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Abstract. The solvability and construction of the general solution of the first kind Fred-
holm integral equation are among the insufficiently explored problems in mathematics.
There are various approaches to solve this problem. We note the following methods
for solving of ill-posed problem: regularization method, the method of successive ap-
proximations, the method of undetermined coefficients. The purpose of this work is to
create a new method for solvability and construction of solution of the integral equa-
tion of the first kind. As it follows from the foregoing, the study of the solvability and
construction of a solution of the Fredholm integral equation of the first kind is topical.
A new method for studying of solvability and construction of a solution for Fredholm
integral equation of the first kind is proposed. Solvability conditions and the construc-
tion method of an approximate solution of the integral Fredholm equation of the first
kind are obtained.
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1 Introduction

Solving of the controllability problems of dynamical system [1, 6, 8], the mathematical theory
of optimal processes [2, 10, 11], the boundary value problems of differential equations with
phase and integral constraints [7, 12, 14] are reduced to solvability and construction of the
general solution of the first kind integral equation

Ku =
∫ t1

t0

K(t, τ)u(τ)dτ = f (t), (1.1)

where K(t, τ) is a measurable function on the set S0 = {(t, τ) ∈ R2 / t0 ≤ t ≤ t1, t0 ≤ τ ≤ t1}
and there exists an integral

P2 =
∫ t1

t0

∫ t1

t0

|K(t, τ)|2dtdτ < ∞,
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function f (t) ∈ L2(I, R1). It is necessary to find a solution u(τ) ∈ L2(I, R1), where I = [t0, t1].
The solvability and construction of the general solution of Fredholm integral equation of

the first kind is related to insufficiently explored problems in mathematics.
As it follows from [22], the norm ‖K‖ ≤ P, the operator K with kernel from L2(S0) is

a completely continuous operator which transfers every weakly convergent sequence into
strongly convergent. The inverse operator is not limited [17], the equation Ku = f can not be
solvable for all f ∈ L2. This leads to the fact that a small error in f leads to an arbitrarily large
error in solution of the equation (1.1).

The famous theoretical results on the solvability of equation (1.1) refer to the case when
K(t, τ) = K(τ, t) i.e. equation (1.1) with a symmetric kernel. One of the main results of the
solvability of equation (1.1) is a Picard theorem [18]. However, for application of this theorem
necessary to prove the completeness of the eigenfunctions of symmetric kernel.

Thus, solvability and construction of solution of the integral equation (1.1) is a few studied
complex ill-posed problem. There are various approaches to solve this problem. Note the
following methods for solving of ill-posed problem.

• The regularization method [19] based on reducing the original problem to a correct prob-
lem. For regularization it is necessary to perform a priori requirements to the original
data of the problem. In the works [16,20] the methods for solving of the correct problem
after regularization are proposed. Unfortunately, the additional requirements imposed
to the original data of the problem are not always held and the methods of solving the
correct problem are time-consuming;

• The method of successive approximations [15] for solving of the equation (1.1). The
method is applicable when K(t, τ) is a symmetric positive kernel in L2 and it is required
definition of the least characteristic number;

• The method of undetermined coefficients [21]. It is proposed to seek solutions to the
equation (1.1) as a series. However, in general, the determination of the coefficients is
extremely difficult.

The solvability and construction of solution of the equation (1.1) is topical as it follows
from the study above.

The purpose of this work is to create a new method for construction and solvability of a
solution of the integral equation of the first kind.

2 Solvability of Fredholm integral equation of the first kind

Problem statement. We consider the integral equation in the form

Ku =
∫ b

a
K(t, τ)u(τ)dτ = f (t), t ∈ [t0, t1] = I, (2.1)

where K(t, τ) = ‖Kij(t, τ)‖, i = 1, n, j = 1, m is known matrix of n×m order, elements of the
matrix K(t, τ) are Kij(t, τ) which are measurable functions and belong to the class L2 on the
set S1 = {(t, τ) ∈ R2 / t0 ≤ t ≤ t1, a ≤ τ ≤ b},∫ b

a

∫ t1

t0

|Kij(t, τ)|2dtdτ < ∞,
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function f (t) ∈ L2(I, Rn) is prescribed, u(τ) ∈ L2(I1, Rm) is the original function with I1 =

[a, b], the values t0, t1, a, b are fixed, K : L2(I1, Rm)→ L2(I, Rn).
The following problems are set.

Problem 2.1. Find necessary and sufficient conditions for existence of a solution of the integral equa-
tion (2.1) for a given f (t) ∈ L2(I, Rn).

Problem 2.2. Find a solution of the integral equation (2.1) for a given f (t) ∈ L2(I, Rn).

Problem 2.3. Find necessary and sufficient conditions for existence of a solution of the integral equa-
tion (2.1) for a given f (t) ∈ L2(I, Rn), when the original function u(τ) ∈ U(τ) ⊂ L2(I1, Rm).

Problem 2.4. Find a solution of the integral equation (2.1) for a given f (t) ∈ L2(I1, Rm), when
u(τ) ∈ U(τ) ⊂ L2(I1, Rm).

Problem 2.5. Find an approximate solution of the integral equation (2.1).

As it follows from the problem statement the solvability and construction of the solution
of matrix Fredholm integral equation of the first kind are considered. As well as construction
of an approximate solution of Fredholm integral equation of the first kind. The results are
correct for the matrix Fredholm integral equation of the first kind, as with non symmetrical,
as symmetrical kernel.

This work is a continuation of the research presented in [1, 2, 6–8, 10–12, 14], [3–5, 9, 13].
We consider the solutions of the Problems 2.1, 2.2 for integral equation (2.1). The solu-

tions of Problems 2.1 and 2.2 can be reduced to the study of extreme problem: minimize the
functional

J(u) =
∫ t1

t0

∣∣∣∣ f (t)− ∫ b

a
K(t, τ)u(τ)dτ

∣∣∣∣2 dt→ inf, (2.2)

at condition
u(τ) ∈ L1(I1, Rm), (2.3)

where f (t) ∈ L2(I, Rn) is a prescribed function, | · | is Euclidean norm.

Theorem 2.6. Let the kernel of the operator K(t, τ) be measurable and belongs to the class L2 in the
rectangle S1 = {(t, τ) / t ∈ I = [t0, t1], τ ∈ I1 = [a, b]}.

Then:

(i) the functional (2.2) at condition (2.3) is continuously Fréchet differentiable, the gradient of the
functional J′(u) ∈ L2(I1, Rm) at any point u(·) ∈ L2(I1, Rm) is defined by formula

J′(u) = −2
∫ t1

t0

K(t, τ) f (t)dt + 2
∫ t1

t0

∫ b

a
K∗(t, τ)K(t, σ)u(σ)dσdt ∈ L2(I1, Rm); (2.4)

(ii) the gradient of the functional J′(u) ∈ L2(I1, Rm) satisfies to the Lipschitz condition

‖J′(u + h)− J′(u)‖ ≤ l‖h‖, ∀u, u + h ∈ L2(I1, Rm); (2.5)

(iii) the functional (2.2) at condition (2.3) is convex, i.e.

J(αu + (1− α)v) ≤ αJ(u) + (1− α)J(v), ∀u, v ∈ L2(I1, Rm), ∀α, α ∈ [0, 1]; (2.6)
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(iv) the second Fréchet derivative equals

J′′(u) = 2
∫ t1

t0

K∗(t, σ)K(t, τ)dt. (2.7)

(v) if the inequality is satisfied

∫ b

a

∫ b

a
ξ∗(σ)

[∫ t1

t0

K∗(t, σ)K(t, τ)dt
]

ξ(τ)dτdσ =
∫ t1

t0

[∫ t1

t0

K(t, τ)ξ(τ)dτ

]2

dt

≥ µ
∫ b

a
|ξ(τ)|2dτ, µ > 0, ∀ξ, ξ ∈ L2(I1, Rm),

(2.8)

then the functional (2.2) at condition (2.3) is strongly convex.

Proof. As it follows from (2.2) the functional

J(u) =
∫ t1

t0

[
f ∗(t) f (t)− 2 f ∗(t)

∫ b

a
K(t, τ)u(τ)dτ +

∫ b

a

∫ b

a
u∗(τ)K∗(t, τ)K(t, σ)u(σ)dσ

]
dt.

Then the increment of the functional

∆J = J(u + h)− J(u)

=
∫ b

a

〈
−2

∫ t1

t0

K∗(t, σ) f (t)dt, h(σ)
〉

dσ

+
∫ b

a

〈
2
∫ t1

t0

∫ b

a
K∗(t, σ)K(t, τ)u(τ)dτdt, h(σ)

〉
dσ

+
∫ t1

t0

∫ b

a

∫ b

a
h∗(τ)K∗(t, τ)K(t, σ)h(σ)dσdτdt

= 〈J′(u), h〉L2 + o(h),

(2.9)

where

|o(h)| =
∣∣∣∣∫ t1

t0

[∫ b

a

∫ b

a
h∗(τ)K∗(t, τ)K(t, σ)h ∗ (σ)dσdτ

]∣∣∣∣ dt ≤ c1‖h‖2
L2

.

From (2.9) follows, that J′(u) is defined by formula (2.4). Since

J′(u + h)− J′(u) = 2
∫ t1

t0

∫ b

a
K∗(t, τ)K(t, σ)h(t, σ)dσdt,

that

|J′(u + h)− J′(u)| ≤ 2
∫ t1

t0

∫ b

a
‖K∗(t, τ)‖ ‖K(t, σ)‖ |h(t, σ)|dσdt

≤ c2(τ)‖h‖L2 , c2(τ) > 0, τ ∈ I1.

Then

‖J′(u + h)− J′(u)‖L2 =

(∫ t1

t0

|J′(u + h)− J′(u)|2dτ

)1/2

≤ l‖h‖L2 ,

for any u, u + h ∈ L2(I1, Rm). This implies the inequality (2.5).
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We show, that the functional (2.2) at condition (2.3) is convex. In fact, for every u, w ∈
L2(I1, Rm) the following inequality is valid:

〈J′(u)− J′(w), u− w〉L2

=

〈
2
∫ t1

t0

∫ b

a
K∗(t, τ)K(t, σ)[u(σ)− w(σ)]dσdt, u− w

〉
L2

= 2
∫ t1

t0

{∫ b

a

∫ b

a
[u(σ)− w(σ)]∗K∗(t, τ)K(t, σ)[u(σ)− w(σ)]dσdt

}
dτ

= 2
∫ t1

t0

[∫ b

a
K(t, σ)[u(σ)− w(σ)]dσ

]2

dt ≥ 0.

This means that the functional (2.2) is convex, i.e. the inequality (2.6) holds. As it follows
from (2.4),

J′(u + h)− J′(u) = 〈J′′(u), h〉 =
〈

2
∫ t1

t0

K∗(t, σ)K(t, τ)dt, h
〉

L2

= 2
∫ t1

t0

K∗(t, τ)K(t, σ)h(σ)dσdt.

Consequently, J′′(u) is defined by formula (2.7). From (2.7), (2.8) follows that

〈J′′(u)ξ, ξ〉L2 ≥ µ‖ξ‖2, ∀u, u ∈ L2(I1, Rm), ∀ξ, ξ ∈ L2(I1, Rm).

This means that the functional J(u) is strongly convex in L2(I1, Rm). The theorem is
proved.

Theorem 2.7. Let for extreme problem (2.2), (2.3) the sequence {un(τ)} ∈ L2(I1, Rn) be constructed
by algorithm [5]

un+1(τ) = un(τ)− αn J′(un), gn(αn) = min gn(α), α ≥ 0,

gn(α) = J(un − αJ′(un)), n = 0, 1, 2, . . .

Then the numerical sequence {J(un)} decreases monotonically, the limit limn→∞ J′(un) = 0.
If, in addition, the set M(u0) = {u(·) ∈ L2(I1, Rn)/J(u) ≤ J(u0)} is bounded, then:

(i) the sequence {un(τ)} ⊂ M(u0) is minimized, i.e.

lim
n→∞

J(un) = J∗ = inf J(u), u ∈ L2(I, Rm);

(ii) the sequence {un} weakly converges to the set U∗, where

U∗ =
{

u∗(τ) ∈ L2(I1, Rm)/J(u∗) = minu∈M(u0) J(u) = J∗ = infu∈L2(I1,Rm) J(u)
}

,

un
weak→ u∗ as n→ ∞;

(iii) the following rate of convergence is valid

0 ≤ J(un)− J(u∗) ≤
m0

n
, m0 = const. > 0, n = 1, 2, . . . (2.10)
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(iv) if the inequality (2.8) is satisfied, then the sequence {un} ⊂ L2(I1, Rn) strongly converges to the
point u∗ ∈ U∗. The following estimates are valid

0 ≤ J(un)− J(u∗) ≤ [J(u0)− J∗]qn, q = 1− µ

l
, 0 ≤ q ≤ 1, µ > 0,

‖un − u∗‖ ≤
(

2
µ

)
[J(u0)− J(u∗)] qn, n = 0, 1, 2, . . . ,

(2.11)

where J∗ = J(u∗);

(v) in order that the Fredholm integral equation of the first kind (2.1) have a solution it is necessary
and sufficient that J(u∗) = 0, u∗ ∈ U∗. In this case the function u∗(τ) ∈ L2(I1, Rm) is a
solution of integral equation (2.1).

(vi) if the value J(u∗) > 0, then the integral equation (2.1) has no solution for a given f (t) ∈
L2(I, Rn).

Proof. Since gn(αn) ≤ gn(α), that J(un) − J(un+1) ≥ J(un) − J(un − αJ′(un)), α ≥ 0, n =

0, 1, 2, . . . On the other hand, from the inclusion J(u) ∈ C1,1(L2(I1, Rm)) follows, that

J(un)− J(un − αJ′(un)) ≥ α

(
1− αl

2

)
‖J′(un)‖2, α ≥ 0, n− 0, 1, 2, . . .

Then

J(un)− J(un+1) ≥
1
2l
‖J′(un)‖2 > 0.

It follows that the numerical sequence {J(un)} decreases monotonically and
limn→∞ J′(un) = 0. The first statement of the theorem is proved.

Since the functional J(u) is convex at u ∈ L2, that the set M(u0) is convex. Then

0 ≤ J(un)− J(u∗) ≤ 〈J′(un), un − u∗〉L2 ≤ ‖J′(un)‖ ‖un − u∗‖ ≤ D‖J′(un)‖,

un ∈ M(u0), u∗ ∈ M(u0),

where D is a diameter of the set M(u0). Since M(u0) is a bounded convex closed set in L2, it
is weakly bicompact. The convex continuously differentiable functional J(u) is weakly lower
semicontinuous. Then the set U∗ 6= ∅, ∅ is the empty set, U∗ ⊂ M(u0), {un} ⊂ M(u0),
u∗ ∈ M(u0). We note, that

0 ≤ lim
n→∞

J(un)− J(u∗) ≤ D lim
n→∞
‖J′(un)‖ = 0, lim

n→∞
J(un) = J(u∗) = J∗.

Consequently, on the set M(u0) the lower bound of the functional J(u) in the point u∗ ∈ U∗
is reached, the sequence {un} ⊂ M(u0) is minimized. Thus, the second statement of the
theorem is proved.

The third statement of the theorem follows from the inclusion {un} ⊂ M(u0), M(u0) is a

weakly bicompact set, J(u∗) = min J(u) = J∗ = inf J(u), u ∈ M(u0). Therefore, un
weak→ u∗ at

n→ ∞.
From the inequalities

J(un)− J(un+1) ≤
1
2l
‖J′(un)‖2, 0 ≤ J(un)− J(u∗) ≤ D‖J′(un)‖,
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un
weak→ u∗ as n→ ∞.

follows the estimation (2.10), where m0 = 2D2l. The fourth statement of the theorem is proved.
If the inequality (2.8) holds, then the functional (2.2) at condition (2.3) is strongly convex.

Then

J(un)− J(u∗) ≤ 〈J′(un), un − u∗〉 −
µ

2
‖un − u∗‖2 ≤ 2µ‖J′(un)‖2, n = 0, 1, 2, . . . ,

J(un)− J(un+1) ≥
1
2l
‖J′(un)‖2, n = 0, 1, 2, . . .

It follows that an − an+1 ≥ µ
l an, where an = J(un)− J(u∗). Therefore, 0 ≤ an+1 ≤ an

(
1− µ

l

)
=

qan. Then an ≤ qan−1 ≤ q2an−2 ≤ · · · ≤ qna0, where a0 = J(u0) − J(u∗). It follows the
estimations (2.11). The fifth statement of the theorem is proved.

As it follows from (2.2), the value J(u) ≥ 0, ∀u, u ∈ L2(I1, Rm). Sequence {un} ⊂
L2(I1, Rm) is minimizing for any starting point u0 = u0(τ) ∈ L2(I1, Rm), i.e.

J(u∗) = min
u∈L2(I1,Rm)

J(u) = J∗ = inf
u∈L2(I1,Rm)

J(u).

If J(u∗) = 0, then f (t) =
∫ b

a K(t, τ)u∗(τ)dτ. Thus, the integral equation (2.1) has a solution
if and only if the value J(u∗) = 0, where u∗ = u∗(τ) ∈ L2(Ip, Rn) is solution of integral
equation (2.1). If the value J(u∗) > 0, then f (t) 6=

∫ b
a K(t, τ)u∗(τ)dτ, consequently, u∗ = u∗(τ),

τ ∈ I1 is not the solution of the integral equation (2.1). The theorem is proved.

We consider the case when the original function u(τ) ∈ U(τ) ⊂ L2(I1, Rm), where, in
particular, either

U(τ) = {u(·) ∈ L2(I1, Rm)/α(τ) ≤ u(τ) ≤ β(τ), a.e. τ ∈ I1},

or

U(τ) = {u(·) ∈ L2(I1, Rm)/‖u‖2 ≤ R2}.

Solutions of the Problems 2.3 and 2.4 can be obtained by solving the optimization problem:
minimize the functional

J1(u, v) =
∫ t1

t0

| f (t)−
∫ b

a
K(t, τ)u(τ)dτ|2dt + ‖u− v‖2

L2
→ inf (2.12)

at condition

u(·) ∈ L2(I1, Rm), v(τ) ∈ U(τ) ⊂ L2(I1, Rm), τ ∈ I1, f (t) ∈ L2(I, Rn). (2.13)

Theorem 2.8. Let the kernel of the operator K(t, τ) be measurable and belong to L2 in the rectangle
S1 = {(t, τ) ∈ R2/t ∈ I, τ ∈ I1}. Then:

(i) the functional (2.12) at condition (2.13) is continuously Fréchet differentiable, the gradient of the
functional

J′1(u, v) = (J′1u(u, v), J′1v(u, v)) ∈ L2(I1, Rm)× L2(I1, Rm)
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in any point (u, v) ∈ L2(I1, Rm)× L2(I1, Rm) is defined by formula

J′1u(u, v) = − 2
∫ t1

t0

K(t, τ) f (t)dt + 2
∫ t1

t0

∫ b

a
K∗(t, τ)K(t, σ)u(σ)dσdt

+ 2(u− v) ∈ L2(I1, Rm),

J′1v(u, v) = − 2(u− v) ∈ L2(I1, Rm);

(2.14)

(ii) the gradient of the functional J′1(u, v) satisfies the Lipschitz condition

‖J′1(u + h, v + h1)− J′1(u, v)‖ ≤ l2(‖h‖+ ‖h1‖),
∀(u, v), (u + h, v + h1) ∈ L2(I1, Rm)× L2(I1, Rm);

(iii) the functional (2.12) at condition (2.13) is convex.

The proof of the theorem is similar to the proof of Theorem 2.6.

Theorem 2.9. Let for optimization problem (2.12), (2.13) the sequences be constructed (see (2.14))

un+1 = un − αn J′1u(un, vn), vn+1 = PU [vn − αn J′1(un, vn)], n = 0, 1, 2, . . . ,

ε0 ≤ α ≤ 2
l2 + 2ε1

, ε0 > 0, ε1 > 0, n = 0, 1, 2, . . .

Then the numerical sequence {J1(un, vn)} decreases monotonically, and limn→∞ ‖un − un+1‖ = 0,
limn→∞ ‖vn − vn+1‖ = 0 hold.

If, in addition, the set M(u0, v0) = {(u, v) ∈ L2 ×U/J1(u, v) ≤ J(u0, v0)} is bounded, then:

(i) the sequence {un, vn} ⊂ M(u0, v0) is minimized, i.e.

lim
n→∞

J1(un, vn) = J∗ = inf J(u, v), (u, v) ∈ L2 ×U;

(ii) un
weak→ u∗, vn

weak→ v∗ as n→ ∞,

(u∗, v∗) ∈ U∗ =
{
(u∗, v∗) ∈ L2 ×U/J1(u∗, v∗) = min J1(u, v) = J∗ = inf J1(u, v),

(u, v) ∈ L2 ×U
}

;

(iii) in order that the integral equation (2.1) at condition u(τ) ∈ U have a solution, it is necessary
and sufficient that J1(u∗, v∗) = 0.

The proof of the theorem is similar to the proof of Theorem 2.7.

3 The approximate solution of Fredholm integral equation of the
first kind

We consider the integral equation in the form

Ku =
∫ b

a
K(t, τ)u(τ)dτ = f (t), t ∈ I = [t0, t1]. (3.1)
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Let in L2 a complete system be given, such as 1, t, t2, . . . , and any complete orthonormal
system {ϕk(t)}∞

k=1, t ∈ I = [t0, t1]. Since the condition of Fubini’s theorem on changing the
order of integration is held, that (see (3.1))∫ t1

t0

(∫ b

a
Kij(t, τ)uj(τ)dτ

)
ϕk(t)dt

=
∫ b

a

(∫ t1

t0
Kij(t, τ)ϕk(t)dt

)
uj(τ)dτ

=
∫ b

a
L(k)

ij (τ)uj(τ)dτ, i = 1, n, j = 1, m, k = 1, 2, . . . ,

∫ t1

t0
fi(t)ϕk(t)dt = aik, i = 1, n, k = 1, 2, . . . ,

where K(t, τ) = ‖Kij(t, τ)‖, i = 1, n, j = 1, m, f (t) = ( f1(t), . . . , fn(t)), t ∈ I, τ ∈ I1, L(k)
ij (τ) is

denoted
∫ t1

t0
Kij(t, τ)ϕk(t)dt.

Then∫ t1

t0

(∫ b

a
K(t, τ)u(τ)dτ

)
ϕk(t)dt

=


∫ b

a

(∫ t1
t0 K11(t, τ)ϕk(t)dt

)
u1(τ)dτ + · · ·+

∫ b
a

(∫ t1
t0 K1m(t, τ)ϕk(t)dt

)
um(τ)dτ

...∫ b
a

(∫ t1
t0 Kn1(t, τ)ϕk(t)dt

)
u1(τ)dτ + · · ·+

∫ b
a

(∫ t1
t0 Knm(t, τ)ϕk(t)dt

)
um(τ)dτ



=


∫ b

a L(k)
11 (τ)u1(τ)dτ + · · ·+

∫ b
a L(k)

1m(τ)um(τ)dτ
...∫ b

a L(k)
n1 (τ)u1(τ)dτ + · · ·+

∫ b
a L(k)

nm(τ)um(τ)dτ


=
∫ b

a
L(k)(τ)u(τ)dτ, k = 1, 2, . . . ,

a(k) =
∫ t1

t0
f (t)ϕk(t)dt =


∫ t1

t0 f1(t)ϕk(t)dt
...∫ t1

t0 fn(t)ϕk(t)dt

 =


a(k)1

...
a(k)n

 , k = 1, 2, . . .

Now, for each index k we get∫ b

a
L(k)(τ)u(τ)dτ = a(k), k = 1, 2, . . . , (3.2)

where L(k)(τ) is a matrix of n×m order, a(k) ∈ Rn,

L(k)(τ) =


L(k)

1 (τ)
...

L(k)
n (τ)

 , L(k)
j (τ) =

(
L(k)

j1 (τ), . . . , L(k)
jm (τ)

)
, k = 1, 2, . . .

We denote

L(τ) =

L(1)(τ)

L(2)(τ)
...

 , a =

a(1)

a(2)
...

 .
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Then the relations (3.2) are written in the form∫ b

a
L(τ)u(τ)dτ = a, (3.3)

where L(τ) is a matrix of Nn×m order, N = ∞.
It should be noted that if for some k = k∗, L(k∗)

j (τ) = 0 and corresponding a(k∗)j = 0, then
the relations should be excepted from the system (3.3)∫ b

a
L(k∗)

j (τ)u(τ)dτ = a(k∗)j .

Note that if L(k∗)
j (τ) = 0, but a(k∗)j 6= 0, then the integral equation (3.1) has no solution.

Theorem 3.1. Let the matrix

CN =
∫ b

a
LN(τ)L∗N(τ)dτ

of order nN × nN be positive definite. Then the general solution of the integral equation (3.1) is
determined by formula

uN(τ) = L∗N(τ)C
−1
N aN + pN(τ)− L∗N(τ)C

−1
N

∫ b

a
LN(η)pN(η)dη, τ ∈ I1, (3.4)

where pN(τ) ∈ L2(I1, Rm) is an arbitrary function.

The proof for finite N can be found in [3].

4 Conclusion

In this work a new method for studying of solvability and construction of a solution for
Fredholm integral equation of the first kind is proposed. Necessary and sufficient conditions
for existence of a solution for a given right-hand side are obtained in two cases: when the
original function belongs to the space L2; the original function belongs to a given set of L2.
Solvability conditions and the method of construction an approximate solution of the integral
Fredholm equation of the first kind are obtained. According to the method with comparison
to the well-known methods an approximation solution of the Fredholm integral equation of
the first kind can be obtained. Several theorems about solvability of the equation are proved.
Further continuation of the research works in this direction and development applications on
the base of the method are planned.
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