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Abstract. This paper continues the investigation of solvability of product-type systems
of difference equations, by studying the following system with two variables:

zn = αza
n−1wb

n−2, wn = βwc
n−3zd

n−2, n ∈N0,

where a, b, c, d ∈ Z, α, β ∈ C \ {0}, w−3, w−2, w−1, z−2, z−1 ∈ C \ {0}. It is shown that
there are some important cases such that the system cannot be solved by using our
previous methods. Hence, we also present a method different from the previous ones
by which the solvability of the system is shown also in the cases.
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1 Introduction

Various classes of nonlinear difference equations and systems have attracted interest of nu-
merous mathematicians (see, for example, [1–4, 8–43] and the references therein). After some
starting results on the long-term behavior of solutions to concrete systems, which were usu-
ally natural extensions of some scalar equations and whose study has been essentially initiated
by Papaschinopoulos and Schinas [10–12], several authors have continued their investigation
in a few different directions (see, for example, [3, 4, 8, 9, 13, 14, 16, 17, 21–28, 30–43]). One of
the directions is the classical problem of solving the equations and system and their ap-
plications [1, 5–7], a topic which has regained some popularity recently (see, for example,
[2, 3, 15, 18, 20–33, 35–43] and the references therein). The main ideas in our paper [18] have
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attracted some interest and have been used frequently in the last decade (see, for example,
[2, 3, 15, 20, 22, 24, 25, 29, 33, 35–39] and numerous related references therein). An interesting
system, which has been treated in another way and is motivated by the system in [23], can be
found in our recent paper [31].

Having studied the equations/systems which are obtained from the product-type ones
by acting on their right-hand sides by some standard operators (usually the translation or
max-type ones, see, for example, [19] and [34] and the references therein), we have turned
to the product-type systems, but on the complex domain. The case of positive initial values
is essentially known since the corresponding theory is based on the theory of linear differ-
ence equations with constant coefficients which is one of the basic and classical ones [1, 5–7].
An interesting max-type system of difference equations has been reduced to a product-type
system of this type in [21] and solved essentially by using the theory. However, there are
several problems in dealing with difference equations and systems on the complex domain.
One of them is that many basic complex functions are multi-valued. Hence, the product-type
systems whose initial values are real or complex are of some interest. Another problem is
that the transformation methods similar to those ones in [3, 15, 18, 20, 22, 24, 25, 29, 33, 35–39],
cannot be easily used for the case of product-type systems on the complex domain, unlike
the case of positive initial values. Recently, we have noticed that some product-type systems
are solvable on the complex domain (see [28, 32, 40]). It can be immediately noticed that the
systems in these three papers do not have arbitrary multipliers. Soon after that it was shown
that two multipliers can be added to the system in [32] so that such obtained system is also
solvable [41]. The motivation for adding multipliers stemmed from previously published pa-
per [26]. Three other related product-type systems have been studied recently in [30], [42] and
[43]. Product-type equations have appeared recently also in [29], where can be found several
methods and tricks for solving difference equations. What is quite interesting in the research
of product-type systems of difference equations of the form in [26, 30, 41–43] on the complex
domain, is the fact that there are just a few cases of solvable ones in closed form, which is con-
nected to the impossibility of solving polynomial equations which are of degree five or more.
Of course, there are many product-type systems which are theoretically solvable. However,
for these systems we only know the form of the formulas for their general solutions, but do
not have explicit (closed form) formulas for them. Thus, the problem of finding all practically
solvable product-type systems is important.

If k and l are two integers such that k ≤ l, then j = k, l denotes the set of all j ∈ Z such
that k ≤ j ≤ l. Also, as usual, we regard that ∑t

i=s ζi = 0, if t < s, and where ζi are some real
or complex numbers.

Continuing our previous investigations on product-type systems of difference equations,
especially the ones in [26, 30, 41–43], here we will consider the following system:

zn = αza
n−1wb

n−2, wn = βwc
n−3zd

n−2, n ∈N0, (1.1)

where parameters a, b, c, d are integers, while parameters α and β and initial values w−3, w−2,
w−1, z−2, z−1 are complex numbers.

If some of the initial values w−i, i = 1, 3, z−j, j = 1, 2, are equal to zero and min{a, b, c, d} <
0, then such solutions are not defined. Hence, of a much greater interest is the case when for
the initial values of system (1.1) the following relations hold:

w−i 6= 0, i = 1, 3 and z−j 6= 0, j = 1, 2. (1.2)

Therefore, the case will be considered in this paper. If α = 0 or β = 0, then in the case
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min{a, b, c, d} < 0, appears the same problem. Hence, we will also assume that α 6= 0 and
β 6= 0.

Our aim is to prove the (practical) solvability of system (1.1) under above posed conditions.
A bit surprisingly, we show that the methods applied in papers [26, 30, 41–43] cannot be used
in dealing with the problem of solvability of the system in all the cases. For this reason we
devise another method which will help in solving the problem.

2 Main results

The main results concerning the solvability of system (1.1) are presented in this section. Five
theorems are proved. Some results give closed form formulas for solutions to system (1.1),
whereas the others present methods for getting the corresponding closed form formulas. The
first theorem deals with the case c = bd = 0, the second with the case b = 0 6= c, the third
with the case d = 0 6= c, the fourth with the case ac 6= bd 6= 0, and the fifth with the case
ac = bd 6= 0.

Before we state the results, note that

z0 = αza
−1wb

−2, w0 = βwc
−3zd
−2,

z1 = α1+aza2

−1wab
−2wb

−1, w1 = βwc
−2zd
−1,

z2 = α1+a+a2
βbzbd
−2za3

−1wbc
−3wa2b

−2 wab
−1, w2 = αdβzad

−1wbd
−2wc

−1,

(2.1)

and that from α, β ∈ C \ {0}, w−3, w−2, w−1, z−2, z−1 ∈ C \ {0} and the equations in (1.1) we
get

zn 6= 0, n ≥ −2, and wn 6= 0, n ≥ −3. (2.2)

Theorem 2.1. Assume that a, b, d ∈ Z, c = 0, bd = 0, α, β ∈ C \ {0} and w−3, w−2, w−1, z−2, z−1 ∈
C \ {0}. Then the following statements hold.

(a) If a 6= 1, then the general solution to system (1.1) is given by the following formulas

zn = α
1−an+1

1−a βb 1−an−1
1−a zan+1

−1 wban

−2 wban−1

−1 , (2.3)

and

wn = αd 1−an−1
1−a βzdan−1

−1 , (2.4)

for n ≥ 2.

(b) If a = 1, then the general solution to system (1.1) is given by the following formulas

zn = αn+1βb(n−1)z−1wb
−2wb

−1, (2.5)

and

wn = αd(n−1)βzd
−1, (2.6)

for n ∈N.
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Proof. First note that in this case (1.1) is

zn = αza
n−1wb

n−2, wn = βzd
n−2, (2.7)

for n ∈N0.
Using (2.7) and condition bd = 0, we get

zn = αβbza
n−1,

for n ≥ 2.
Thus

zn = (αβb)∑n−2
j=0 aj

zan−1

1 , (2.8)

for n ≥ 2, which along with (2.1) yields

zn = (αβb)∑n−2
j=0 aj

(α1+aza2

−1wab
−2wb

−1)
an−1

= α∑n
j=0 aj

β
b ∑n−2

j=0 aj
zan+1

−1 wban

−2 wban−1

−1 , (2.9)

for n ≥ 2. Note that (2.9) holds for n = 1 and a 6= 0, too.
From (2.9) it easily follows that (2.3) holds if a 6= 1, whereas (2.5) follows immediately by

taking a = 1.
From (2.7), (2.9) and bd = 0, it follows that

wn = α
d ∑n−2

j=0 aj
β

1+bd ∑n−4
j=0 aj

zdan−1

−1 wbdan−2

−2 wbdan−3

−1

= α
d ∑n−2

j=0 aj
βzdan−1

−1 , (2.10)

for n ≥ 4. In fact, (2.10) holds for n ≥ 2, and even for n = 1, if a 6= 0 (see (2.1)).
From (2.10) is easily get that (2.4) holds if a 6= 1, whereas (2.6) immediately follows by

taking a = 1 in (2.10).

Theorem 2.2. Assume that a, c, d ∈ Z, b = 0 6= c, α, β ∈ C \ {0} and w−3, w−2, w−1, z−2, z−1 ∈
C \ {0}. Then system (1.1) is solvable in closed form.

Proof. First note that in this case (1.1) is

zn = αza
n−1, wn = βwc

n−3zd
n−2, (2.11)

for n ∈N0.
From the first equation in (2.11), we get

zn = α∑n
j=0 aj

zan+1

−1 , (2.12)

for n ∈N0, from which we have that

zn = α
1−an+1

1−a zan+1

−1 , (2.13)

if a 6= 1, and

zn = αn+1z−1, (2.14)

if a = 1. Note that formula (2.12) also holds for n = −1 if a 6= 0.
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Employing (2.12) in the second equation in (2.11), we get

wn = βα
d ∑n−2

j=0 aj
zdan−1

−1 wc
n−3, (2.15)

for n ≥ 2, and consequently

w3n+i = βα
d ∑3n+i−2

j=0 aj
zda3n+i−1

−1 wc
3(n−1)+i, (2.16)

for n ∈N and i = −1, 0, 1.
From (2.16) we get

w3n+i = βα
d ∑3n+i−2

j=0 aj
zda3n+i−1

−1 (βα
d ∑3n+i−5

j=0 aj
zda3n+i−4

−1 wc
3(n−2)+i)

c

= β1+cα
d ∑3n+i−2

j=0 aj+dc ∑3n+i−5
j=0 aj

zda3n+i−1+dca3n+i−4

−1 wc2

3(n−2)+i, (2.17)

for n ≥ 2 and i = −1, 0, 1.
An inductive argument along with (2.16) shows that

w3n+i = β∑k−1
j=0 cj

α
d ∑k−1

j=0 cj ∑
3(n−j)+i−2
j=0 aj

z
d ∑k−1

j=0 cja3(n−j)+i−1

−1 wck

3(n−k)+i, (2.18)

for every n ≥ k and i = −1, 0, 1.
By taking n = k in (2.18) we get

w3n+i = β∑n−1
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)+i−2
j=0 aj

z
d ∑n−1

j=0 cja3(n−j)+i−1

−1 wcn

i , (2.19)

for every n ∈N and i = −1, 0, 1.
From (2.19) and (2.1) it follows that

w3n−1 = β∑n−1
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−3
l=0 al

z
d ∑n−1

j=0 cja3(n−j)−2

−1 wcn

−1, (2.20)

w3n = β∑n−1
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−2
l=0 al

z
d ∑n−1

j=0 cja3(n−j)−1

−1 (βwc
−3zd
−2)

cn

= β∑n
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−2
l=0 al

z
d ∑n−1

j=0 cja3(n−j)−1

−1 zdcn

−2 wcn+1

−3 , (2.21)

and

w3n+1 = β∑n−1
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−1
l=0 al

z
d ∑n−1

j=0 cja3(n−j)

−1 (βwc
−2zd
−1)

cn

= β∑n
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−1
l=0 al

z
d ∑n

j=0 cja3(n−j)

−1 wcn+1

−2 , (2.22)

for n ∈N.
Case c 6= 1 6= a3 6= c. From (2.20)–(2.22) we have

w3n−1 = β
1−cn
1−c α

d ∑n−1
j=0 cj 1−a3n−3j−2

1−a z
d ∑n−1

j=0 cja3(n−j)−2

−1 wcn

−1

= β
1−cn
1−c α

d
1−a (

1−cn
1−c −a a3n−cn

a3−c
)z

ad a3n−cn

a3−c
−1 wcn

−1

= β
1−cn
1−c α

d(a3−c+(c+a+a2)(1−a)cn+(c−1)a3n+1)
(1−a)(1−c)(a3−c) z

ad a3n−cn

a3−c
−1 wcn

−1, (2.23)
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w3n = β
1−cn+1

1−c α
d ∑n−1

j=0 cj 1−a3n−3j−1
1−a z

d ∑n−1
j=0 cja3(n−j)−1

−1 zdcn

−2 wcn+1

−3

= β
1−cn+1

1−c α
d

1−a (
1−cn
1−c −a2 a3n−cn

a3−c
)z

a2d a3n−cn

a3−c
−1 zdcn

−2 wcn+1

−3

= β
1−cn+1

1−c α
d(a3−c+(c+ac+a2)(1−a)cn+(c−1)a3n+2)

(1−a)(1−c)(a3−c)
)
z

a2d a3n−cn

a3−c
−1 zdcn

−2 wcn+1

−3 , (2.24)

and

w3n+1 = β
1−cn+1

1−c α
d ∑n−1

j=0 cj 1−a3n−3j
1−a z

d ∑n
j=0 cja3(n−j)

−1 wcn+1

−2

= β
1−cn+1

1−c α
d

1−a (
1−cn
1−c −a3 a3n−cn

a3−c
)z

d a3n+3−cn+1

a3−c
−1 wcn+1

−2

= β
1−cn+1

1−c α
d(a3−c+(1−a3)cn+1+(c−1)a3n+3)

(1−a)(1−c)(a3−c)
)
z

d a3n+3−cn+1

a3−c
−1 wcn+1

−2 , (2.25)

for n ∈N.
Case c = a3 6= 1. From (2.20)–(2.22) we have

w3n−1 = β
1−a3n

1−a3 α
d ∑n−1

j=0 a3j 1−a3n−3j−2
1−a z

d ∑n−1
j=0 a3ja3(n−j)−2

−1 wa3n

−1

= β
1−a3n

1−a3 α
d(1−a3n−n(1−a3)a3n−2)

(1−a)(1−a3) zdna3n−2

−1 wa3n

−1, (2.26)

w3n = β
1−a3n+3

1−a3 α
d ∑n−1

j=0 a3j 1−a3n−3j−1
1−a z

d ∑n−1
j=0 a3ja3(n−j)−1

−1 zda3n

−2 wa3n+3

−3

= β
1−a3n+3

1−a3 α
d(1−a3n−n(1−a3)a3n−1)

(1−a)(1−a3) zdna3n−1

−1 zda3n

−2 wa3n+3

−3 , (2.27)

and

w3n+1 = β
1−a3n+3

1−a3 α
d ∑n−1

j=0 a3j 1−a3n−3j
1−a z

d ∑n
j=0 a3ja3(n−j)

−1 wa3n+3

−2

= β
1−a3n+3

1−a3 α
d(1−(n+1)a3n+na3n+3)

(1−a)(1−a3) zd(n+1)a3n

−1 wa3n+3

−2 , n ∈N. (2.28)

Case c 6= 1 = a. From (2.20)–(2.22) we have

w3n−1 = β
1−cn
1−c α

d ∑n−1
j=0 cj(3(n−j)−2)z

d 1−cn
1−c
−1 wcn

−1

= β
1−cn
1−c α

d((3n−2) 1−cn
1−c −3c 1−ncn−1+(n−1)cn

(1−c)2 z
d 1−cn

1−c
−1 wcn

−1

= β
1−cn
1−c α

d(3n−2−(3n+1)c+2cn+cn+1

(1−c)2 z
d 1−cn

1−c
−1 wcn

−1, (2.29)

w3n = β
1−cn+1

1−c α
d ∑n−1

j=0 cj(3(n−j)−1)z
d 1−cn

1−c
−1 zdcn

−2 wcn+1

−3

= β
1−cn+1

1−c α
d((3n−1) 1−cn

1−c −3c 1−ncn−1+(n−1)cn

(1−c)2 z
d 1−cn

1−c
−1 zdcn

−2 wcn+1

−3

= β
1−cn+1

1−c α
d(3n−1−(3n+2)c+cn+2cn+1)

(1−c)2 z
d 1−cn

1−c
−1 zdcn

−2 wcn+1

−3 , (2.30)
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and

w3n+1 = β
1−cn+1

1−c α
3d ∑n−1

j=0 cj(n−j)z
d 1−cn+1

1−c
−1 wcn+1

−2

= β
1−cn+1

1−c α
3d(n 1−cn

1−c −c 1−ncn−1+(n−1)cn

(1−c)2
)
z

d 1−cn+1
1−c

−1 wcn+1

−2

= β
1−cn+1

1−c α
3d n−(n+1)c+cn+1

(1−c)2 z
d 1−cn+1

1−c
−1 wcn+1

−2 , n ∈N. (2.31)

Case 1 6= c 6= −1 = a. From (2.20)–(2.22) we have

w3n−1 = β∑n−1
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−3
l=0 (−1)l

z
d ∑n−1

j=0 cj(−1)3(n−j)−2

−1 wcn

−1

= β
1−cn
1−c α

d ∑n−1
j=0 cj 1−(−1)3(n−j)−2

2 z
d(−1)n 1−(−c)n

1+c
−1 wcn

−1

= β
1−cn
1−c α

d
2 (

1−cn
1−c −(−1)n 1−(−c)n

1+c )z
d (−1)n−cn

1+c
−1 wcn

−1

= β
1−cn
1−c α

d(1+c−(1−c)(−1)n−2cn+1)
2(1−c2) z

d (−1)n−cn
1+c

−1 wcn

−1, (2.32)

w3n = β∑n
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−2
l=0 (−1)l

z
d ∑n−1

j=0 cj(−1)3(n−j)−1

−1 zdcn

−2 wcn+1

−3

= β
1−cn+1

1−c α
d ∑n−1

j=0 cj 1−(−1)3(n−j)−1
2 z

d(−1)n−1 1−(−c)n
1+c

−1 zdcn

−2 wcn+1

−3

= β
1−cn+1

1−c α
d
2 (

1−cn
1−c +(−1)n 1−(−c)n

1+c )z
d cn−(−1)n

1+c
−1 zdcn

−2 wcn+1

−3

= β
1−cn+1

1−c α
d(1+c+(1−c)(−1)n−2cn)

2(1−c2) z
d cn−(−1)n

1+c
−1 zdcn

−2 wcn+1

−3 , (2.33)

and

w3n+1 = β∑n
j=0 cj

α
d ∑n−1

j=0 cj ∑
3(n−j)−1
l=0 (−1)l

z
d ∑n

j=0 cj(−1)3(n−j)

−1 wcn+1

−2

= β
1−cn+1

1−c α
d ∑n−1

j=0 cj 1−(−1)3(n−j)
2 z

d(−1)n ∑n
j=0(−c)j

−1 wcn+1

−2

= β
1−cn+1

1−c α
d(1+c−(1−c)(−1)n−2cn+1)

2(1−c2) z
d cn+1−(−1)n+1

1+c
−1 wcn+1

−2 , (2.34)

for n ∈N.
Case c = 1 6= a. From (2.20)–(2.22) we have

w3n−1 = βnα
d ∑n−1

j=0
1−a3(n−j)−2

1−a z
d ∑n−1

j=0 a3(n−j)−2

−1 w−1

= βnα
d(a3n+1−a+n(1−a3))

(1−a)(1−a3) z
ad a3n−1

a3−1
−1 w−1, (2.35)

w3n = βn+1α
d ∑n−1

j=0
1−a3(n−j)−1

1−a z
d ∑n−1

j=0 a3(n−j)−1

−1 zd
−2w−3

= βn+1α
d(a3n+2−a2+n(1−a3))

(1−a)(1−a3) z
a2d a3n−1

a3−1
−1 zd

−2w−3, (2.36)

and

w3n+1 = βn+1α
d ∑n−1

j=0
1−a3(n−j)

1−a z
d ∑n

j=0 a3(n−j)

−1 w−2

= βn+1α
d(a3n+3−(n+1)a3+n)

(1−a)(1−a3) z
d a3n+3−1

a3−1
−1 w−3, (2.37)



8 S. Stević

for n ∈N.
Case c = a = 1. From (2.20)–(2.22) we have

w3n−1 = βnα
d ∑n−1

j=0 (3(n−j)−2)zdn
−1w−1

= βnαd n(3n−1)
2 zdn

−1w−1, (2.38)

w3n = βn+1α
d ∑n−1

j=0 (3(n−j)−1)zdn
−1zd
−2w−3

= βn+1αd n(3n+1)
2 zdn

−1zd
−2w−3, (2.39)

and

w3n+1 = βn+1α
3d ∑n−1

j=0 (n−j)zd(n+1)
−1 w−2

= βn+1α3d n(n+1)
2 zd(n+1)

−1 w−2, (2.40)

for n ∈N.

From the proof of Theorem 2.2 we see that the following corollary holds.

Corollary 2.3. Consider system of difference equation (1.1) where a, c, d ∈ Z, b = 0 6= c, α, β ∈
C \ {0} and w−3, w−2, w−1, z−2, z−1 ∈ C \ {0}. Then the following statements hold.

(a) If c 6= 1 6= a3 6= c, then the general solution to system (1.1) is given by formulas (2.13), (2.23)–
(2.25).

(b) If c = a3 6= 1, then the general solution to system (1.1) is given by formulas (2.13), (2.26)–(2.28).

(c) If c 6= 1 = a, then the general solution to system (1.1) is given by formulas (2.14), (2.29)–(2.31).

(d) If 1 6= c 6= −1 = a, then the general solution to system (1.1) is given by formulas (2.13), (2.32)–
(2.34).

(e) If c = 1 6= a, then the general solution to system (1.1) is given by formulas (2.13), (2.35)–(2.37).

(f) If c = a = 1, then the general solution to system (1.1) is given by formulas (2.14), (2.38)–(2.40).

Theorem 2.4. Assume that a, b, c ∈ Z, d = 0 6= c, α, β ∈ C \ {0} and w−3, w−2, w−1, z−2, z−1 ∈
C \ {0}. Then system (1.1) is solvable in closed form.

Proof. Since d = 0, system (1.1) is

zn = αza
n−1wb

n−2, wn = βwc
n−3, (2.41)

for n ∈N0.
Second equation in (2.41) yields

w3n+i = βwc
3(n−1)+i, (2.42)

for n ∈N0 and i = 0, 2, from which it follows that

w3n+i = β∑n
j=0 cj

wcn+1

i−3 , (2.43)
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for n ∈N0 and i = 0, 2.
Hence, from (2.43) we have that

w3n+i = β
1−cn+1

1−c wcn+1

i−3 , (2.44)

for n ∈N0 and i = 0, 2, when c 6= 1, whereas

w3n+i = βn+1wi−3, (2.45)

for n ∈N0 and i = 0, 2, when c = 1.
By iterating the first equation in (2.41) in variable z twice, we get

zn = α(αza
n−2wb

n−3)
awb

n−2

= α1+aza2

n−2wba
n−3wb

n−2

= α1+a(αza
n−3wb

n−4)
a2

wba
n−3wb

n−2

= α1+a+a2
wba2

n−4wba
n−3wb

n−2za3

n−3,

for n ≥ 2, from which it follows that

z3n = α1+a+a2
wba2

3n−4wba
3n−3wb

3n−2za3

3(n−1) (2.46)

z3n+1 = α1+a+a2
wba2

3n−3wba
3n−2wb

3n−1za3

3(n−1)+1 (2.47)

z3n+2 = α1+a+a2
wba2

3n−2wba
3n−1wb

3nza3

3(n−1)+2. (2.48)

By iterating relations (2.46)–(2.48) in variable z and using an inductive argument similar to
the one in the proof of Theorem 2.2, is obtained

z3n = za3n

0

n−1

∏
j=0

(
α1+a+a2

wba2

3j−1wba
3j wb

3j+1

)a3(n−j−1)

(2.49)

z3n+1 = za3n

1

n−1

∏
j=0

(
α1+a+a2

wba2

3j wba
3j+1wb

3j+2

)a3(n−j−1)

(2.50)

z3n+2 = za3(n+1)

−1

n

∏
j=0

(
α1+a+a2

wba2

3j−2wba
3j−1wb

3j

)a3(n−j)

, (2.51)

for n ∈N0.
Using formula (2.43), along with the first equation in (2.41) with n = 0, 1, into (2.49)–(2.51),

we get

z3n = α∑3n
j=0 aj

w
ba2 ∑n−1

j=0 cja3(n−j−1)

−1 w
b ∑n

j=0 cja3(n−j)

−2 w
bac ∑n−1

j=0 cja3(n−j−1)

−3

× β
b(1+a)∑n−1

j=0 cja3(n−j−1)+b(1+a+a2)∑n−1
j=0 a3(n−j−1) ∑

j−1
i=0 ci

za3n+1

−1 , (2.52)

z3n+1 = α∑3n+1
j=0 aj

w
b ∑n

j=0 cja3(n−j)

−1 w
ba ∑n

j=0 cja3(n−j)

−2 w
ba2c ∑n−1

j=0 cja3(n−j−1)

−3

× β
b(1+a+a2)∑n−1

j=0 a3(n−j−1) ∑
j
i=0 ci

za3n+2

−1 , (2.53)
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z3n+2 = α∑3n+2
j=0 aj

w
ba ∑n

j=0 cja3(n−j)

−1 w
ba2 ∑n

j=0 cja3(n−j)

−2 w
bc ∑n

j=0 cja3(n−j)

−3

× βb ∑n
j=0 cja3(n−j)+b(1+a+a2)∑n

j=0 a3(n−j) ∑
j−1
i=0 ci

za3(n+1)

−1 , (2.54)

for n ∈N0.
From formulas (2.52)–(2.54), similar to the proof of Theorem 2.2, are obtained closed form

formulas for subsequences (z3n+i)n∈N0 , i = 0, 2, in all possible cases, which is omitted.

Theorem 2.5. Assume that a, b, c, d ∈ Z, ac 6= bd 6= 0, α, β ∈ C\ {0} and w−3, w−2, w−1, z−2, z−1 ∈
C \ {0}. Then system (1.1) is solvable in closed form.

Remark 2.6. Before we prove Theorem 2.5 we want to explain why the method which was
successfully used in [26, 41–43] fails for the case of system (1.1). Namely, note that (2.2) holds
so that (1.1) yields

wb
n−2 =

zn

αza
n−1

, (2.55)

and

wb
n = βbwbc

n−3zbd
n−2, (2.56)

for n ∈N0.
Combining (2.55) and (2.56) we get

zn+2 = α1−cβbza
n+1zc

n−1zbd−ac
n−2 , (2.57)

for n ∈N0.
Let δ = α1−cβb,

a1 = a, b1 = 0, c1 = c, d1 = bd− ac, (2.58)

y1 = 1. (2.59)

Then by using the procedure in [26, 41–43], it is obtained that

zn+2 = δyk zak
n+2−kzbk

n+1−kzck
n−kzdk

n−k−1, (2.60)

for k, n ∈N, where n ≥ k− 1, and

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1,

ck = c1ak−1 + dk−1, dk = d1ak−1,
(2.61)

yk := yk−1 + ak−1. (2.62)

Setting k = n + 1 in (2.60), using (2.1), (2.61), (2.62) and by some calculation, is obtained

zn+2 = δyn+1 zan+1
1 zbn+1

0 zcn+1
−1 zdn+1

−2

= αyn+3−cyn+1 βbyn+1 z(bd−ac)an
−2 zan+3

−1 wban+2
−2 wban+1

−1 , (2.63)
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for n ∈N0.
From (2.61) it easily follows that ak satisfies the following difference equation

ak = a1ak−1 + b1ak−2 + c1ak−3 + d1ak−4, (2.64)

for k ≥ 5. Since equation (2.64) is a linear difference equation of the fourth order it can be
solved in closed form. From this, since yk = 1 + ∑k−1

j=1 aj, and since the last sum can be
calculated in closed form (due to the special form of ak, see, e.g. [1,5,7]), using (2.63) is proved
the solvability of equation (2.57).

We also have

zd
n−2 =

wn

βwc
n−3

, (2.65)

and

zd
n = αdzad

n−1wbd
n−2, (2.66)

for n ∈N0.
Combining (2.65) and (2.66) we get

wn+2 = αdβ1−awa
n+1wc

n−1wbd−ac
n−2 , (2.67)

for n ∈N0.
As above, from (2.67) we get

wn+2 = ηyk wak
n+2−kwbk

n+1−kwck
n−kwdk

n−k−1, (2.68)

for every k, n ∈ N such that 1 ≤ k ≤ n + 1, where η = αdβ1−a, sequences (ak)k∈N, (bk)k∈N,
(ck)k∈N, (dk)k∈N satisfy (2.58) and (2.61), whereas sequence (yk)k∈N satisfies (2.59) and (2.62).

For k = n + 1, equation (2.68) along with (2.1), (2.61) and (2.62) yields

wn+2 = ηyn+1 wan+1
1 wbn+1

0 wcn+1
−1 wdn+1

−2

= αdyn+1 βyn+3−ayn+2 zd(an+2−aan+1)
−2 zdan+1

−1 wc(an+2−aan+1)
−3

× wan+4−aan+3
−2 wan+3−aan+2

−1 , (2.69)

for every n ∈N0, from which the solvability of equation (2.67) follows.
However, although (2.63) and (2.69) are solutions to equations (2.57) and (2.67) respectively,

a direct check easily shows that they are not solutions to system (1.1). Namely, note that wn

depends, among others, on initial value w−3 if c 6= 0, which is not the case with zn, from which
the claim easily follows along with the equations in (1.1). Such a situation has not appeared
in our previous papers on the topic so far (see [26, 41–43]). Hence we need an alternative
approach in dealing with the solvability of system (1.1).

Proof of Theorem 2.5. From the first equation in (1.1) and since z2 depends on all the initial
values w−3, w−2, w−1, z−2, z−1 (see (2.1)), a simple inductive argument shows that zn depends
on these initial values for each n ≥ 2, while from the second equation in (1.1) and by a simple
inductive argument is obtained that wn also depends on all these initial values for each n ≥ 4.
Hence, zn and wn can be written in the following form:

zn = αxn βyn zan
−2zbn
−1wcn

−3wdn
−2wen

−1, (2.70)
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for n ≥ −2, and

wn = αun βvn zαn
−2zβn
−1wγn

−3wδn
−2wηn

−1, (2.71)

for n ≥ −3.
Employing (2.70) and (2.71) in both equations in (1.1) we get

zn = α(αxn−1 βyn−1 zan−1
−2 zbn−1

−1 wcn−1
−3 wdn−1

−2 wen−1
−1 )a

× (αun−2 βvn−2 zαn−2
−2 zβn−2

−1 wγn−2
−3 wδn−2

−2 wηn−2
−1 )b

= αaxn−1+bun−2+1βayn−1+bvn−2 zaan−1+bαn−2
−2 zabn−1+bβn−2

−1

× wacn−1+bγn−2
−3 wadn−1+bδn−2

−2 waen−1+bηn−2
−1 , (2.72)

for n ≥ −1, and

wn = β(αun−3 βvn−3 zαn−3
−2 zβn−3

−1 wγn−3
−3 wδn−3

−2 wηn−3
−1 )c

× (αxn−2 βyn−2 zan−2
−2 zbn−2

−1 wcn−2
−3 wdn−2

−2 wen−2
−1 )d

= αdxn−2+cun−3 βdyn−2+cvn−3+1zdan−2+cαn−3
−2 zdbn−2+cβn−3

−1

× wdcn−2+cγn−3
−3 wddn−2+cδn−3

−2 wden−2+cηn−3
−1 , (2.73)

for n ∈N0.
From (2.70)-(2.73) it follows that sequences xn, yn, an, bn, cn, dn, en, un, vn, αn, βn, γn, δn,

ηn, satisfy the following systems of difference equations

xn = axn−1 + bun−2 + 1, un = dxn−2 + cun−3, (2.74)

yn = ayn−1 + bvn−2, vn = dyn−2 + cvn−3 + 1, (2.75)

an = aan−1 + bαn−2, αn = dan−2 + cαn−3, (2.76)

bn = abn−1 + bβn−2, βn = dbn−2 + cβn−3, (2.77)

cn = acn−1 + bγn−2, γn = dcn−2 + cγn−3, (2.78)

dn = adn−1 + bδn−2, δn = ddn−2 + cδn−3, (2.79)

en = aen−1 + bηn−2, ηn = den−2 + cηn−3, (2.80)

for n ∈N0, and the following initial conditions

u−3 = 0, v−3 = 0, α−3 = 0, β−3 = 0, γ−3 = 1, δ−3 = 0, η−3 = 0, (2.81)

x−2 = 0, y−2 = 0, a−2 = 1, b−2 = 0, c−2 = 0, d−2 = 0, e−2 = 0, (2.82)

u−2 = 0, v−2 = 0, α−2 = 0, β−2 = 0, γ−2 = 0, δ−2 = 1, η−2 = 0, (2.83)

x−1 = 0, y−1 = 0, a−1 = 0, b−1 = 1, c−1 = 0, d−1 = 0, e−1 = 0, (2.84)

u−1 = 0, v−1 = 0, α−1 = 0, β−1 = 0, γ−1 = 0, δ−1 = 0, η−1 = 1. (2.85)

Note also that from (2.74)–(2.85) it follows that

x0 = 1, y0 = 0, a0 = 0, b0 = a, c0 = 0, d0 = b, e0 = 0, (2.86)

u0 = 0, v0 = 1, α0 = d, β0 = 0, γ0 = c, δ0 = 0, η0 = 0, (2.87)

x1 = 1 + a, y1 = 0, a1 = 0, b1 = a2, c1 = 0, d1 = ab, e1 = b, (2.88)

u1 = 0, v1 = 1, α1 = 0, β1 = d, γ1 = 0, δ1 = c, η1 = 0, (2.89)
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which matches with (2.1).
Since d 6= 0, then from the second equation in (2.74) is obtained

xn−2 =
un − cun−3

d
, n ∈N0. (2.90)

By using (2.90) in the first equation in (2.74) we easily get

un+2 = aun+1 + cun−1 + (bd− ac)un−2 + d, (2.91)

for n ∈N0

Also from the second equation in (2.75) is obtained

yn−2 =
vn − cvn−3 − 1

d
, n ∈N0. (2.92)

By using (2.92) in the first equation in (2.75) we easily get

vn+2 = avn+1 + cvn−1 + (bd− ac)vn−2 + 1− a, (2.93)

for n ∈N0.
From (2.76)–(2.80) is similarly obtained

an−2 =
αn − cαn−3

d
, (2.94)

bn−2 =
βn − cβn−3

d
, (2.95)

cn−2 =
γn − cγn−3

d
, (2.96)

dn−2 =
δn − cδn−3

d
, (2.97)

en−2 =
ηn − cηn−3

d
, (2.98)

for n ∈N0, and

αn+2 = aαn+1 + cαn−1 + (bd− ac)αn−2, (2.99)

βn+2 = aβn+1 + cβn−1 + (bd− ac)βn−2, (2.100)

γn+2 = aγn+1 + cγn−1 + (bd− ac)γn−2, (2.101)

δn+2 = aδn+1 + cδn−1 + (bd− ac)δn−2, (2.102)

ηn+2 = aηn+1 + cηn−1 + (bd− ac)ηn−2, (2.103)

for n ∈N0. Note that (2.91), (2.93), (2.99)–(2.103) hold also for n = −1.
At this point it is important to note that all the transformations that we have just done

transform systems of difference equations (2.74)–(2.80) into equivalent ones. Therefore, the
sets of solutions of the original and transformed systems are the same.

Let on the space of all sequences (tn)n≥−2 be defined the following linear operator

L(tn) = tn+2 − atn+1 − ctn−1 + (ac− bd)tn−2, (2.104)

for n ∈N0.



14 S. Stević

Then from (2.91) we have that L(un) = d, n ∈ N0, from (2.93) we have that L(vn) = 1− a,
n ∈N0, while from (2.99)–(2.103) we have that

L(αn) = L(βn) = L(γn) = L(δn) = L(ηn) = 0,

for n ∈N0.
Since the linear difference equation

L(tn) = 0, (2.105)

is of the fourth order it is solvable in closed form, so that the sequences αn, βn, γn, δn, ηn, can
be calculated explicitly, by using the corresponding initial conditions in (2.82)–(2.89). Using
such obtained formulas for αn, βn, γn, δn, ηn, in equations (2.94)–(2.98) respectively the closed
form formulas for an, bn, cn, dn, en, are found. Beside this, the following nonhomogeneous
difference equation

L(tn) = f , (2.106)

where f is a constant is also solvable, since it is well-known that a particular solution to the
equation can be found in the following form

tn = ĉ0 + ĉ1n + ĉ2n2 + ĉ3n3 + ĉ4n4,

for some constants ĉj, j = 0, 4 (see, e.g., [1,7]). Hence, equation (2.106) can be solved for f = d
and f = 1− a respectively. From this and by using the corresponding initial conditions in
(2.82)–(2.89) are found the corresponding closed form formulas for the sequences un and vn

respectively. Using such obtained formulas for un and vn in (2.90) and (2.92) respectively, we
get closed form formulas for xn and yn respectively. Finally, using the obtained formulas for
these fourteen sequences in formulas (2.72) and (2.73) are obtained closed form formulas for
solutions to system (1.1), finishing the proof of the theorem.

Remark 2.7. Since ac 6= bd equations (2.105) and (2.106) produce solutions not only for
n ≥ −2. Namely, from (2.105) we have that

tn−2 =
tn+2 − atn+1 − ctn−1

bd− ac
, (2.107)

while from (2.106) we have that

tn−2 =
tn+2 − atn+1 − ctn−1 − f

bd− ac
, (2.108)

from which tn can be calculated for all negative indices if initial values t−2, t−1, t0 and t1 are
given. Consequently, sequences xn, yn, an, bn, cn, dn, en, un, vn, αn, βn, γn, δn, ηn appearing in
the proof of Theorem 2.5 can be also calculated for every n ∈ Z. Hence, formulas (2.72) and
(2.73), among others, hold also for n ≥ −2, that is, n ≥ −3, respectively.

Remark 2.8. The case b 6= 0 is treated similarly/dually. Namely, from the first equation in
(2.74) is obtained

un−2 =
xn − axn−1 − 1

b
, n ∈N0. (2.109)
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By using (2.109) in the second equation in (2.74) we easily get

xn+2 = axn+1 + cxn−1 + (bd− ac)xn−2 + 1− c, (2.110)

for n ∈N0.
Also from the first equation in (2.75) is obtained

vn−2 =
yn − ayn−1

b
, n ∈N0. (2.111)

By using (2.111) in the second equation in (2.75) we easily get

yn+2 = ayn+1 + cyn−1 + (bd− ac)yn−2 + b, n ∈N0. (2.112)

From (2.76)–(2.80) is similarly obtained

αn−2 =
an − aan−1

b
, (2.113)

βn−2 =
bn − abn−1

b
, (2.114)

γn−2 =
cn − acn−1

b
, (2.115)

δn−2 =
dn − adn−1

b
, (2.116)

ηn−2 =
en − aen−1

b
, (2.117)

an+2 = aan+1 + can−1 + (bd− ac)an−2, (2.118)

bn+2 = abn+1 + cbn−1 + (bd− ac)bn−2, (2.119)

cn+2 = acn+1 + ccn−1 + (bd− ac)cn−2, (2.120)

dn+2 = adn+1 + cdn−1 + (bd− ac)dn−2, (2.121)

en+2 = aen+1 + cen−1 + (bd− ac)en−2, (2.122)

for n ∈N0.
From (2.110) we have that L(xn) = 1− c, n ∈ N0, from (2.112) we have that L(yn) = b,

n ∈N0, while from (2.118)–(2.122) we have

L(an) = L(bn) = L(cn) = L(dn) = L(en) = 0, n ∈N0.

From these equations as in the proof of Theorem 2.5 it is showed that closed form formulas
for xn, yn, an, bn, cn, dn, en, can be found, from which along with (2.109), (2.111), (2.113)–(2.117)
are obtained closed for formulas for un, vn, αn, βn, γn, δn, ηn, from which the solvability of
(1.1) also follows under the conditions of the theorem.

The next theorem deals with the case ac = bd 6= 0.

Theorem 2.9. Assume that a, b, c, d ∈ Z, ac = bd 6= 0, α, β ∈ C\ {0} and w−3, w−2, w−1, z−2, z−1 ∈
C \ {0}. Then system (1.1) is solvable in closed form.
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Proof. First note that in this case equalities (2.74)–(2.103) also hold. Since ac = bd and c 6= 0,
we specially obtain

un+2 = aun+1 + cun−1 + d, (2.123)

vn+2 = avn+1 + cvn−1 + 1− a, (2.124)

αn+2 = aαn+1 + cαn−1, (2.125)

βn+2 = aβn+1 + cβn−1, (2.126)

γn+2 = aγn+1 + cγn−1, (2.127)

δn+2 = aδn+1 + cδn−1, (2.128)

ηn+2 = aηn+1 + cηn−1, (2.129)

for n ∈N0, while operator L defined in (2.104) becomes

L(tn) = tn+2 − atn+1 − ctn−1.

Now difference equation (2.105) is of the third order, so it is solvable in closed form.
Hence equations (2.125)–(2.129) can be solved, so that the sequences αn, βn, γn, δn, ηn, can
be calculated explicitly, using the corresponding conditions in (2.82)–(2.89). These formulas
along with (2.94)–(2.98) yield formulas for an, bn, cn, dn, en. Further, difference equation (2.106)
is also solvable, since a particular solution to the equation can be found in the following form

tn = (d̂0 + d̂1n + d̂2n2 + d̂3n3),

for some constants d̂j, j = 0, 3. Specially, it is solved for f = d and f = 1− a, which gives
formulas for the sequences un and vn, and consequently closed-form formulas for xn and yn.
Using such obtained formulas in (2.72) and (2.73) we get formulas for solutions to system
(1.1), in this case.
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[39] S. Stević, J. Diblik, B. Iričanin, Z. Šmarda, Solvability of nonlinear difference equations
of fourth order, Electron. J. Differential Equations 2014, No. 264, 14 pp. MR3312151
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