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1 Introduction

We discuss the existence of minimal positive solutions for the following problem{
∆u(x) + f1(x, u(x), v(x)) + g1(‖x‖)x · ∇u(x) = 0,

∆v(x) + f2(x, u(x), v(x)) + g2(‖x‖)x · ∇v(x) = 0,
for x ∈ GR, (1.1)

subject to the limit conditions

lim
‖x‖→∞

u(x) = 0, lim
‖x‖→∞

v(x) = 0, (1.2)

where n > 2, R > 0, ‖x‖ :=
√

∑n
i=1 x2

i , GR = {x ∈ Rn, ‖x‖ > R}, g1, g2 : [1,+∞) → R are
continuously differentiable and g1(l), g2(l) are positive for l sufficiently large.

There exists rich literature devoted to similar problems which arise in many applications
e.g. in pseudoplastic fluids [6], reaction–diffusion processes or chemical heterogeneous cata-
lysts [3], heat conduction in electrically conducting materials [7].

Here we have to mention also Constantin’s results (see e.g. [8, 9]) describing the case of
a single equation and further papers (e.g. [14–18]). Recently the research concerning the
existence and properties of positive solutions of systems of nonlinear elliptic problems has
been very active and enjoying of increasing interest (see e.g. [10–13,21,22,25,28] and references
therein). The sub and supersolutions methods are applied in many of these papers (e.g. [11,12,
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21,22] or [25]). Other techniques are also met. In [13] the results are based on approximations.
In [10] we can find the variational approach which allowed to show the existence of a few
solutions of the following problem

−∆U(x) = ∇H(x, U(x)) in Ω

U(x) = 0 on ∂Ω,

where U = (u1, u2) : Ω → R2, Ω is a bounded regular domain in Rn, the right-hand side
is a Carathéodory function and satisfies, among others, some growth conditions. The main
result of the paper [10, Theorem 1.1] says that the above problem possesses at least nine
nontrivial solutions U = (u1, u2), satisfying the following sign conditions: both u1 and u2 are
strictly positive or negative in the first four solutions; four others are such that one of the two
components is of the one sign while the other is of changing sign, and finally both components
change their sing in the ninth solution.

We also have to mention the paper [5], where we can find, among others, the results con-
cerning the existence or nonexistence of radially symmetric solutions for the Emden–Fowler
system involving p-Laplace operators and some real parameters. The approach is based on
suitable transformations which play a crucial role in the reduction of the main problem to a
quadratic system. Moreover, in the case when the main system is variational the behaviour
of the ground states was described. Considering parameters satisfying additional conditions
and applying a new type of energy function, the authors investigate the existence of ground
states also in the case when the system is not variational.

Two further papers [20] and [19] are devoted to more general problems associated with
elliptic inequalities. The first one describes the existence and nonexistence of nonnegative
and nontrivial entire weak solutions for a single inequality. The approach is based on a
generalized version of the Keller–Ossermann condition (see e.g. [4] and [23] ). In the latter
paper the system of elliptic inequalities of divergence type is investigated. The author obtains
the results employing the method of test functions (see e.g. in [24]). These results can be
applied in the case of p-Laplace operators as well as mean curvature operators.

The main motivation of this paper is a recent paper by Covei [12] in which also the Lane–
Emden–Fowler system is investigated

−∆u(x) = a1(x)F1(x, u(x), v(x))

−∆v(x) = a2(x)F2(x, u(x), v(x))

u = v = 0 in ∂Ω

for bounded domains Ω ⊂ Rn or Ω = Rn. The author assumes that for i ∈ {1, 2}, Fi :
Ω× (0,+∞)× (0,+∞)→ (0,+∞) is locally Hölder and satisfies the following estimates

Fi(x, t1, t2) ≤ gi(ti) for all (x, t1, t2) ∈ Ω× (0,+∞)× (0,+∞) ,

where gi : (0,+∞) → (0,+∞) is continuous, the mapping s 7→ gi(s)
s is decreasing on (0,+∞)

and lims→+∞
gi(s)

s = 0, and

Fi(x, t1, t2) ≥ hi(t1, t2) for all (x, t1, t2) ∈ Ω× (0, T1)× (0, T2) ,

where hi : (0, T1) × (0, T2) → (0,+∞) is a continuous, nonincreasing function such that
lims→+∞ hi(s, s) ∈ (0,+∞], with T1, T2 ∈ (0, 1).
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Covei’s results are also based on the sub and supersolutions method which was intro-
duced by Keller and Amann. The existence result for solutions of elliptic problems under the
assumption concerning the existence of subsolutions and supersolutions was first proved by
H. Amann in [1]. One year later in [27], Sattinger proved similar theorems for regular elliptic
boundary value problems using the Lp estimates of Agmon, Douglis and Nirenberg ([2]). In
our paper we want to employ these classical ideas. Motivated by [12], we are interested in
another type of nonlinearities. It is worth emphasizing that we do not require our system to
be either potential or radial symmetric. Moreover we do not need either growth conditions
on fi or the equality fi(·, 0, 0) ≡ 0, i = 1, 2. Precisely, in the sequel we assume the following
conditions

(A1) for i = 1, 2, gi : [1,+∞) → R belongs to C1([1,+∞)) and there exists l0 ≥ 1 such that
gi(l) ≥ 0 for all l ≥ l0;

(A2) for i = 1, 2, fi : G1×R2 → R, where G1 = {x ∈ Rn, ‖x‖ > 1}, is locally Hölder continuous
with exponent α ∈ (0, 1), x 7→ fi(x, 0, 0) is positive and there exist d1, d2 > 0 and continuous
functions f̃i such that

sup
(u,v)∈[0,d1]×[0,d2]

sup
‖x‖=r

fi(x, u, v) ≤ f̃i(r)

for all r ∈ [1,+∞) and ∫ ∞

1
rn−1 f̃i(r)dr ≤ 4 (n− 2) di;

(A3) f1 is continuously differentiable in u and nondecreasing in v and f2 is continuously differen-
tiable in v and nondecreasing in u in GR × [0, d1]× [0, d2];

(A4) there exist A1, A2 > 0 and L1, L2 > 1 such that

f1(x, u, 0) ≥ A1(n− 2)g1(x)‖x‖2−n for all u ∈ [0, d1] and ‖x‖ > L1,

f2(x, 0, v) ≥ A2(n− 2)g2(x)‖x‖2−n for all v ∈ [0, d2] and ‖x‖ > L2.

Remark 1.1. Assumptions (A1)–(A4) are not too restrictive and many elementary functions
satisfy them. It is easy to find many examples of f1, f2 satisfying (A2), (A3) and (A4) among
functions of the form

fi(x, u, v) = f i(u, v) (‖x‖q + a(x))−1 ,

where q > n, a is positive and sufficiently smooth and f i is a polynomial, exponential or ratio-
nal function or their combinations, e.g. f i(u, v) = c(u5 + u4 + (u + v)2 + 1) or f i(u, v) =

c
(
eu+v + u3+v3

(4−u)(5−v)

)
. We can also investigate problems of the Emden–Fowler type when

f i(u, v) = c(uα + vβ + M) with α, β, M > 0. We will discuss an example of the problem
with exponential and rational nonlinearities at the end of this paper.

It is worth emphasizing that we need the monotonicity and differentiability of fi in u
and/or v only on some right-hand neighborhood of the origin. Moreover, we can consider
both sublinear and superlinear fi which is associated with the fact that we have to control only
the value of nonlinearities. Thus we can omit growth conditions concerning second and third
variables. In the proof of the existence of a positive solution of (1.1) we do not need (A4). We
use this condition only to show that the solution is minimal. Our main tool is Theorem 1.2
which says that the existence of a sub-subsolution (u, v) and a super-supersolution (u, v) of
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our problem such that 0 ≤ u ≤ u ≤ d1 and 0 ≤ v ≤ v ≤ d2 implies the existence of solution
(u, v) of (1.1) which is squeezed between them. In the proof of Theorem 1.2 we apply classical
ideas based on Sattinger’s monotone iteration procedure. The iteration scheme is patterned
after that in [22] where the existence results are proved in the case when the problem does
not contain the gradient term. Thus we start with standard definitions of a solution, a super-
supersolution and a sub-subsolution of (1.1)–(1.2) (see e.g. [22]).

By a solution of our problem we understand a pair (u, v) ∈ C2+α
loc (GR)× C2+α

loc (GR) satis-
fying (1.1) and vanishing at infinity, that is conditions (1.2). We say that a positive solution
of our problem is minimal when the functions: x 7→ ‖x‖n−2u(x) and x 7→ ‖x‖n−2v(x) are
bounded above and below by positive constants in some exterior domain (see, among others,
[25]).

By a super-supersolution of (1.1)–(1.2) in GR we understand a vector function (u, v) ∈
C2+α

loc (GR)× C2+α
loc (GR) satisfying the following differential inequalities

∆u(x) + f1(x, u(x), v(x)) + g1(‖x‖)x · ∇u(x) ≤ 0

∆v(x) + f2(x, u(x), v(x)) + g2(‖x‖)x · ∇v(x) ≤ 0

lim‖x‖→∞ u(x) = 0, lim‖x‖→∞ v(x) = 0.

Analogously, as for a sub-subsolution (u, v) of (1.1)–(1.2) in GR, the sign of the inequality
should be reversed.

Since fi(x, 0, 0) is positive in G1, (u, v) , where u(x) = v(x) = 0 in GR, is the trivial sub-
subsolution. We obtain the super-supersolution of our system as a radial solution of a certain
auxiliary linear problem considered in the complement of the unit ball centered at the origin.
Now we formulate the theorem which will be our main tool in the proof of the existence
result.

Theorem 1.2. Assume that conditions (A1)–(A3) hold and suppose that (u, v) and (u, v) are, respec-
tively, a super-supersolution and a sub-subsolution of (1.1)–(1.2) such that

0 ≤ u ≤ u ≤ d1 and 0 ≤ v ≤ v ≤ d2 on GR.

Then there exists a vector function
(
u0, v0) ∈ C2+α

loc (GR)× C2+α
loc (GR) such that

{
∆u0(x) + f1(x, u0(x), v0(x)) + g1(‖x‖)x · ∇u0(x) = 0

∆u0(x) + f2(x, u0(x), v0(x)) + g2(‖x‖)x · ∇v0(x) = 0
on GR

lim
‖x‖→∞

u0(x) = 0, lim
‖x‖→∞

v0(x) = 0.

Moreover, u0(x) = u(x) and v0(x) = v(x) when ‖x‖ = R, and u ≤ u0 ≤ u and v ≤ v0 ≤ v on GR.

Remark 1.3. To prove the above result we will use the ideas described by Kawano in [22]
for the case when the elliptic problem contains the gradient terms. We can follow his steps
because of the fact that the differential operator is also linear in our problem. Although the
proof of Theorem 1.2 is standard we present the sketch of the reasoning in the Appendix for
the reader’s convenience.
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2 The existence of a super-supersolution

In this section we show the existence of a positive super-supersolution of (1.1) as radial solu-
tions wi, i = 1, 2, of the following auxiliary linear problems{

−∆w(x) = f̃i(‖x‖) for x ∈ G1,

w(x) = 0 for ‖x‖ = 1, lim‖x‖→∞ w(x) = 0.
(2.1)

We prove that wi is radially decreasing in exterior domain GR for R sufficiently large. We also
describe more precisely the asymptotic behaviour of wi. These properties will play the crucial
role in the proof of the fact that (w1, w2) is a super-supersolution of our problem in a certain
exterior domain and our solution of (1.1) has a minimal growth at infinity.

Lemma 2.1. Assume (A1)–(A3). For each i = 1, 2, there exists a positive minimal radial solution wi
for (2.1) such that wi(x) ≤ di in G1. Moreover, (w1, w2) is a super-supersolution of (1.1).

Proof. Fix i ∈ {1, 2}. We start with the well-known fact that, via a suitable transformation, the
investigation of the existence of a radial solution for the problem (2.1) leads, to the solvability
of the Dirichlet problem with singularity at the end-point 1, namely{

−z′′(t) = hi(t) , in (0, 1)

z(0) = z(1) = 0
(2.2)

with
hi(t) =

1

(n− 2)2 (1− t)
2n−2
2−n f̃i((1− t)

1
2−n )

for all t ∈ (0, 1). Precisely, when we have a radial solution w(x) = z̃(‖x‖) with z̃ : [1,+∞)→ R

of (2.1), we get the solution for (2.2) of the form z(t) = z̃
(
(1− t)

1
2−n
)
. Conversely, having a

solution z of (2.2) we derive that w(x) = z(1− ‖x‖2−n) satisfies (2.1). Assumptions made on
fi allow us to state that hi is continuous, hi(·) > 0 and∫ 1

0
hi(l)dl ≤ 4di. (2.3)

Simple calculation leads to the conclusion that

zi(t) =
∫ 1

0
G(s, t)hi(s)ds, (2.4)

where

G(s, t) :=

{
s(1− t) for 0 ≤ s ≤ t,

(1− s)t for t < s ≤ 1,
s, t ∈ (0, 1) ,

is a solution of (2.2). Since 0 ≤ G(s, t) ≤ 1
4 for all (s, t) ∈ [0, 1]× [0, 1] we get for all t ∈ [0, 1],

0 ≤ zi(t) =
∫ 1

0
G(s, t)hi(s)ds ≤ di.

Taking into account the facts that the solution zi of (2.2) is nontrivial and concave, we can
state that zi is positive in (0, 1). As in [17] and [26], we prove the existence of ti ∈ (0, 1) such
that z′i(t) ≤ 0 for all t ∈ [t, 1). Applying Rolle’s theorem, we get that the set S := {t ∈ (0, 1);
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z′i(t) = 0} is nonempty. Since z′i in nonincreasing in (0, 1) , we have z′i(t) = 0 in [t1, t2] for
all t1, t2 ∈ S such that t1 ≤ t2. Thus S is an interval. Let ti := sup S. It is easy to show
that ti 6= 1. Indeed, if ti = 1 then, we derive the existence of a sequence {tm} ⊂ S such that
limm→∞ tm = 1. Without loss of generality we can assume that for all m ∈ N, t1 ≤ tm. Thus
for all m ∈ N, z′i(t) = 0 in [t1, tm], and consequently z′i(t) = 0 in [t1, 1), which gives, by the
continuity of zi in [0, 1], that zi(t) = 0 in [t1, 1]. But it is impossible with respect to the fact
that zi is positive. In consequence, for all t ∈ [t, 1), z′(t) ≤ 0.

Now we try to describe more precisely the behaviour of zi in the left-hand neighborhood
of 1. First we note that z′i(t) = −

∫ 1
0 shi(s)ds +

∫ 1
t hi(s)ds and further

(0,+∞) 3 M :=
∫ 1

0
shi(s)ds = − lim

t→1−
z′i(t) = lim

t→1−

zi(t)
(1− t)

.

To sum up, we proved the existence of the positive solution zi of (2.2) which satisfies the
following conditions

z′i(t) ≤ 0 for all t ∈ [ti, 1) (2.5)

with certain ti ∈ (0, 1) and
zi(t) = O(1− t) for t→ 1−. (2.6)

Coming to the radial solution of (2.1), we use the positive solution zi of (2.2) described above.
Then wi(x) := zi(1−‖x‖2−n) in G1 is a positive radial solution of (2.1) and taking into account
the substitution t := 1− ‖x‖2−n and (2.6) we can derive that

lim
‖x‖→∞

wi(x)
‖x‖2−n = Mi ∈ (0,+∞) .

This implies that there exists L̃i > 0 such that for all x ∈ Rn, ‖x‖ > L̃i,

Mi

2
‖x‖2−n < wi(x) <

3Mi

2
‖x‖2−n,

which means that wi is the minimal solution of (2.1).

Now, taking into account (2.5), we have for all x ∈ Rn, ‖x‖ ≥ R := maxi=1,2
(
1− ti

) 1
2−n ,

x · ∇wi(x) = z′i(1− ‖x‖2−n) (n− 2) ‖x‖2−n ≤ 0

where the last inequality follows from the fact that for ‖x‖ ≥ R we have t := 1− ‖x‖2−n ∈
[ti, 1), i = 1, 2. Finally, we get for i = 1, 2 and x ∈ Rn such that ‖x‖ ≥ R := max{R, l0}

∆wi(x) + fi(x, w1(x), w2(x)) + gi(‖x‖)x · ∇wi(x) ≤ ∆wi(x) + f̃i(‖x‖) = 0.

Theorem 2.2. Suppose that (A1)–(A3) hold. Then (1.1) possesses a positive solution (u0, v0) in GR.
If we assume additionally (A4) then the solution (u0, v0) is minimal.

Proof. Lemma 2.1 gives the existence of a positive super-supersolution (w1, w2) such that each
function x 7→ ‖x‖n−2wi(x) is bonded above and below by positive constants in some exte-
rior domain. On the other hand (1.1) possesses the trivial sub-subsolution in GR. Applying
Theorem 1.2, we derive that there exists a solution of (1.1) such that

0 ≤ u0(x) ≤ w1(x) and 0 ≤ v0(x) ≤ w2(x) on GR

and
u0(x) = w1(x) and v0(x) = w2(x) on ∂GR.
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Our last task is to show that the solution is minimal (see also [25]). We start with the proof
that u0 and v0 are bounded below by functions of the form x 7→ B‖x‖2−n in a certain exterior
domain. To this end we apply (A4) which gives the existence of L1 > 1 and A1 > 0 such
that for all u ∈ [0, d1] , x ∈ Rn, ‖x‖ > L1, f1(x, u, 0)− A1 (n− 2) g1(‖x‖)‖x‖2−n > 0. We can
assume (without loss of generality) that L1 > max{R, l0}. Now we consider w(x) = B1‖x‖2−n

with B1 > 0 and B1 < min{A1, Ln−2
1 min‖x‖=L1

u0(x)}. Let us note that assumption (A4)
guarantees for all x ∈ Rn with the norm ‖x‖ > L1 the following chain of assertions

− ∆ (u0(x)− w(x))− g1(‖x‖)x · ∇(u0(x)− w(x))

= f1(x, u0(x), v0(x))− B1 (n− 2) g1(‖x‖)‖x‖2−n

≥ f1(x, u0(x), 0)− A1 (n− 2) g1(‖x‖)‖x‖2−n ≥ 0.

It is also obvious that for all x ∈ Rn, ‖x‖ = L1, u0(x) − w(x) = u0(x) − B1L2−n
1 > 0 and

lim‖x‖→∞ (u0(x)− w(x)) = 0. Finally, the maximum principle allows us to state that u0(x)−
w(x) ≥ 0 for all x ∈ Rn, ‖x‖ > L1, which gives

‖x‖n−2u0(x) ≥ B1.

On the other hand, by the asymptotics of the super-supersolution, we can state that for all
x ∈ Rn, ‖x‖ > L̃1, we have

‖x‖n−2u0(x) ≤ 3M1

2
.

Finally, the function x 7→ ‖x‖n−2u0(x) is bounded below and above by respectively, B1 and
3M1

2 in the exterior domain GL1
, with L1 := max{L1, L̃1, R}. In the same way we can obtain the

similar conclusion for v0. To sum up, we have shown that the solution (u0, v0) of our problem
is minimal.

Example 2.3. Let us consider the following problem{
∆u(x) + 1

8 (e
u(x)+v(x) + u3(x)+v3(x)

(4−u(x))(5−v(x)) )
(
‖x‖4 + 1

)−1
+ g1(‖x‖)x · ∇u(x) = 0

∆v(x) + (u
3
2 (x) + v

4
3 (x) + 1)

(
‖x‖6 + 1

)−1
+ g2(‖x‖)x · ∇v(x) = 0

with asymptotic conditions

lim
‖x‖→∞

u(x) = 0 and lim
‖x‖→∞

v(x) = 0,

for x ∈ GR, where GR =
{

x ∈ R3, ‖x‖ > R
}

and g1(x) = 1
‖x‖k− 1

2
and g2(x) = 1

‖x‖l− 1
3

with

k ≥ 3 and l ≥ 5.
It is obvious that for gi, i = 1, 2, (A1) holds. Moreover, in our case

f1(x, u, v) =
1
8

(
eu+v +

u3 + v3

(4− u)(5− v)

)(
‖x‖4 + 1

)−1

and
f2(x, u, v) =

(
u

3
2 + v

4
3 + 1

) (
‖x‖6 + 1

)−1

satisfy (A3) for d1 = d2 = 2. Simple calculations allow us to state that for r ≥ 1,

sup
(u,v)∈[0,d1]×[0,d2]

sup
‖x‖=r

f1(x, u, v) ≤ 8r−4
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and
sup

(u,v)∈[0,d1]×[0,d2]

sup
‖x‖=r

f2(x, u, v) ≤ 7r−6.

Taking f̃1(r) := 8r−4 and f̃2(r) := 7r−4 we have∫ ∞

1
r2 f̃i(r)dr ≤ 8.

Thus (A2) also holds. Finally, Theorem 1.2 leads to the existence of at least one positive
solution (u0, v0) of (1.1) such that u0(x) ≤ 2 and v0(x) ≤ 2. In order to prove that (u0, v0)

is minimal we have to show that (A4) holds. To this effect we note that for a certain L1 > 1
sufficiently large and A1 ∈

(
0, 1

8

)
, we get for all x ∈ R3 such that ‖x‖ > L1,

f1(x, u, 0)− A1g1(x)‖x‖−1 ≥
‖x‖k+1 − 1

2‖x‖ − 8A1‖x‖4 − 8A1

8 (‖x‖4 + 1)
(
‖x‖k − 1

2

)
‖x‖

> 0.

Similarly we can show the existence of L2 > 1 and A2 ∈ (0, 1) such that for all x ∈ R3 such
that ‖x‖ > L2,

f2(x, 0, v)− A2g2(x)‖x‖−1 ≥
‖x‖l+1 − 1

3‖x‖ − A2‖x‖6 − A2

(‖x‖6 + 1)
(
‖x‖l − 1

3

)
‖x‖

> 0.

Thus (A4) is also satisfied. This fact guarantees that (u0, v0) is the minimal solution of our
problem.

3 Final remarks

Remark 3.1. As in [22] we can formulate and prove the results of Theorem 1.2 also in the case
when (A3) is replaced by the following condition

(A3’) f1 is continuously differentiable in u and nonincreasing in v and f2 is continuously differentiable
in v and nonincreasing in u in GR × [0, d1]× [0, d2].

The difference is associated with the starting point of the monotone procedure. In this case we
have to consider a super-subsolution (u, v) and next a sub-supersolution (u, v) of our problem
to obtain two sequences which give us solutions on bounded domains.

In consequence we can prove the following result analogous to Theorem 2.2.

Theorem 3.2. Suppose that (A1), (A2) and (A3’) hold. Then (1.1) possesses a positive solution (u0, v0)

in GR. If we assume additionally

(A4’) there exist A1, A2 > 0 and L1, L2 > 1 such that

f1(x, u, d2) ≥ A1(n− 2)g1(x)‖x‖2−n for all u ∈ [0, d1] and ‖x‖ > L1,

f2(x, d1, v) ≥ A2(n− 2)g2(x)‖x‖2−n for all v ∈ [0, d2] and ‖x‖ > L2.

then the solution (u0, v0) is minimal.
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4 Appendix

As in [22], we start with the existence of solutions on bounded domains.

Lemma 4.1. Let Ωk := {x ∈ Rn, R < ‖x‖ < R + k} , where k ∈ N := {1, 2, . . . }. Assume that
conditions (A1)–(A3) hold and suppose that (u, v) and (u, v) are, respectively, a super-supersolution
and a sub-subsolution of (1.1)–(1.2) such that 0 ≤ u ≤ u ≤ d1 and 0 ≤ v ≤ v ≤ d2 on GR. Then
there exist vector functions (uk, vk) and (uk, vk) ∈ C2+α(Ωk) × C2+α(Ωk) satisfying (1.1) in Ωk.
Moreover u ≤ uk ≤ uk ≤ u and v ≤ vk ≤ vk ≤ v.

Proof. Let us consider the following auxiliary system
∆u(x) + f1(x, u(x), v(x)) + g1(‖x‖)x · ∇u(x) = 0 in Ωk

∆v(x) + f2(x, u(x), v(x)) + g2(‖x‖)x · ∇v(x) = 0 in Ωk

u = ϕ1 and v = ϕ2 on ∂Ωk,

(4.1)

with ϕ1, ϕ2 ∈ C2+α
loc (GR) such that u ≤ ϕ1 ≤ u and v ≤ ϕ2 ≤ v on GR. By assumption (A3) we

state the existence of positive constants K1, K2 such that ∂ f1(x,u,v)
∂u + K1 ≥ 0 and ∂ f2(x,u,v)

∂v + K2 ≥
0 for all (x, u, v) ∈ Ωk × [0, d1]× [0, d2]. The starting point of the iteration procedure based on
the Sattinger’s schema is associated with super-supersolution of our problem. Precisely, we
take u0 = u and v0 = v and obtain the existence of a classical solution (u1, v1) of the linear
problem considered in Ωk :

(∆ + g1(‖x‖)x · ∇ − K1)u(x) = −( f1(x, u0(x), v0(x)) + K1u0(x))

(∆ + g2(‖x‖)x · ∇ − K2)v(x) = −( f2(x, u0(x), v0(x)) + K2v0(x))

u = ϕ1 and v = ϕ2 on ∂Ωk.

Since (u, v) is a super-supersolution of (1.1)–(1.2), it is easy to get

(∆ + g1(‖x‖)x · ∇ − K1)(u1(x)− u0(x)) ≥ 0.

Taking into account the fact that u1(x) = ϕ1(x) on ∂Ωk, we state, by the maximum principle,
u1(x) ≤ u0(x). Analogously we obtain v1(x) ≤ v0(x) in Ωk. Having a pair (um−1, vm−1) ∈
C2+α(Ωk)× C2+α(Ωk) we can iterate this process and obtain (um, vm)C2+α(Ωk)× C2+α(Ωk) as
a classical solution of the linear problem in Ωk

(∆ + g1(‖x‖)x · ∇ − K1)u(x) = −( f1(x, um−1(x), vm−1(x)) + K1um−1(x))

(∆ + g2(‖x‖)x · ∇ − K2)v(x) = −( f2(x, um−1(x), vm−1(x)) + K2vm−1(x))

u = ϕ1 and v = ϕ2 on ∂Ωk.

(4.2)

Let us note that for all m ∈ N,

um(x) ≤ um−1(x) and vm(x) ≤ vm−1(x) in Ωk. (4.3)

For m = 1, (4.3) was proved. Fix integer m ≥ 1. If we assume that um(x) ≤ um−1(x) and
vm(x) ≤ vm−1(x) in Ωk , the properties of f1 and f2 give two assertions: for all x ∈ Ωk,

(∆ + g1(‖x‖)x · ∇ − K1)(um+1(x)− um(x))

= −( f1(x, um(x), vm(x)) + K1um(x)) + f1(x, um−1(x), vm−1(x)) + K1um−1(x) ≥ 0,
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(∆ + g2(‖x‖)x · ∇ − K2)(vm+1(x)− vm(x))

= −( f2(x, um(x), vm(x)) + K2vm(x)) + f2(x, um−1(x), vm−1(x)) + K2vm−1(x) ≥ 0.

Applying the boundary conditions and again the maximum principle one infers um+1(x) ≤
um(x) and vm+1(x) ≤ vm(x) in Ωk. Finally, the induction principle allows us to state that for
all m ∈ N, (4.3) holds.

Taking the sub-subsolution of (1.1)–(1.2) in GR as a starting point of our procedure we can
use the same reasoning and construct another sequence {(um, vm)} ∈ C2+α(Ωk)× C2+α(Ωk).
Moreover, we can show that for all m ∈ N, um(x) ≥ um−1(x) and vm(x) ≥ vm−1(x) in Ωk.

Applying again properties of f1 and f2, the maximum principle and the induction, one
also proves the following chains of inequalities

u (x) ≤ u1(x) ≤ · · · ≤ um(x) ≤ um+1(x) ≤ · · ·
≤ um+1(x) ≤ um(x) ≤ · · · ≤ u1(x) ≤ u (x) ,

v (x) ≤ v1(x) ≤ · · · ≤ vm(x) ≤ vm+1(x) ≤ · · ·
≤ vm+1(x) ≤ vm(x) ≤ · · · ≤ v1(x) ≤ v (x) .

(4.4)

To sum up, we have constructed two monotonic and bounded sequences {(um, vm)} and
{(um, vm)}. They are both pointwisely convergent in Ωk to some vector functions

(
uk, vk)

and
(
uk, vk) respectively. Our task is now to show that

(
uk, vk) and

(
uk, vk) are solutions

of (4.1).
The standard reasoning, based on the Lp-estimates of Agmon–Douglis–Nirenberg, allows

us to prove the existence of C > 0 such that for all m ∈ N,

‖um‖C2+α(Ωk)
≤ C and ‖vm‖C2+α(Ωk)

≤ C

(see [22] or [25] for details). Therefore the compact embedding C2+α(Ωk) × C2+α(Ωk) ↪→
C2(Ωk) × C2(Ωk), implies that {(um, vm)} tends to

(
uk, vk) in C2(Ωk) × C2(Ωk), and conse-

quently,
(
uk, vk) is a solution of (4.1). Analogously we can show that

(
uk, vk) satisfies (4.1). By

(4.4) we get u ≤ uk ≤ uk ≤ u and v ≤ vk ≤ vk ≤ v on Ωk.

Proof of Theorem 1.2. Applying Lemma 4.1 with ϕ1 = u and ϕ2 = v, we state for each k ∈ N,
the existence of a solution

(
uk, vk) of the problem

∆u(x) + f1(x, u(x), v(x)) + g1(‖x‖)x · ∇u(x) = 0 in Ωk

∆v(x) + f2(x, u(x), v(x)) + g2(‖x‖)x · ∇v(x) = 0 in Ωk

u = u and v = v on ∂Ωk,

with Ωk := {x ∈ Rn, R < ‖x‖ < R + k} , such that

u ≤ uk ≤ u and v ≤ vk ≤ v on Ωk. (4.5)

Now we investigate the properties of the sequence {
(
uk, vk)}. Employing the reasoning similar

to that in the proof of Lemma 4.1 one proves that for any integer fixed k0 > 0 and k > k0 + 1,
this sequence is bounded in C2+α(Ωk0)× C2+α(Ωk0), namely there exists a positive constant
C1 such that for all k > k0 + 1,

‖uk‖C2+α(Ωk0 )
≤ C1 and ‖vk‖C2+α(Ωk0 )

≤ C1.



Minimal solutions of elliptic systems 11

In the next step we use the compact embedding C2+α(Ω1)× C2+α(Ω1) into C2(Ω1)× C2(Ω1),
which allows us to state the existence of a subsequence

{(
ukl1 , vkl1

)}
of
{(

uk, vk)} which
tends to a certain

(
û1, v̂1) in C2(Ω1)× C2(Ω1). It is obvious that

(
û1, v̂1) satisfies (1.1) in Ω1.

Moreover, u ≤ û1 ≤ u and v ≤ v̂1 ≤ v in Ω1 and û1 = u and v̂1 = u on {x ∈ Rn, ‖x‖ = R}.
Applying the same reasoning we obtain the subsequence

{(
ukl2 , vkl2

)}
of
{(

ukl1 , vkl1
)}

such
that

{(
ukl2 , vkl2

)}
converges in C2(Ω2)× C2(Ω2) to

(
û2, v̂2) being a solution of (1.1) in Ω2. We

also have u ≤ û2 ≤ u, v ≤ v̂2 ≤ u in Ω2 and û2 = u and v̂2 = v on {x ∈ Rn, ‖x‖ = R}.
Iterate this process for each m ∈ N, we construct a sequence {

(
uklm , vklm

)
} which is convergent

in C2(Ωm) × C2(Ωm) and such that
{(

uklm , vklm
)}

is a subsequence of
{(

uklm−1 , vklm−1
)}

. Let
ûm(x) := limlm→∞ uklm (x) and v̂m(x) := limlm→∞ vklm (x) in Ωm. To sum up, one can state that
(ûm, v̂m) is a solution of (1.1) in Ωm, u ≤ ûm ≤ u and v ≤ v̂m ≤ v in Ωm and ûm = u and
v̂m = v on {x ∈ Rn, ‖x‖ = R}. By the construction we know that ûm|Ωm−1 = ûm−1 and
v̂m|Ωm−1 = v̂m−1. Finally, we define U, V : GR → R in the following way

U(x) := ûm and V(x) := v̂m in Ωm.

Then (U, V) ∈ C2+α
loc (GR)× C2+α

loc (GR) and satisfies (1.1) in GR. Moreover we have u ≤ U ≤ u,
v ≤ V ≤ v in Ωm, U = u and V = v on {x ∈ Rn, ‖x‖ = R}. The asymptotics of u and v
implies that lim‖x‖→∞ U(x) = 0, lim‖x‖→∞ V(x) = 0.
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