′n(t)

= − p′(t)
p(t)

φ(u′n(t)) u′n(t) < 0, t ∈ (0, bn).
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Integrating the above equality over (γn, bn) and using (3.2), (3.10), we obtain

En(γn)− En(bn) =
∫ bn

γn

p′(t)
p(t)

φ(u′n(t))u
′
n(t)dt ≤ φ(u′n(γn))

∫ bn

γn

p′(t)
p(t)

u′n(t)dt

≤ φ(u′n(γn))Kn

∫ bn

γn

u′n(t)dt ≤ φ(u′n(γn))Kn(L− C).

Hence, we have
En(γn) ≤ En(bn) + φ(u′n(γn))Kn(L− C).

Moreover, from (3.9), we have

En(γn) > F(un(γn)) = F(C), En(bn) = F(un(bn)) ≤ F(L).

This leads to
F(C) < En(γn) ≤ F(L) + φ(u′n(γn))Kn(L− C).

Hence, we derive the estimate

F(C)− F(L)
L− C

1
Kn

< φ(u′n(γn)). (3.11)

STEP 3. We consider a sequence {un}∞
n=1. Since limn→∞ Kn = 0, we derive from (3.11) that

lim
n→∞

φ(u′n(γn)) = ∞. (3.12)

Using (1.4), we obtain
lim
n→∞

u′n(γn) = lim
n→∞

φ−1(φ(u′n(γn))) = ∞.

Since F̃ ≥ 0 and En is decreasing on (0, bn),∫ u′n(γn)

0
xφ′(x)dx ≤ En(γn) ≤ En(γn) ≤ F̃(L) + φ(u′n(γn))Kn(L− C), n ∈N

therefore,

lim
n→∞

(∫ u′n(γn)

0
xφ′(x)dx− φ(u′n(γn))Kn(L− C)

)
≤ F̃(L) < ∞.

Since
lim
n→∞

u′n(γn) = ∞,

then there exists n0 ∈N such that

u′n(γn) > 1, n ≥ n0.

Therefore,∫ un(γn)

0
xφ′(x)dx >

∫ u′n(γn)

1
xφ′(x)dx >

∫ u′n(γn)

1
φ′(x)dx = φ(u′n(γn))− φ(1), n ≥ n0.

By (3.12) and limn→∞ Kn = 0 we derive

lim
n→∞

(∫ u′n(γn)

0
xφ′(x)dx− φ(u′n(γn))Kn(L− C)

)
≥ lim

n→∞
φ(u′n(γn)) (1− Kn(L− C))−φ(1)=∞.

This yields a contradiction. Therefore, the sequence {un}∞
n=1 contains an escape solution of

problem (2.1), (1.2).
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If φ−1 and f are not Lipschitz continuous, then problem (2.1), (1.2) with u0 ∈ [L0, L] \
{0} can have more solutions. These solutions may be escape solutions. In particular, more
solutions can start at L0, not only the constant solution u(t) ≡ L0. Therefore, we need to
extend the assertions of Lemma 3.2 which deal with values greater than L0 for u0 = L0. For
this purpose next two lemmas are helpful.

Lemma 3.3. Let (1.3)–(1.7) hold and let u be a solution of problem (2.1), (1.2) such that

u0 = L0, u 6≡ L0, u(t) ≥ L0 for t ∈ [0, ∞). (3.13)

Then there exists a ≥ 0 such that
u(t) = L0 for t ∈ [0, a] (3.14)

and
u′(t) > 0 for t ∈ (a, θ],

where θ is the first zero of u on (a, ∞). If such θ does not exist, then u′(t) > 0 for t ∈ (a, ∞).
Let θ ∈ (a, ∞) and a1 > θ be such that

u′(a1) = 0, u′(t) > 0, t ∈ (θ, a1). (3.15)

Then u(a1) ∈ (0, L].

Proof. By (3.13), there exists τ > 0 such that

L0 < u(τ) < 0. (3.16)

Put a := inf{τ > 0; (3.16) holds}. Then u fulfils (3.14) and u′(a) = 0.
Put θ := sup{τ > a; (3.16) holds}. Then

p(t) f̃ (φ(u(t))) < 0, t ∈ (a, θ). (3.17)

Integrating equation (2.1) over [a, t], we get, by (3.17),

p(t) φ
(
u′(t)

)
= −

∫ t

a
p(s) f̃ (φ(u(s))) ds > 0, t ∈ (a, θ) (3.18)

and, since p(t) > 0, necessarily u′(t) > 0 for t ∈ (a, θ).
If θ = ∞, then the proof is finished. On the other hand, if θ < ∞, then θ is the first zero of

u on (a, ∞) and (3.18) yields u′(θ) > 0.
Let θ ∈ (a, ∞) and (3.15) hold. Then u(a1) > 0. Assume that u(a1) > L. Then there exists

a0 ∈ (θ, a1) such that u > L on (a0, a1]. Integrating equation (2.1) over (a0, a1) and using (2.2),
we obtain

p(a0)φ(u′(a0))− p(a1)φ(u′(a1)) =
∫ a1

a0

p(s) f̃ (φ(u(s)))ds = 0

and so, p(a0)φ(u′(a0)) = 0. Consequently, u′(a0) = 0, contrary to u′ > 0 on (a, a1). We have
proved that u(a1) ≤ L, which completes the proof.

Lemma 3.4. Let (1.3)–(1.7) and (2.3) hold and let u be a solution of (2.1), (1.2) satisfying (3.13).
Assume that

u(t) < 0, t ∈ [0, ∞).

Then
lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0.
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Proof. The proof is analogous to the proof of Lemma 2.5 but using Lemma 3.3 instead of
Lemma 2.1.

Lemma 3.5 (Basic lemma II). Let (1.3)–(1.7), (2.3) and (2.4) hold. Choose C ∈ (L0, B̄). Let for each
n ∈ N, un be a solution of problem (2.1), (1.2) with u0 = L0 and let (an, bn) be the maximal interval
such that

L0 < un(t) < L, u′n(t) > 0, t ∈ (an, bn).

Finally, let γn ∈ (an, bn) be such that

un(γn) = C, ∀n ∈N.

If the sequence {γn}∞
n=1 is unbounded, then the sequence {un}∞

n=1 contains an escape solution of
problem (2.1), (1.2) with u0 = L0.

Proof. The proof is held in an analogous way to the proof of Lemma 3.2 where in Step 1,
Lemmas 3.3 and 3.4 are used instead of Lemmas 2.1 and 2.5, respectively.

4 Existence of escape solutions

This section is devoted to the existence of escape solutions of problem (2.1), (1.2). First, we
discuss the existence of escape solutions provided the Lipschitz continuity of φ−1 and f . For
this purpose we choose a sequence of solutions which converges locally uniformly to the
constant solution u ≡ L0. In this manner we obtain an unbounded sequence {γn}∞

n=1 required
in the Basic lemma I, Lemma 3.2 for the existence of an escape solution. This approach fails
without the assumption on the Lipschitz condition. This situation is subject of investigation
in the rest of this section.

Theorem 4.1 (Existence of escape solutions of problem (2.1), (1.2) I). Let (1.3)–(1.7), (2.3), (2.4),
(2.8) and (2.9) hold. Then there exist infinitely many escape solutions of problem (2.1), (1.2) with
different starting values in (L0, B̄).

Proof. Choose n ∈ N, C ∈ (L0, B̄) and Bn ∈ (L0, C). By Theorem 2.9 and Theorem 2.10, there
exists a unique solution un of problem (2.1), (1.2) with u0 = Bn. By Lemma 2.1, there exists a
maximal an > 0 such that u′n > 0 on (0, an). Since un(0) < 0, there exists a maximal ãn > 0
such that un < L on [0, ãn ). If we put bn = min{an, ãn}, then (3.2) holds. Further, either
limt→∞ un(t) = 0 or un has a zero θn ∈ (0, bn), due to Lemmas 2.1 and 2.5. Consequently,
there exists γn ∈ (0, bn) satisfying un(γn) = C. We see that (3.3) is fulfilled.

Consider a sequence {Bn}∞
n=1 ⊂ (L0, C). Then we get the sequence {un}∞

n=1 of solutions of
problem (2.1), (1.2) with u0 = Bn, and the corresponding sequence of {γn}∞

n=1. Assume that
limn→∞ Bn = L0. Then, by Theorem 2.10, the sequence {un}∞

n=1 converges locally uniformly on
[0, ∞ ) to the constant function u ≡ L0. Therefore, limn→∞ γn = ∞ and the sequence {γn}∞

n=1 is
unbounded. By Lemma 3.2 there exists n0 ∈N such that un0 is an escape solution of problem
(2.1), (1.2). We have un0(0) = Bn0 > L0. Now, consider the unbounded sequence {γn}∞

n=n0+1.
By Lemma 3.2 there exists n1 ∈ N such that un1 is an escape solution of problem (2.1), (1.2)
such that un1(0) = Bn1 > L0. Repeating this procedure, we obtain the sequence {unk}∞

k=0 of
escape solutions of problem (2.1), (1.2).

Now, we investigate the existence of escape solutions in the case when φ−1 and f do not
have to be Lipschitz continuous. In order to prove the existence result, we consider the lower
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and upper functions method for an auxiliary mixed problem on [0, T]. In particular, we use
this method to find solutions of (2.1) which satisfy

u′(0) = 0, u(T) = C, C ∈ [L0, L]. (4.1)

Definition 4.2. A function u ∈ C1[0, T] with φ(u′) ∈ C1(0, T] is a solution of problem (2.1), (4.1)
if u fulfils (2.1) for t ∈ (0, T] and satisfies (4.1).

Definition 4.3. A function σ1 ∈ C[0, T] is a lower function of problem (2.1), (4.1) if there exists
a finite (possibly empty) set Σ1 ⊂ (0, T) such that σ1 ∈ C2((0, T] \ Σ1) and(

p(t) φ(σ′1(t))
)′
+ p(t) f̃ (φ(σ1(t))) ≥ 0, t ∈ (0, T] \ Σ1, (4.2)

−∞ < σ′1(τ
−) < σ′1(τ

+) < ∞, τ ∈ Σ1, (4.3)

σ′1(0
+) ≥ 0, σ1(T) ≤ C. (4.4)

Upper functions are defined analogously as follows.

Definition 4.4. A function σ2 ∈ C[0, T] is an upper function of problem (2.1), (4.1) if there exists
a finite (possibly empty) set Σ2 ⊂ (0, T) such that σ2 ∈ C2((0, T] \ Σ2) and(

p(t) φ(σ′2(t))
)′
+ p(t) f̃ (φ(σ2(t))) ≤ 0, t ∈ (0, T] \ Σ2, (4.5)

−∞ < σ′2(τ
+) < σ′2(τ

−) < ∞, τ ∈ Σ2, (4.6)

σ′2(0
+) ≤ 0, σ2(T) ≥ C. (4.7)

Theorem 4.5 (Lower and upper functions method). Let (1.3)–(1.7) hold and let σ1 and σ2 be lower
and upper functions of problem (2.1), (4.1) such that

σ1(t) ≤ σ2(t), t ∈ [0, T].

Then problem (2.1), (4.1) has a solution u such that

σ1(t) ≤ u(t) ≤ σ2(t), t ∈ [0, T].

Proof. The proof is divided into two steps.
STEP 1. For t ∈ [0, T] and x ∈ R we define the following auxiliary nonlinearity

f ∗(t, x) =


f̃ (φ(σ1(t))) +

σ1(t)−x
σ1(t)−x+1 , x < σ1(t),

f̃ (φ(x)), σ1(t) ≤ x ≤ σ2(t),
f̃ (φ(σ2(t)))− x−σ2(t)

x−σ2(t)+1 , x > σ2(t).

Note that f ∗ is bounded, that is there exists M∗ > 0 such that

| f ∗(t, x)| ≤ M∗, (t, x) ∈ [0, T]×R. (4.8)

Consider the auxiliary equation(
p(t) φ(u′(t))

)′
+ p(t) f ∗(t, u(t)) = 0, t ∈ (0, T]. (4.9)

Integrating (4.9), we get the equivalent form of problem (4.9), (4.1):

u(t) = C−
∫ T

t
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f ∗(τ, u(τ)) dτ

)
ds, t ∈ [0, T].
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Now, consider the Banach space C [0, T] with the maximum norm and define an operator
F : C [0, T]→ C [0, T],

(Fu)(t) := C−
∫ T

t
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f ∗(τ, u(τ))dτ

)
ds.

Put Λ := max{|L0|, L} and consider the ball B (0, R) =
{

u ∈ C [0, T] : ‖u‖C[0,T] ≤ R
}

, where
R := Λ + T φ−1 (M∗T) and M∗ is from (4.8). Since φ is increasing on R, φ−1 is also increasing
on R and, by (2.6), φ−1 (M∗ϕ(t)) ≤ φ−1 (M∗T), t ∈ [0, T], where ϕ is defined in (2.5). The
norm of Fu can be estimated as follows

‖Fu‖C[0,T] = max
t∈[0,T]

∣∣∣∣C− ∫ T

t
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f ∗(τ, u(τ)) dτ

)
ds
∣∣∣∣

≤ Λ +
∫ T

t

∣∣∣φ−1 (M∗ϕ(s))
∣∣∣ ds ≤ Λ +

∫ T

t
φ−1 (M∗T) ds ≤ Λ + T φ−1 (M∗T) = R,

which yields that F maps B (0, R) to itself.
Let us prove that F is compact on B (0, R). Choose a sequence {un} ⊂ C [0, T] such that

limn→∞ ‖un − u‖C[0,T] = 0. We have

(Fun)(t)− (Fu)(t) =−
∫ T

t

(
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f ∗(τ, un(τ))dτ

)
+ φ−1

(
− 1

p(s)

∫ s

0
p(τ) f ∗(τ, u(τ))dτ

))
ds.

Since f ∗ is continuous on [0, T]×R, we get

lim
n→∞
‖ f ∗(·, un(·)))− f ∗(·, u(·))‖C[0,T] = 0.

Put

An(t) := − 1
p(t)

∫ t

0
p(τ) f ∗(τ, un(τ))dτ,

A(t) := − 1
p(t)

∫ t

0
p(τ) f ∗(τ, u(τ))dτ, t ∈ (0, T], An(0) = A(0) = 0, n ∈N.

Then, for a fixed n ∈N,

|An(t)− A(t)| =
∣∣∣∣ 1

p(t)

∫ t

0
p(τ) ( f ∗(τ, u(τ))− f ∗(τ, un(τ))) dτ

∣∣∣∣ , t ∈ (0, T]

and, by (2.6) and (4.8), limt→0+ |An(t)− A(t)| = 0. Therefore, An − A ∈ C[0, T] and

‖An − A‖C[0,T] ≤ ‖ f ∗(·, un(·))− f ∗(·, u(·))‖C[0,T] T, n ∈N.

This implies that limn→∞ ‖An − A‖C[0,T] = 0. Using the continuity of φ−1 on R, we have

lim
n→∞

∥∥∥φ−1(An)− φ−1(A)
∥∥∥

C[0,T]
= 0.

Therefore,

lim
n→∞
‖Fun −Fu‖C[0,T] = lim

n→∞

∥∥∥∥∫ T

t

(
φ−1(An(s))− φ−1(A(s))

)
ds
∥∥∥∥

C[0,T]

≤ T lim
n→∞

∥∥∥φ−1(An)− φ−1(A)
∥∥∥

C[0,T]
= 0,
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that is the operator F is continuous.
Choose an arbitrary ε > 0 and put δ := ε

φ−1(M∗T) . Then, for t1, t2 ∈ [0, T] and u ∈ B (0, R),

|t1 − t2| < δ⇒ |(Fu) (t1)− (Fu) (t2)| =
∣∣∣∣∫ t1

t2

φ−1
(
− 1

p(s)

∫ s

0
p(τ) f ∗(τ, u(τ))dτ

)
ds
∣∣∣∣

≤
∣∣∣∣∫ t1

t2

φ−1 (M∗ϕ(s)) ds
∣∣∣∣ ≤ ∣∣∣∣∫ t1

t2

φ−1 (M∗T) ds
∣∣∣∣ = φ−1 (M∗T) |t1 − t2| < φ−1 (M∗T) δ = ε.

Hence, functions in F (B (0, R)) are equicontinuous, and, by the Arzelà–Ascoli theorem, the
set F (B (0, R)) is relatively compact. Consequently, the operator F is compact on B (0, R).
The Schauder fixed point theorem yields the existence of a fixed point u? of F in B (0, R).
Therefore,

u?(t) = C−
∫ T

t
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f ∗(τ, u?(τ))dτ

)
ds

is a solution of (4.9), (4.1).
STEP 2. Now we prove that any solution u of problem (4.9), (4.1) satisfies that

σ1(t) ≤ u(t) ≤ σ2(t), t ∈ [0, T],

and, therefore, it is a solution of problem (2.1), (4.1). Put v(t) = u(t)− σ2(t) for t ∈ [0, T] and
assume that

max{v(t) : t ∈ [0, T]} = v(t0) > 0. (4.10)

By (4.6), v′(τ−) < v′(τ+) for each τ ∈ Σ2, so t0 /∈ Σ2. Moreover, σ2(T) ≥ C and u(T) = C, so
v(T) ≤ 0 and, consequently, t0 6= T. Therefore, t0 ∈ [0, T) \ Σ2. We distinguish two cases

(i) If t0 = 0, then (4.1) and (4.7) yield v′(0+) = u′(0+)− σ′2(0
+) = −σ′2(0

+) ≥ 0. If v′(0+) >
0, we get a contradiction with (4.10); hence, v′(0+) = 0.

(ii) If t0 ∈ (0, T) \ Σ2, (4.10) also implies that v′(t0) = 0.

Since t0 ∈ [0, T) \ Σ2, there exists δ > 0 such that (t0, t0 + δ) ⊂ (0, T) \ Σ2 and v(t) > 0 for
t ∈ (t0, t0 + δ). Moreover, for t ∈ (t0, t0 + δ), we have that

(
p(t) φ(u′(t))

)′ − (p(t) φ(σ′2(t))
)′ ≥ p(t)

(
− f ∗(t, u(t)) + f̃ (φ (σ2(t)))

)
= p(t)

v(t)
v(t) + 1

> 0

and integrating the previous expression, we obtain that∫ t

t0

((
p(s) φ(u′(s))

)′ − (p(s) φ(σ′2(s))
)′) ds = p(t)

(
φ(u′(t))− φ(σ′2(t))

)
> 0, t ∈ (t0, t0 + δ).

Therefore, since φ is increasing, we have that v′(t) > 0 on (t0, t0 + δ), which is a contradiction
with (4.10). Consequently, we have proved that

u(t) ≤ σ2(t), t ∈ [0, T].

Analogously, it can be proved that

u(t) ≥ σ1(t), t ∈ [0, T].

We conclude that the solution u of problem (4.9), (4.1) is a solution of (2.1), (4.1).
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The main result of this section is contained in Theorem 4.7. Its proof is based on Lem-
mas 3.2 and 3.5, where a suitable sequence {un}∞

n=1 of solutions of problem (2.1), (1.2) is used.
In order to get such sequence with the starting values equal to L0 (see part (ii) in the proof of
Theorem 4.7), we need the next lemma.

Lemma 4.6. Let (1.3)–(1.7), (2.3) and (2.4) hold. Choose C ∈ (L0, B̄) and assume that there exists at
least one solution u of problem (2.1), (1.2) satisfying (3.13), that is

u0 = L0, u 6≡ L0, u(t) ≥ L0 for t ∈ [0, ∞).

Then there exists γ > 0 such that for each T > γ, problem (2.1), (1.2) with u0 = L0 has a solution uT

satisfying
uT(T) = C, uT(t) ≥ L0, t ∈ [0, ∞). (4.11)

Proof. As a consequence of Lemmas 3.3 and 3.4, we know that either it exists θ > 0 such that
u(θ) = 0 or limt→∞ u(t) = 0. Because of this we can take

γ = min{t ∈ [0, ∞); u(t) = C} > 0. (4.12)

Now, we fix T > γ and prove the assertion in three steps.
STEP 1. Construction of a lower function of problem (2.1), (4.1):
We prove that σ1 ≡ L0 satisfies conditions (4.2)–(4.4). First,

(p(t)φ(σ′1(t)))
′ + p(t) f̃ (φ(σ1(t))) = (p(t)φ(0))′ + p(t) f̃ (φ(L0)) = 0 ≥ 0, t ∈ [0, T].

Moreover, in this case, σ1 ∈ C2[0, T], so Σ1 = ∅. Finally,

σ′1(0
+) = 0 ≥ 0 and σ1(T) = L0 < C.

Therefore, σ1 is a lower function of (2.1), (4.1).
STEP 2. Construction of an upper function of problem (2.1), (4.1):
We distinguish two different cases.

(i) If u < 0 on [0, ∞), we choose σ2 = u. First,

(p(t)φ(σ′2(t)))
′ + p(t) f̃ (φ(σ2(t))) = 0 ≤ 0, t ∈ (0, T].

Moreover, in this case, σ2 ∈ C2(0, T], so Σ2 = ∅. Finally,

σ′2(0
+) = 0 ≤ 0 and σ2(T) > σ2(γ) = C.

The last inequality σ2(T) > C is a consequence of the fact that from Lemma 3.3 we
know that σ2 is increasing on [a, ∞) for some a ∈ [0, γ). Hence, σ2 satisfies conditions
(4.5)–(4.7).

(ii) If there exists θ > 0 such that u(θ) = 0 then γ ∈ (0, θ) and we choose

σ2(t) =

{
u(t), t ∈ [0, θ],

0, t ∈ (θ, ∞).

First,
(p(t)φ(σ′2(t)))

′ + p(t) f̃ (φ(σ2(t))) = 0 ≤ 0, t ∈ (0, T] \ {θ}.
In this case, Σ2 = {θ}. From Lemma 3.3, we know that u′ > 0 on (a, θ] for some a ∈ [0, γ)

and hence, σ′2(θ
−) > 0. It is clear that σ′2(θ

+) = 0, so σ′2(θ
+) < σ′2(θ

−).

Finally, analogously to case (i),

σ′2(0
+) = 0 ≤ 0 and σ2(T) > σ2(γ) = u(γ) = C.
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Therefore, σ2 satisfies conditions (4.5)–(4.7) and so, σ2 is an upper function of (2.1), (4.1).
STEP 3. Existence of a solution uT:
We have found a pair of lower and upper functions which clearly satisfy that

σ1(t) ≤ σ2(t), t ∈ [0, T] for each T > γ.

As a consequence, Theorem 4.5 ensures the existence of a solution uT of problem (2.1), (4.1)
such that

L0 ≤ uT(t) ≤ σ2(t), t ∈ [0, T].

Since σ2(0) = uT(0) = L0, u satisfies (1.2) with u0 = L0.
Finally, since f̃ (φ) is bounded on R, uT can be extended to interval [0, ∞) as a solution of

equation (2.1). This classical extension result follows from more general Theorem 11.5 in [14].
The estimate uT > L0 on [0, ∞) can be proved in the same way as in the proof of Lemma 3.2
in [6] using Lemma 3.3 instead of Lemmas 2.1 and 2.6.

Therefore, uT is a solution of problem (2.1), (1.2) with u0 = L0 and satisfies (4.11).

Theorem 4.7 (Existence of escape solutions of problem (2.1), (1.2) II). Let (1.3)–(1.7), (2.3) and
(2.4) hold. Then there exist infinitely many escape solutions of problem (2.1), (1.2) with not necessarily
different starting values in [L0, B̄ ).

Proof. Choose n ∈ N, C ∈ (L0, B̄) and Bn ∈ (L0, C). By Theorem 2.9, there exists a solution
un of problem (2.1), (1.2) with u0 = Bn. By Lemma 2.1, there exists a maximal an > 0 such
that u′n > 0 on (0, an). Since un(0) < 0, there exists a maximal ãn > 0 such that un < L on
[0, ãn ). If we put bn = min{an, ãn}, then (3.2) holds. Due to Lemmas 2.1 and 2.5, there exists
γn ∈ (0, bn) such that un(γn) = C.

Consider a sequence {Bn}∞
n=1 ⊂ (L0, C). Then we get a sequence {un}∞

n=1 of solutions of
problem (2.1), (1.2) with u0 = Bn, and the corresponding sequence of {γn}∞

n=1. Assume that
limn→∞ Bn = L0.

Now, integrating equation (2.1) we get the equivalent form of problem (2.1), (1.2) for un

un(t) = Bn +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(un(τ)))dτ

)
ds, t ∈ [0, ∞). (4.13)

We prove that the sequence {un}∞
n=1 is uniformly bounded on [0, β] for all β > 0. Indeed, for

t ∈ [0, β],

|un(t)| ≤ |L0|+
∫ t

0

∣∣∣φ−1(M̃ ϕ(s))
∣∣∣ ds ≤ |L0|+

∫ t

0
φ−1(M̃ β)ds ≤ |L0|+ β φ−1(M̃ β) =: Kβ,

where ϕ is defined in (2.5) and M̃ is from (2.7). Moreover, as a consequence of Lemma 2.8, we
know that the sequence of derivatives {u′n}∞

n=1 is uniformly bounded. Therefore, the sequence
{un}∞

n=1 is equicontinuous. Therefore, by Arzelà–Ascoli theorem, there exists a subsequence
of {un}∞

n=1 which converges locally uniformly on [0, ∞ ) to a continuous function u. To the
sake of simplicity we denote this subsequence also as {un}∞

n=1. In particular, if we take the
limit when t goes to infinity on equation (4.13), since the convergence is locally uniform, we
obtain that u satisfies the following

u(t) = L0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(u(τ)))dτ

)
ds, t ∈ [0, ∞),

and therefore, u is a solution of problem (2.1), (1.2) for u0 = L0.
Now, we distinguish three different cases.
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(i) u ≡ L0:

In this case, limn→∞ γn = ∞ and the sequence {γn}∞
n=1 is unbounded.

By Lemma 3.2 there exists n0 ∈ N such that un0 is an escape solution of problem (2.1),
(1.2). We have un0(0) = Bn0 > L0. Now consider the unbounded sequence {γn}∞

n=n0+1.
By Lemma 3.2 there exists n1 ∈ N such that un1 is an escape solution of problem (2.1),
(1.2) with un1(0) = Bn1 > L0. We repeat this procedure and we obtain the sequence
{unk}∞

k=0 of escape solutions of problem (2.1), (1.2) with starting values in (L0, B̄).

(ii) u 6≡ L0 is not an escape solution:

In this case, we define B̃n = L0 for all n ∈ N and consider γ defined in (4.12). Now, we
can take an unbounded sequence {γ̃n}∞

n=1 such that γ̃n > γ for all n ∈ N. By Lemma
4.6, for all n ∈N there exists a solution ũn of problem (2.1), (1.2) with u0 = B̃n such that

ũn(γ̃n) = C, ũn(t) ≥ L0, t ∈ [0, ∞).

Therefore, we have a sequence of solutions {ũn}∞
n=1 in the conditions of Lemma 3.5 and

so, this sequence contains an escape solution ũn0 of (2.1), (1.2) with u0 = L0. As in the
previous case, we could consider now the unbounded sequence {γ̃n}∞

n=n0+1 and repeat
the procedure from (i). This way we obtain a sequence {ũnk}∞

k=0 of escape solutions of
problem (2.1), (1.2) with u0 = L0.

(iii) u 6≡ L0 is an escape solution:

In this case, we can argue as in (ii) and we also obtain a sequence {ũnk}∞
k=0 of escape

solutions of problem (2.1), (1.2) with u0 = L0.

Moreover, in this case, since the sequence {un}∞
n=0 converges locally uniformly to an

escape solution of (2.1), (1.2), there must exist some n0 such that un is also an escape
solution for all n ≥ n0. As a consequence we also obtain a sequence {un}∞

n=n0
of escape

solutions of problem (2.1), (1.2) with starting values in (L0, B̄).

5 Unbounded solutions

In this section, we discuss the original problem (1.1), (1.2) and provide conditions which
guarantee that an escape solution of (1.1), (1.2) is unbounded.

Note that solutions of the original problem (1.1), (1.2) and solutions of the auxiliary prob-
lem (2.1), (1.2) are related in the following way (when (1.3)–(1.7), (2.3) and (2.4) are assumed):
Each solution of (2.1), (1.2) which is not an escape solution, is a bounded solution of the orig-
inal problem (1.1), (1.2) in [0, ∞). This results from Lemma 2.7 and Lemma 3.1, where such
solutions of (2.1), (1.2) satisfy

L0 ≤ u(t) ≤ L, t ∈ [0, ∞)

and, due to (2.2),
f̃ (φ(u(t))) = f (φ(u(t))), t ∈ [0, ∞).

If u is an escape solution of the auxiliary problem (2.1), (1.2), i.e.

∃ c ∈ (0, ∞) : u(t) ∈ [L0, L), t ∈ [0, c), u(c) = L, u′(c) > 0, (5.1)
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then u fulfils at once the auxiliary equation (2.1) and the original equation (1.1) on [0, c]. The
restriction of u on [0, c] can be extended as an escape solution of problem (1.1), (1.2) on some
maximal interval [0, b). Therefore, we search for unbounded solutions of (1.1), (1.2) in the set
of escape solutions of (1.1), (1.2) on [0, b).

Since in general, an escape solution u of (1.1), (1.2) on [0, b) need not to be unbounded, we
derive criteria for u to tend to infinity.

Lemma 5.1. Assume that (1.3)–(1.7) hold. Let u be an escape solution of problem (1.1), (1.2) on [0, b).
Then

u(t) > L, u′(t) > 0, t ∈ (c, b), (5.2)

where c is from (5.1). If b < ∞, then
lim

t→b−
u(t) = ∞.

Proof. Let u be an escape solution of problem (1.1), (1.2) on [0, b). Then (5.1) holds. Assume
that there exists c1 > c such that u′(c1) = 0, u(t) > L, u′(t) > 0 for t ∈ (c, c1). Integrating
equation (1.1) over [c, c1], dividing by p(t) and using (1.3), (1.4), (1.6), (1.7), we get

φ(u′(t)) =
p(c)φ(u′(c))

p(t)
− 1

p(t)

∫ t

c
p(s) f (φ(u(s)))ds > 0, t ∈ [c, c1],

contrary to u′(c1) = 0. Hence, u(t) > L and u′(t) > 0 for t ∈ (c, b) which yields (5.2).
Let b < ∞. Since [0, b) is the maximal interval, where the solution u is defined, u cannot

be extended behind b. Therefore, (5.2) gives limt→b− u(t) = ∞ and thus, the solution u is
unbounded.

Since all escape solutions of (2.1), (1.2) on [0, b) which cannot be extended on the halfline
[0, ∞) are naturally unbounded, we continue our investigation about unboundedness of es-
cape solutions defined on [0, ∞).

Theorem 5.2. Assume (1.3)–(1.7) hold and let

lim
t→∞

p(t) < ∞. (5.3)

Let u be an escape solution of problem (1.1), (1.2). Then

lim
t→∞

u(t) = ∞. (5.4)

Proof. Let u be an escape solution of problem (1.1), (1.2). Lemma 5.1 gives (5.2) with b = ∞
and so, there exists limt→∞ u(t) ∈ (L, ∞]. Due to (1.3), (1.4), (1.7) and (5.1), p(c)φ(u′(c)) =:
c0 ∈ (0, ∞). Integrate equation (1.1) from c to t > c and get, by (1.6) and (1.7),

u(t) = L +
∫ t

c
φ−1

(
c0

p(s)
− 1

p(s)

∫ s

c
p(τ) f (φ(u(τ)))dτ

)
ds >

∫ t

c
φ−1

(
c0

p(s)

)
ds, t ∈ (c, ∞).

Conditions (1.7) and (5.3) give lims→∞
c0

p(s) ∈ (0, ∞) and, by (1.3) and (1.4),∫ ∞

1
φ−1

(
c0

p(s)

)
ds = ∞.

Therefore,

lim
t→∞

u(t) ≥
∫ ∞

c
φ−1

(
c0

p(s)

)
ds = ∞,

which gives (5.4).
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Theorem 5.3. Assume (1.3)–(1.7), (2.3) and

f (x) < 0 for x > φ(L). (5.5)

Let u be an escape solution of problem (1.1), (1.2). Then (5.4) holds.

Proof. Let u be an escape solution of problem (1.1), (1.2). According to Lemma 5.1, u′ > 0 on
(c, ∞) and hence, there exists limt→∞ u(t) ∈ (L, ∞]. Assume on the contrary that

lim
t→∞

u(t) =: A ∈ (L, ∞). (5.6)

STEP 1. We prove that u′ is bounded. Assume that u′ is unbounded. Then there exists a
sequence {tn}∞

n=1 such that limn→∞ tn = ∞, limn→∞ u′(tn) = ∞. The next approach is similar
to the proof of Lemma 2.8 in [6]. Equation (1.1) has an equivalent form

φ′(u′(t))u′′(t) +
p′(t)
p(t)

φ(u′(t)) + f (φ(u(t))) = 0, t ∈ (0, ∞). (5.7)

Choose n ∈ N. Multiplying this equation by u′ and integrating it from c to t > c, we obtain
for t = tn that

ψ1(tn) + ψ2(tn) + ψ3(tn) = 0, tn ∈ [c, ∞), (5.8)

where

ψ1(tn) =
∫ u′(tn)

u′(c)
xφ′(x)dx, ψ2(tn) =

∫ tn

c

p′(s)
p(s)

φ(u′(s))u′(s)ds, ψ3(tn) =
∫ u(tn)

L
f (φ(x))dx.

Then ψ3(tn) = F(u(tn))− F(L), where F(x) :=
∫ x

0 f (φ(s))ds, x ∈ R. Due to (1.3), (1.4) and
(5.5), F(x) is decreasing for x > φ(L). Since u is increasing on (c, ∞), F(u(tn)) is decreasing
for tn ∈ (c, ∞) and limn→∞ F(u(tn)) = F(A). According to (5.6),

lim
n→∞

ψ3(tn) ∈ (−∞, 0) .

By (1.3), (1.4) and (1.7),
lim
n→∞

ψ1(tn) = ∞, lim
n→∞

ψ2(tn) > 0.

Hence, letting n→ ∞ in (5.8), we obtain

0 = lim
n→∞

(ψ1(tn) + ψ2(tn) + ψ3(tn)) = ∞,

a contradiction. So, u′ is bounded.
STEP 2. We prove (5.4). Since u′ is bounded, letting t→ ∞ in (5.7) and using (2.3), (5.5) and
(5.6), we get

lim
t→∞

φ′(u′(t))u′′(t) = − f (φ(A)) > 0.

Since φ′(u′(t)) > 0 for t > c, there exists τ > c such that u′′(t) > 0 for t ≥ τ. Therefore, u′ is
increasing on [τ, ∞) and there exists limt→∞ u′(t) > 0, which contradicts limt→∞ u(t) = A <

∞. Thus, (5.4) is valid.

Remark 5.4. The proof of Theorem 5.3 yields that if a solution u of problem (1.1), (1.2) satisfies
limt→∞ u(t) =: A ∈ (L, ∞), then f (φ(A)) = 0, which is equivalent with the fact that u(t) ≡ A
is a solution of equation (1.1).
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For f ≡ 0 on (φ(L), ∞), we are able to find necessary and sufficient condition for the
unboundedness of escape solutions of problem (1.1), (1.2).

Theorem 5.5. Assume (1.3)–(1.7),

f (x) ≡ 0 for x > φ(L), (5.9)

and

φ(x) = xα, x ∈ (0, ∞), α ≥ 1. (5.10)

Let u be an escape solution of problem (1.1), (1.2). Then

lim
t→∞

u(t) = ∞ ⇐⇒
∫ ∞

1
φ−1

(
1

p(s)

)
ds = ∞. (5.11)

If we replace condition (5.10) by

φ(ab) ≤ φ(a)φ(b), a, b ∈ (0, ∞), (5.12)

then (5.4) holds if ∫ ∞

1
φ−1

(
1

p(s)

)
ds = ∞. (5.13)

Proof. Let u be an escape solution of problem (1.1), (1.2). According to Lemma 5.1, u′ > 0 on
(c, ∞). Then there exists t0 > c such that u(t0) > L, u′(t) > 0 for t ∈ [t0, ∞). Therefore, there
exists limt→∞ u(t) ∈ (L, ∞]. By (5.10), φ−1(ab) = φ−1(a)φ−1(b) for a, b ∈ (0, ∞). Due to (1.3),
(1.4), (1.7) and (5.9),

p(t0)φ(u′(t0)) =: c0 ∈ (0, ∞), f (φ(u(t))) = 0 for t ∈ [t0, ∞).

Thus, integrating equation (1.1) from t0 to t > t0, we get

u(t) =u(t0) +
∫ t

t0

φ−1
(

c0

p(s)

)
ds = u(t0)

+ φ−1(c0)

(∫ t

1
φ−1

(
1

p(s)

)
ds−

∫ t0

1
φ−1

(
1

p(s)

)
ds
)

, t ∈ (t0, ∞).

Letting t→ ∞ here, we get (5.11).
Let us consider (5.12) instead of (5.10) and assume (5.13). Then we continue analogously

and obtain

φ−1(a)φ−1(b) = φ−1(φ(φ−1(a)φ−1(b))) ≤ φ−1(φ(φ−1(a))φ(φ−1(b))) = φ−1(ab), a, b ∈ (0, ∞),

u(t) = u(t0) +
∫ t

t0

φ−1
(

c0

p(s)

)
ds ≥ u(t0)

+ φ−1(c0)

(∫ t

1
φ−1

(
1

p(s)

)
ds−

∫ t0

1
φ−1

(
1

p(s)

)
ds
)

, t ∈ (t0, ∞).

We let t→ ∞ here and obtain, by (5.13), that (5.4) holds.
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6 Main results and examples

In this section, we first present the existence results about unbounded solutions of the original
problem (1.1), (1.2) in the case when φ−1 and f are Lipschitz continuous, see Theorems 6.1,
6.3 and 6.5. Each of these theorems is afterwards illustrated by an example which is chosen
in such a way that only this theorem is applicable, while none of the remaining two theorems
can be used for this example.

Then, in Theorems 6.7, 6.9 and 6.11, we present the main existence results about un-
bounded solutions of the original problem (1.1), (1.2) provided φ−1 and f do not need to be
Lipschitz continuous. The illustration by examples is done as in the previous case and shows
that none of these theorems is included in any of two remaining ones.

In the whole section, we assume that (due to Definition 1.1) for each n ∈ N, [0, bn ) ⊂
[0, ∞ ) is a maximal interval such that a function un satisfies equation (1.1) for every t ∈ (0, bn).

Theorem 6.1. Assume that (1.3)–(1.7), (2.3), (2.4), (2.8), (2.9) and (5.3) hold. Then there exist
infinitely many unbounded solutions un of problem (1.1), (1.2) on [0, bn) with different starting values
in (L0, B̄), n ∈N.

Proof. By Theorem 4.1, there exist infinitely many escape solutions un of problem (2.1), (1.2)
with starting values in (L0, B̄). Let us choose n ∈N. Then

∃ cn ∈ (0, ∞) : un(t) ∈ (L0, L), t ∈ [0, cn), un(cn) = L, u′n(cn) > 0.

Consider restriction of un to [0, cn]. Then there exists bn > cn such that un can be extended as
a solution of problem (1.1), (1.2) on [0, bn). If bn < ∞, then, due to Lemma 5.1,

lim
t→b−n

un(t) = ∞,

so un is unbounded. If bn = ∞, then Theorem 5.2 yields

lim
t→∞

un(t) = ∞,

that is un is unbounded, as well.

Example 6.2. Consider problem (1.1), (1.2) with

φ(x) = sinh x =
ex − e−x

2
, x ∈ R,

f (x) =

{
x(x + sinh 4)(sinh 1− x) for x ∈ [− sinh 4, sinh 1],

cos(x− sinh 1)− 1 for x > sinh 1,

p(t) = arctan t or p(t) = tanh t =
et − e−t

et + e−t , t ∈ [0, ∞).

Here L0 = −4, L = 1, φ−1(x) = arg sinh x = ln
(
x +
√

x2 + 1
)
. These functions p satisfy (1.7),

(5.3) and

lim
t→∞

(arctan t)′

arctan t
= lim

t→∞

1
t2+1

arctan t
= 0, lim

t→∞

(tanh t)′

tanh t
= lim

t→∞

1
cosh2 t
tanh t

= 0,
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that is (2.3) holds, as well. Functions φ and f fulfil (1.3)–(1.6). Moreover, 0 < L < −L0, φ is
odd and

F̃(L0) =
∫ −4

0
φ(s) (φ(s) + sinh 4) (sinh 1− φ(s)) ds

=
∫ 4

0
φ(s) (sinh 4− φ(s)) (sinh 1 + φ(s)) ds >

∫ 1

0
φ(s) (sinh 4− φ(s)) (sinh 1 + φ(s)) ds

>
∫ 1

0
φ(s) (φ(s) + sinh 4) (sinh 1− φ(s)) ds = F̃(L),

thus, (2.4) holds. Since f and φ−1 are Lipschitz continuous, conditions (2.8) and (2.9) are valid,
too.

We have fulfilled all assumptions of Theorem 6.1. Since f has isolated zeros on (sinh 1, ∞),
we cannot use Theorem 6.3 and 6.5 here.

In the same way as in the proof of Theorem 6.1, we can prove the following Theorems 6.3
or 6.5, if we use in the proof Theorems 5.3 or 5.5, respectively, instead of Theorem 5.2.

Theorem 6.3. Let (1.3)–(1.7), (2.3), (2.4), (2.8), (2.9) and (5.5) hold. Then there exist infinitely many
unbounded solutions un of problem (1.1), (1.2) on [0, bn) with different starting values in (L0, B̄),
n ∈N.

Example 6.4. Let us consider problem (1.1), (1.2) with

φ(x) = ln(|x|+ 1) sgn x, x ∈ R,

f (x) = x(x + ln 4)(ln 2− x), x ∈ [− ln 4, ∞),

p(t) = tβ, β > 0, t ∈ [0, ∞).

Here L0 = −3, L = 1, φ−1(x) =
(

e|x| − 1
)

sgn x. We can easily check that φ, f and p satisfy
(1.3)–(1.7), (2.3) and (5.5). In addition, 0 < L < −L0, φ is odd and we can show similarly as
in Example 6.2 that (2.4) holds. The Lipschitz continuity of f and φ−1 yields (2.8) and (2.9).
Thus, we can apply Theorem 6.3 here. Since limt→∞ tβ = ∞ and f (x) < 0 for x > ln 2, we
cannot use either Theorem 6.1 or Theorem 6.5.

Theorem 6.5. Assume that (1.3)–(1.7), (2.3), (2.4), (2.8), (2.9), (5.9), (5.12) and (5.13) hold. Then
there exist infinitely many unbounded solutions un of problem (1.1), (1.2) on [0, bn) with different
starting values in (L0, B̄), n ∈N.

Example 6.6. Consider problem (1.1), (1.2) with

φ(x) = x, x ∈ R,

p(t) =
√

t , t ∈ [0, ∞),

f (x) =

{
x3(x− φ(L0))(φ(L)− x) for x ∈ [φ(L0), φ(L)],

0 for x > φ(L),
0 < L < −L0 .

Functions φ, f , p and φ−1(x) = x satisfy (1.3)–(1.7), (2.3), (2.8), (2.9), (5.9), (5.10) and conse-
quently, (5.12). Since f (φ(x)) = f (x) and L < −L0, we have F̃(L) < F̃(L0) and (2.4) holds. In
addition, ∫ ∞

1
φ−1

(
1

p(s)

)
ds =

∫ ∞

1

1√
s

ds = ∞,

which yields (5.13). We have verified all assumptions of Theorem 6.5. Since limt→∞
√

t = ∞
and f (x) = 0 for x > φ(L), we cannot use either Theorem 6.1 or Theorem 6.3.
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Now, applying Theorem 4.7 instead of Theorem 4.1, we get as before the existence re-
sults about unbounded solutions in the case when φ−1 and f do not have to be Lipschitz
continuous.

Theorem 6.7. Let (1.3)–(1.7), (2.3), (2.4) and (5.3) hold. Then there exist infinitely many unbounded
solutions un of problem (1.1), (1.2) on [0, bn) with not necessarily different starting values in [L0, B̄ ),
n ∈N.

Example 6.8. Let us consider problem (1.1), (1.2) with

φ(x) = |x|α sgn x, α > 1, x ∈ R,

f (x) =


√
|x| sgn x(x− φ(L0))(φ(L)− x) for x ∈ [φ(L0), φ(L)],

(φ(L)− x)(φ(2L)− x) for x ∈ (φ(L), φ(2L)),

0 for x ≥ φ(2L),

0 < L < −L0 ,

p(t) = arctan t or p(t) = tanh t =
et − e−t

et + e−t , t ∈ [0, ∞).

According to Example 6.2, functions p satisfy (1.7), (2.3) and (5.3). Functions φ and f fulfil
(1.3)–(1.6). Since f is continuous, 0 < L < −L0 and φ is a continuous and odd function, (2.4)
holds, too.

We have verified all assumptions of Theorem 6.7. The form of f implies that neither
Theorem 6.9 nor Theorem 6.11 can be applied.

Theorem 6.9. Assume that (1.3)–(1.7), (2.3), (2.4) and (5.5) hold. Then there exist infinitely many
unbounded solutions un of problem (1.1), (1.2) on [0, bn) with not necessarily different starting values
in [L0, B̄ ), n ∈N.

Example 6.10. Consider problem (1.1), (1.2) with

φ(x) = x3, x ∈ R,

f (x) = 3
√

x (x + 8)(1− x), x ∈ [−8, ∞),

p(t) = tβ, β > 0, t ∈ [0, ∞).

Here L0 = −2, L = 1, φ−1(x) = 3
√

x . It is easy to see that φ, f and p fulfil (1.3)–(1.7), (2.3) and
(5.5). Further,

F̃(L0) =
∫ −2

0
s
(
s3 + 8

) (
1− s3) ds =

144
5

, F̃(L) =
∫ 1

0
s
(
s3 + 8

) (
1− s3) ds =

99
40

.

So, F̃(L0) > F̃(L) which yields (2.4). Therefore, we can apply Theorem 6.9 here. Since
limt→∞ tβ = ∞ and f (x) < 0 for x > 1, we cannot use either Theorem 6.7 or Theorem 6.11.

Theorem 6.11. Let (1.3)–(1.7), (2.3), (2.4), (5.9), (5.12) and (5.13) hold. Then there exist infinitely
many unbounded solutions un of problem (1.1), (1.2) on [0, bn) with not necessarily different starting
values in [L0, B̄ ), n ∈N.

Example 6.12. Let us consider problem (1.1), (1.2) with

φ(x) = |x|α sgn x, α > 1, x ∈ R,

p(t) = tβ, β ∈ (0, α], t ∈ [0, ∞),

f (x) =

{
3
√

x (x− φ(L0))(φ(L)− x) for x ∈ [φ(L0), φ(L)],

0 for x > φ(L),
0 < L < −L0 .
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Functions φ, f and p satisfy (1.3)–(1.7), (2.3), (5.9), (5.10) and consequently, (5.12). Moreover,
0 < L < −L0 and φ is odd function which yields (2.4). Further,

φ−1(x) = x
1
α for x > 0,

∫ ∞

1
φ−1

(
1

p(s)

)
ds =

∫ ∞

1
s−

β
α ds = ∞,

that is (5.13) holds and we have verified all assumptions of Theorem 6.11. Since limt→∞ tβ = ∞
and f (x) = 0 for x > φ(L), neither Theorem 6.7 nor Theorem 6.9 is applicable.

It si clear that every unbounded solution of problem (1.1), (1.2) is an escape solution.
According to the proofs of above theorems, we can formulate also the reverse assertion.

Corollary 6.13. Assume all assumptions of Theorem 6.1 or 6.3 or 6.5 or 6.7 or 6.9 or 6.11. Then each
escape solution of problem (1.1), (1.2) is unbounded.

In this paper we discuss the existence of unbounded solutions of the singular nonlinear
initial value problem (1.1), (1.2) with a φ-Laplacian. In the case when functions f and φ−1 are
Lipschitz continuous, a sequence of escape solutions with different initial values in (L0, B̄) is
obtained. The basis of the proof is a sequence of solutions which converge locally uniformly
to a solution u with u0 = L0. By virtue of uniqueness u ≡ L0. This is not guaranteed in the
other case when such sequence converging to the constant solution u ≡ L0 might not exist.
Therefore we would like to point out the approach without assuming the Lipschitz property
of data functions. In this situation, the investigation is not straightforward and requires some
efficient idea about how to deal with difficulties caused by the lack of uniqueness. In contrast
to the case with Lipschitz data functions, the set of escape solutions with u0 ∈ (L0, B̄) might
be empty and all escape solutions could start at u0 = L0. Therefore we cannot just follow
the method used in the first case. The technique used here is the method of lower and upper
functions which is applied to a sequence of related boundary value problems. The sequence
of obtained solutions contains an escape solution, in particular infinitely many escape solu-
tions. These solutions are under suitable conditions unbounded. In this manner, we prove the
existence of unbounded solutions of the investigated problem.

Acknowledgement

The first two authors gratefully acknowledge support received from the grant No. 14-06958S
of the Grant Agency of the Czech Republic.

The third author was partially supported by Xunta de Galicia (Spain), project EM2014/032,
AIE Spain and FEDER, grants MTM2013-43014-P, MTM2016-75140-P., FPU scholarship (Min-
isterio de Educación, Cultura y Deporte, Spain) and a Fundación Barrié research stay scholar-
ship.

This paper was mostly written during a stay of Lucía López-Somoza in Olomouc. Lucía
López-Somoza is very grateful to the members of the Department of Mathematics, Faculty of
Science, Palacký University for their kind and hospitality.

References

[1] F. F. Abraham, Homogeneous nucleation theory, Academic Press, New York, 1974.



On unbounded solutions of singular IVPs with φ-Laplacian 25

[2] R. P. Agarwal, D. O’Regan, Infinite interval problems for differential, difference and
integral equations, Kluwer, Dordrecht 2001. MR1845855; https://doi.org/10.1007/
978-94-010-0718-4

[3] H. Berestycki, P. L. Lions, L. A. Peletier, An ODE approach to the existence of pos-
itive solutions for semilinear problems in Rn, Indiana Math. Univ. J. 30(1981), 141–157.
MR0600039; https://doi.org/10.1512/iumj.1981.30.30012

[4] D. Bonheure, J. M. Gomes, L. Sanchez, Positive solutions of a second-order singular
ordinary differential equation, Nonlinear Anal. 61(2005), 1383–1399. MR2135816; https:
//doi.org/10.1016/j.na.2005.02.029
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