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Abstract. Let u be a classical solution of semilinear elliptic equations in a ball or an
annulus in RN with zero Dirichlet boundary condition where the nonlinearity has a
convex first derivative. In this note, we prove that if the N-th eigenvalue of the lin-
earized operator at u is positive, then u must be radially symmetric.
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1 Introduction

Let N ≥ 2 and Ω be a ball or an annulus centered at zero in RN . We study symmetry
properties of classical solutions to the following semilinear elliptic equation{

−∆u = f (|x|, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where f : R2 → R is a continuous function of class C1 with respect to the second variable.
A classical tool to study this problem is the well-known moving plane method which was

introduced by Alexandrov and Serrin in [11] and was successfully used by Gidas, Ni and
Nirenberg in [5] to prove the radial symmetry of positive solutions to (1.1) when Ω is a ball
and f is nonincreasing in the radial variable. However, if u changes sign or Ω is an annulus
or f does not have the right monotonicity, then the moving plane method cannot be applied.
Indeed, there are counterexamples to the symmetry of solutions if one of these hypotheses fail.
For instance, see [4] for the existence of a nonradial solution in an annulus. More recently, it is
proved in [6] the bifurcation of nonradial positive solutions from the radial positive solution
of equation −∆u = up + λu in an annulus when the radii of the annulus vary or when the
exponent p varies.

Nevertheless, it is natural to expect that the solutions inherit part of the symmetry of the
domain at least for some types of nonlinearities or for certain types of solutions, even if u
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changes sign or Ω is an annulus or f does not have the right monotonicity. This topic was
first investigated in [9] where Pacella proved that if Ω is a ball or an annulus, f is strictly
convex in u, then any solution u to (1.1) with Morse index one is axially symmetric with
respect to an axis passing through the origin and nonincreasing in the polar angle from this
axis. The conclusion was then expanded to solutions having Morse index less than or equal
to N in [10] when Ω is a ball or an annulus and in [7] when Ω is the whole RN or the exterior
of a ball. Some related examples and counterexamples are given in [1]. Similar results on
axial symmetry for minimizers of certain variational problems were obtained in [3] using a
completely different approach based on symmetrization techniques.

Instead of axial symmetry, in this paper we are interested in classification of radial so-
lutions of (1.1) in a ball or an annulus, that is, solutions that fully inherits the symmetry of
domain Ω. One of the first attempts in this topic is paper [8]. A typical result in [8] is that
if Ω is a ball or an annulus, f is convex in its second variable and the second eigenvalue of
the linearized operator of (1.1) at u is positive then u must be radially symmetric, regardless
of its sign. However, the results of [8] do not apply to sign changing solutions of (1.1) in the
case of Lane–Emden–Fowler nonlinearity f (s) = |s|p−1s, p > 1. Indeed, this nonlinearity f ,
when considered on the whole real line, is not convex. Utilizing some techniques developed
in [10], in this paper we prove general radial symmetry results for solutions to (1.1) in the
case where f has its first derivative, with respect to the second variable, convex in the second
variable. Our results partially improve results in [8, 10] and can apply to sign changing solu-
tions of (1.1) with a large class of nonlinearities such as f (|x|, s) = g(|x|)|s|p−1s, p ≥ 2 and
f (|x|, s) = g(|x|)es where g is a continuous function.

2 Preliminaries and main results

In the sequel, we always assume that Ω is a radially symmetric open bounded domain, such
as a ball or an annulus centered at zero in RN . Let us denote by 〈v, w〉 the scalar product of
v, w in L2(Ω), that is 〈v, w〉 =

∫
Ω v(x)w(x) dx. For a bounded domain U ⊂ RN and a linear

operator L : H1
0(U) → L2(U), we denote by λk(L, U) the k-th eigenvalue of L in U with zero

Dirichlet boundary conditions.
Let u be a classical solution of (1.1), we recall the linearized operator Lu of (1.1) at u defined

by duality as

〈Luv, w〉 =
∫

Ω
∇v(x)∇w(x) dx−

∫
Ω

f ′s(|x|, u(x))v(x)w(x) dx,

for any v, w ∈ H1
0(Ω), here we denote f ′s the derivative of f in its second variable. It is

well-known that

λ1(Lu, Ω) < λ2(Lu, Ω) ≤ λ3(Lu, Ω) ≤ · · · ≤ λk(Lu, Ω)→ ∞.

We recall that the Morse index of u is the number of negative eigenvalues of Lu.
We denote the open ball in RN of center x and radius r > 0 by B(x, r) and the unit sphere

in RN by S. For a unit vector e ∈ S we consider the hyperplane H(e) = {x ∈ RN : x · e = 0}
and write σe : Ω → Ω for the reflection with respect to H(e), that is, σe(x) = x− 2(x · e)e for
every x ∈ Ω. We also denote Ω(e) = {x ∈ Ω : x · e > 0}.

Our main result is the following theorem.

Theorem 2.1. Suppose that f (|x|, ·) has a convex derivative for every x ∈ Ω. Then any solution u of
(1.1) having λN(Lu, Ω) > 0 is radially symmetric.
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Remark 2.2. It is proved in [10, Theorem 1.1] that if f (|x|, ·) has a convex derivative for every
x ∈ Ω and u has Morse index less than or equal to N (that is, λN+1(Lu, Ω) ≥ 0) then u is
axially symmetric with respect to an axis passing through the origin and nonincreasing in
the polar angle from this axis. Therefore, Theorem 2.1 gives us a stronger conclusion on the
symmetry of u in the case λN(Lu, Ω) > 0. In other words, with the same assumption on f , if
u is a nonradial solution having Morse index less than or equal to N then we can conclude
that λN(Lu, Ω) ≤ 0 ≤ λN+1(Lu, Ω).

Remark 2.3. The assumption λN(Lu, Ω) > 0 of Theorem 2.1 is strict at least in 2-dimensional
case. Indeed, let N = 2 and f (|x|, u) = |u|p−1u + λu where p ≥ 2 and λ < λ1, here λ1 denotes
the first eigenvalue of the Laplace operator in Ω with zero Dirichlet boundary conditions.
In this case, a positive solution u of (1.1) of index 1 can be either found using the famous
mountain-pass lemma or by constrained minimization procedure. When Ω is an annulus it
can be proved that this positive solution is, in general, not radial (see [4, 6]). This solution is
anyway axially symmetric by [10, Theorem 1.1]. Moreover, by Theorem 2.1 and the fact that
this non-radial solution has Morse index 1 we obtain λ2(Lu, Ω) = 0. Therefore, this example
demonstrates the sharpness of assumption λ2(Lu, Ω) > 0 of Theorem 2.1 in 2-dimensional
case.

Remark 2.4. Since λN(Lu, Ω) ≥ λ2(Lu, Ω) > λ1(Lu, Ω), any solution of (1.1) of Morse index
zero must be radial by Theorem 2.1.

As an application of Theorem 2.1, we have the following Liouville type theorem for sign
changing solutions of (1.1).

Theorem 2.5. Suppose that f = f (s) does not depend on x and f is convex. Then problem (1.1) has
no sign changing solution u such that λN(Lu, Ω) > 0.

Remark 2.6. The assumptions of Theorem 2.5 are satisfied for the Lane–Emden–Fowler non-
linearity f (s) = |s|p−1s, p ≥ 2 and the exponential nonlinearity f (s) = es. Under these
assumptions, from Theorem 2.5 it follows that every sign changing solution of (1.1) must
satisfy λN(Lu, Ω) ≤ 0.

3 Proofs

We begin with the following elementary lemma.

Lemma 3.1. Let a unit vector e ∈ S and ε > 0. Assume that function u : Ω → R is symmetric with
respect to hyperplane H(d) for every d ∈ S(e, ε) where S(e, ε) = {d ∈ S : arccos(d · e) < ε}. Then u
is radially symmetric.

Proof. We will prove that u is symmetric with respect to hyperplane H(d) for every d ∈
S(e, min{2ε, π}). Indeed, let d ∈ S(e, min{2ε, π}) and put de = d+e

|d+e| then H(e) = σde(H(d))
and

arccos(de · e) = arccos
(

d + e
|d + e| · e

)
= arccos

(√
d · e + 1

2

)
=

arccos(d · e)
2

< ε.

That is, de ∈ S(e, ε). Now let any x0 ∈ Ω and denote x1 = σd(x0). Since H(e), σde(x0) and
σde(x1) are reflection images of H(d), x0 and x1 respectively with respect to hyperplane H(de),
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we have σde(x1) = σe(σde(x0)), which implies x1 = σde(σe(σde(x0))). Using the fact that u is
symmetric with respect to hyperplane H(de) and H(e), we obtain

u(x0) = u(σde(σe(σde(x0)))) = u(x1).

Therefore u is symmetric with respect to hyperplane H(d), as desired.
Repeating the previous argument n times, we conclude that u is symmetric with respect

to hyperplane H(d) for every d ∈ S(e, min{2nε, π}). By choosing n such that 2nε ≥ π, we get
the axial symmetry of u.

We continue with the following lemma.

Lemma 3.2. Suppose that f (|x|, ·) has a convex derivative for every x ∈ Ω. Then for any solution u
of (1.1) having λN(Lu, Ω) > 0, we may find a unit vector e ∈ S such that λ1(Le

u, Ω(e)) > 0, where
the linear operator Le

u is defined as

〈Le
uv, w〉 =

∫
Ω(e)
∇v(x)∇w(x) dx−

∫
Ω(e)

f ′s(|x|, u(x)) + f ′s(|x|, u(σe(x)))
2

v(x)w(x) dx

for any v, w ∈ H1
0(Ω(e)).

Proof. For any e ∈ S, we denote by ge ∈ H1
0(Ω) the odd extension in Ω of the positive L2-

normalized eigenfunction of the operator Le
u in the half domain Ω(e) corresponding to the

first eigenvalue λ1(Le
u, Ω(e)). It is clear that ge depends continuously on e in the L2-norm and

g−e = −ge for every e ∈ S. Now we let ϕ1, ϕ2, . . . , ϕN−1 ∈ H1
0(Ω) denote L2-orthonormal

eigenfunctions of Lu corresponding to its eigenvalue λ1, λ2, . . . , λN−1. It is well-known that

inf
v∈H1

0 (Ω)\{0}
〈v,ϕ1〉=···=〈v,ϕN−1〉=0

〈Luv, v〉
〈v, v〉 = λN > 0. (3.1)

We consider the map h : S→ RN−1 defined as

h(e) = (〈ge, ϕ1〉, 〈ge, ϕ2〉, . . . , 〈ge, ϕN−1〉).

Since h is an odd and continuous map defined on the unit sphere S ⊂ RN , h must have a
zero by the Borsuk–Ulam theorem. This means that there is a direction e ∈ S such that ge

is L2-orthogonal to all eigenfunctions ϕ1, ϕ2, . . . , ϕN−1. Therefore 〈Luge, ge〉 > 0 by (3.1). But
since ge is an odd function,

〈Luge, ge〉 = 2〈Le
uge, ge〉 = 2λ1(Le

u, Ω(e)).

which yields that λ1(Le
u, Ω(e)) > 0.

We are now in position to prove our main results.

Proof of Theorem 2.1. Applying Lemma 3.2, we obtain a unit vector e ∈ S such that
λ1(Le

u, Ω(e)) > 0. By continuity of the first eigenvalue with respect to the potential and
the domain (see [2]), we may find ε > 0 such that λ1(Ld

u, Ω(d)) > 0 for all d ∈ S(e, ε) where
S(e, ε) is defined as in Lemma 3.1.
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We will show that u is symmetric with respect to H(d) for all d ∈ S(e, ε) and therefore the
radial symmetry of u follows from Lemma 3.1. Indeed, since u and u ◦ σd solve (1.1), we put
wd(x) = u(x)− u(σd(x)) and get{

−∆wd −Vd(x)wd = 0 in Ω(d),

wd = 0 on ∂Ω(d),
(3.2)

where Vd(x) =
∫ 1

0 f ′s(|x|, tu(x) + (1− t)u(σd(x))) dt. Using the convexity of f , we have

Vd(x) ≤
∫ 1

0
t f ′s(|x|, u(x)) + (1− t) f ′s(|x|, u(σd(x))) dt

=
f ′s(|x|, u(x)) + f ′s(|x|, u(σd(x)))

2

for all x ∈ Ω. Hence, denoting by Md
u the linearized operator of (3.2)

〈Md
uv, w〉 =

∫
Ω(d)
∇v(x)∇w(x) dx−

∫
Ω(d)

Vd(x)v(x)w(x) dx

for any v, w ∈ H1
0(Ω(d)), we have λ1(Md

u, Ω(d)) ≥ λ1(Ld
u, Ω(d)) > 0. It follows that wd = 0

because it satisfies (3.2). In other words, u is symmetric with respect to H(d), as desired.

Proof of Theorem 2.5. If the sign changing solution u satisfying λN(Lu, Ω) > 0 exists, then u is
radially symmetric by Theorem 2.1. Moreover, this assumption also implies that u has Morse
index less than N. Then by [10, Theorem 1.2], u must be nonradial, a contradiction.
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