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Abstract. There exists a well-developed stability theory for many classes of functional-
differential equations and only a few results on their instability. One of the aims of this
paper is to fill this gap. Explicit tests for instability of linear delay differential equations
of the second order with damping terms are obtained.
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1 Introduction

The ordinary second order differential equation

x′′(t) + p(t)x(t) = 0, t ∈ [0, ∞), (1.1)

with a nonnegative coefficient p(t) is one of the classical objects in a qualitative theory of linear
differential equations. In spite of the quite simple shape of this equation it appears to pro-
vide a variety of different oscillatory and asymptotic properties to its solutions. Asymptotic
properties of the solutions have been studied in the classical monographs by R. Bellman [5],
G. Sansone [26], P. Hartman [13] and I. T. Kiguradze and T. A. Chanturia [17]. The latter states
the current situation in the subject and at the same time encourages further investigation.
Some of the most important results are various generalizations of oscillation and asymptotic
results to equations with delayed argument.

The second order delay differential equation (DDE)

x′′(t) + p(t)x(t− τ(t)) = 0, t ∈ [0,+∞), (1.2)

has its own history. Oscillation and asymptotic properties of this equation were consid-
ered in the well known monographs by A. D. Myshkis [22], S. B. Norkin [24], G. S. Ladde,
V. Lakshmikantham and B. G. Zhang [21], I. Győri and G. Ladas [16], L. N. Erbe, Q. Kong
and B. G. Zhang [12].
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A delay equation is generally known to inherit oscillation properties of the corresponding
ordinary equation. For example, it was proven by J. J. A. M. Brands [7] that for each bounded
delay τ(t), equation (1.2) is oscillatory if and only if the corresponding ordinary differential
equation (1.1) is oscillatory. Thus, the following question arises: are the asymptotic properties
of an ordinary differential equation inherited by a delay equation? The answer is negative.
A. D. Myshkis [22] proved that there exists an unbounded solution of the equation

x′′(t) + px(t− ε) = 0, t ∈ [0,+∞),

for each couple of positive constants p and ε. The problem of unboundedness of solutions in
the case of non-constant coefficients was formulated in [22] as one that needs to be solved. The
first results on this subject were obtained by A. Domoshnitsky in [10]: if there exists a positive
constant ε such that p(t) > ε, τ(t) ≥ ε for t ≥ 0, then there exists an unbounded solution to
equation (1.2). A necessary and sufficient condition for the boundedness of all solutions to
equation (1.2) in the case of bounded and nondecreasing p(t) ≥ 0 is the following [10]

∞∫
τ(t)dt < ∞.

It was proved in [23] that if 0 ≤ τ(t) ≤ τ and tp(t) is an integrable function on the semi-axis
then equation (1.2) is unstable.

In this paper we consider instability problems for DDE of the second order with damping
terms. Various stability and instability results for autonomous DDE of the second order with
damping terms were obtained in [9]. Other stability and instability results for this class of
equations can be found in [8, 28] and also in monographs [18, 19]. All of these results were
obtained by analysis of the roots of the characteristic equation. Concerning stability of second
order equations, the recent papers [2] (equations with damping terms) and [11] (equations
without damping term) can be noted. Results on oscillation and asymptotic properties for
functional differential equations of the second order can be found in [3, 15, 20, 25, 29] (see also
references therein).

There are many mathematical models described by delay differential equations of the
second order with damping terms [19]. In the case of instability, one of the stabilizing methods
is used. Before an application of such methods it is necessary to check that this equation
is unstable. So stability/instability investigations are an important part of the theory and
applications of DDE.

To the best of our knowledge the problem of instability for non-autonomous DDE of the
second order with damping terms, which is the aim of this paper, has not been studied
before. For such equations, the method of analysis of the characteristic equation does not
work and researchers need other methods for analysis. We consider several methods, in
particular perturbations by asymptotically small terms, applications of properties of non-
oscillatory equations, reducing a differential equation of the second order to a system of two
equations of the first order and some other approaches. Some of these methods are new and
can be used to study instability for other classes of functional differential equations.

We discuss several open problems on instability in the last section of this paper.
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2 Preliminaries

We consider the following equation

ẍ(t) +
m

∑
k=1

ak(t)ẋ(gk(t)) +
l

∑
k=1

bk(t)x(hk(t)) = 0, t ≥ 0, (2.1)

where

(a1) ak, bk are measurable essentially bounded function on [0, ∞), gk(t) ≤ t, hk(t) ≤ t, t ≥ 0
are measurable delay functions and

(a2) lim sup
t→∞

(t− gk(t)) < ∞, lim sup
t→∞

(t− hk(t)) < ∞.

Together with (2.1) consider for each t0 ≥ 0 an initial value problem

ẍ(t) +
m

∑
k=1

ak(t)ẋ(gk(t)) +
l

∑
k=1

bk(t)x(hk(t)) = f (t), t > t0, (2.2)

x(t) = ϕ(t), ẋ(t) = ψ(t), t < t0, x(t0) = x0, ẋ(t0) = x
′
0. (2.3)

We also assume that the following hypothesis holds

(a3) f : [t0, ∞) → IR is a Lebesgue measurable locally essentially bounded function, ϕ :
(−∞, t0) → IR, ψ : (−∞, t0) → IR are continuous bounded functions, x0, x

′
0 are real

numbers.

Definition 2.1. Suppose a function x : [t0, ∞)→ R is differentiable and ẋ is a locally absolutely
continuous function. Let us extend the functions x and ẋ for t ≤ t0 by the help of equalities
(2.3). We say that so extended function x is a a solution of problem (2.2), (2.3) if it satisfies
equation (2.2) for almost every t ∈ (t0, ∞) .

Let functions x1 and x2 be solutions of (2.1) for t ≥ t0 with the conditions x1(t) = x2(t) = 0,
t < t0; x1(t0) = 1, x

′
1(t0) = 0, x2(t0) = 0, x

′
2(t0) = 1.

The fundamental solution X(t, s) is the solution of (2.1) for t ≥ s ≥ 0 with the initial
conditions

ẋ(t) = x(t) = 0, t < s; x(s) = 0, ẋ(s) = 1.

It is evident that x2(t) = X(t, t0).

Lemma 2.2 ([4]). Let (a1)–(a3) hold. Then there exists one and only one solution of problem (2.2),
(2.3) that can be presented in the form

x(t) = x1(t)x0 + x2(t)x
′
0 +

∫ t

t0

X(t, s) f (s)ds

−
∫ t

t0

X(t, s)

[
m

∑
k=1

ak(s)ψ(gk(s)) +
l

∑
k=1

bk(s)ϕ(hk(s))

]
ds, t ≥ t0

where ϕ(hk(s)) = 0 if hk(s) > t0 and ψ(gk(s))) = 0 if gk(s) > t0.
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Definition 2.3. Equation (2.1) is uniformly exponentially stable, if there exist M > 0, µ > 0, such
that the solution of problem (2.2), (2.3) with f ≡ 0 has the estimate

max{|ẋ(t)|, |x(t)|} ≤ M e−µ(t−t0)

[
sup
t<t0

|ϕ(t)|+ sup
t<t0

|ψ(t)|
]

, t ≥ t0,

where M and µ do not depend on t0.
We say that the fundamental solution has an exponential estimate if there exist positive numbers

λ > 0, N > 0 such that
|X(t, s)| ≤ Ne−λ(t−s), t ≥ s ≥ t0.

It is known that for bounded delays (i.e. (a2) holds), the existence of an exponential esti-
mate for the fundamental solution is equivalent to exponential stability and also it is equiva-
lent to uniform asymptotic stability [14].

Definition 2.4. We will say, that equation (2.1) is not exponentially stable (exponentially un-
stable), if the fundamental solution of the equation has no exponential estimate.

In particular equation (2.1) is not exponentially stable if it has a solution which does not
tend to zero as t→ ∞.

Lemma 2.5 ([1, 16]). Assume that∫ t

max{t0,g(t)}

m

∑
k=1

a+k (s)ds ≤ 1
e

, t ≥ t0 ≥ 0, (2.4)

where g(t) = mink gk(t), gk(t) ≤ t, t ≥ t0. Then the fundamental solution Z(t, s) of the equation

ẋ(t) +
m

∑
k=1

ak(t)x(gk(t) = 0, t ≥ t0

is positive, i.e.
Z(t, s) > 0, t ≥ s ≥ t0.

Lemma 2.6 ([1, Theorem 8.3]). Suppose the fundamental solution X(t, s) of equation (2.1) is non-
negative and ck(t) ≤ ak(t), dk(t) ≤ bk(t), t ≥ t0. Then for the fundamental solution Y(t, s) of the
equation

ÿ(t) +
m

∑
k=1

ck(t)ẏ(gk(t)) +
l

∑
k=1

dk(t)y(hk(t)) = 0

the following inequality holds Y(t, s) ≥ X(t, s) ≥ 0, t ≥ s ≥ t0.

3 Asymptotically small coefficients

Definition 3.1. We will say that a locally measurable scalar function a is asymptotically small
if limt→∞

∫ t+1
t |a(s)|ds = 0. A matrix-function A is asymptotically small if all elements of the

matrix are asymptotically small.

In particular, a function a is asymptotically small if at least one of the following conditions
hold:
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a) limt→∞ a(t) = 0,

b)
∫ ∞

t0
|a(s)|ds < ∞.

Consider the following equation which is a perturbation of equation (2.1).

ẍ(t) +
m

∑
k=1

ak(t)ẋ(gk(t)) +
l

∑
k=1

bk(t)x(hk(t)) +
m̃

∑
k=1

ãk(t)ẋ(g̃k(t)) +
l̃

∑
k=1

b̃k(t)x(h̃k(t)) = 0 (3.1)

where for the parameters of (3.1) conditions (a1)–(a2) hold.

Theorem 3.2. Assume equation (2.1) is not exponentially stable and ãk and b̃k are asymptotically
small. Then equation (3.1) is not exponentially stable.

Proof. For a vector linear delay differential equation it is known [14] that exponential stability
is preserved under asymptotically small perturbations. Hence exponential instability of this
equation is also preserved under asymptotically small perturbations. Equations (2.1) and
(3.1) can be written in a vector form. Hence exponential instability of equation (2.1) implies
exponential instability of equation (3.1).

Corollary 3.3. If there exists

lim
t→∞

a(t) = a ∈ IR, lim
t→∞

b(t) = b > 0

then the equation
ẍ(t) + a(t)ẋ(t− σ)− b(t)x(t− τ) = 0 (3.2)

is not exponentially stable.

Proof. Consider the autonomous equation

ẍ(t) + aẋ(t− σ)− bx(t− τ) = 0. (3.3)

The characteristic equation of (3.3) is

f (λ) := λ2 + aλe−λσ − be−λτ = 0.

We have f (0) = −b < 0, limλ→∞ f (λ) = +∞. Hence equation (3.3) has an unbounded solution
x(t) = eλt, λ > 0. Equation (3.2) can be rewritten in the form

ẍ(t) + aẋ(t− σ)− bx(t− τ) + (a(t)− a)ẋ(t− σ)− (b(t)− b)x(t− τ) = 0,

where
lim
t→∞

(a(t)− a) = lim
t→∞

(b(t)− b) = 0.

By Theorem 3.2 equation (3.2) is not exponentially stable.

Corollary 3.4. Assume that bk, k = 1, . . . , l are asymptotically small. Then equation (2.1) is not
exponentially stable.

Proof. The equation

ẍ(t) +
m

∑
k=1

ak(t)ẋ(gk(t)) = 0

has a constant solution x(t) ≡ 1, hence by Theorem 3.2 equation (2.1) is not exponentially
stable.
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The equation

ẍ(t) +
l

∑
k=1

bk(t)x(hk(t)) = 0 (3.4)

without damping term is not exponentially stable if any function bk is asymptotically small.
In the next corollary we will improve this statement.

Corollary 3.5. If ∑l
k=1 bk is asymptotically small then equation (3.4) is not exponentially stable.

Proof. Rewrite equation (3.4)

ẍ(t) +
l

∑
k=1

bk(t)x(t)−
l

∑
k=1

bk(t)(x(t)− x(hk(t))) = 0,

or

ẍ(t)−
l

∑
k=1

bk(t)
∫ t

hk(t)
ẋ(s)ds +

l

∑
k=1

bk(t)x(t) = 0. (3.5)

The equation

ẍ(t)−
l

∑
k=1

bk(t)
∫ t

hk(t)
ẋ(s)ds = 0

has a constant solution x(t) ≡ 1 hence it is not exponentially stable. Then equation (3.5) is not
exponentially stable.

4 Application of positivity of the fundamental solution

Theorem 4.1. Assume that the fundamental solution Z(t, s) of the equation

ż(t) +
m

∑
k=1

ak(t)z(gk(t)) = 0 (4.1)

is positive and bk(t) ≤ 0, t ≥ t0, k = 1, . . . , l. Then (2.1) is not exponentially stable.

Proof. Consider the following problem

ÿ(t) +
m

∑
k=1

ak(t)ẏ(gk(t)) = 0, t > t0, (4.2)

y(t) = ẏ(t) = 0, t < t0; y(t0) = 0, ẏ(t0) = 1.

It is easy to see, that the solution y of this problem has the form

y(t) =
∫ t

t0

Z(s, t0)ds, t ≥ t0.

Hence y(t) ≥ 0, t ≥ t0. But y(t) = Y(t, t0) where Y(t, s) is the fundamental solution of (4.2).
Hence the fundamental solution of (4.2) is nonnegative.

Since constants are solutions of (4.2) then this equation is not exponentially stable. Equa-
tion (4.2) one can write in the form

ÿ(t) +
m

∑
k=1

ak(t)ẏ(gk(t)) +
l

∑
k=1

0 · y(hk(t)) = 0. (4.3)

Since bk(t) ≤ 0, t ≥ t0 then by Lemma 2.6 X(t, s) ≥ Y(t, s) ≥ 0, t ≥ s ≥ t0, where X(t, s) is the
fundamental solution of (2.1). Then (2.1) is not exponentially stable.



Instability, second order delay equations 7

Corollary 4.2. Suppose condition (2.4) holds and bk(t) ≤ 0, t ≥ t0, k = 1, . . . , l. Then (2.1) is not
exponentially stable.

Proof. Lemma 2.5 implies that the fundamental solution of equation 4.1 is positive.

Corollary 4.3. Suppose bk(t) ≤ 0, t ≥ t0, k = 1, . . . , l. Then the equation

ẍ(t) + a(t)ẋ(t) +
l

∑
k=1

bk(t)x(hk(t)) = 0 (4.4)

is not exponentially stable.

Proof. The fundamental solution of the ordinary differential equation

ż(t) + a(t)z(t) = 0, t ≥ t0,

is positive for any function a.

5 Equation with a negative damping term

In the previous section we obtained instability conditions of equation (2.1) where bk(t) ≤ 0,
t ≥ t0. The asymptotic behavior of equation (2.1) may be very complicated when ak(t) ≤ 0,
t ≥ t0. In [19], page 241, the following autonomous equation was studied

ẍ + aẋ(t− 1) + bx(t) = 0.

It was shown that for any a, |a| < π there exist infinitely many intervals (0, b1), (b1, b2), . . . for
parameter b such that the equation switches stability to instability and vice versa.

Example 5.1. The equation

ẍ(t)− π

2
ẋ(t− 1) + πx(t) = 0

is unstable, but the equation

ẍ(t)− π

2
ẋ(t− 1) + π2x(t− 1) = 0

is exponentially stable.

We consider first the following equation

ẍ(t)− a(t)ẋ(t) +
m

∑
k=1

bk(t)x(hk(t)) = 0 (5.1)

where a(t) ≥ 0, t ≥ t0.

Theorem 5.2. Let there exist an absolutely continuous function u such that 0 ≤ u(t) ≤ a(t), t ≥ t0

and

− u̇(t) + a(t)u(t)− u2(t)−
m

∑
k=1

b+k (t)e
−
∫ t

hk(t)
u(s)ds ≥ 0 (5.2)

for t ≥ t0. Then equation (5.1) is not exponentially stable.
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Proof. Suppose that equation (5.1) is exponentially stable. By condition (a2) the delay functions
t− hk(t) are bounded hence exponential stability is equivalent (for some N > 0, λ > 0) to the
following inequality

|X(t, s| ≤ Ne−λ(t−s), t ≥ s ≥ t0, (5.3)

where X(t, s) is the fundamental function of equation (5.1).
Consider the initial value problem

ẍ(t)− a(t)ẋ(t) +
m

∑
k=1

bk(t)x(hk(t)) = f (t), t > t0,

ẋ(t) = x(t) = 0, t ≤ t0,

(5.4)

where f is a bounded function on [t0, ∞) and greater than some positive number ε. Lemma 2.2
implies that for the solution x of the problem we have

x(t) =
∫ t

t0

X(t, s) f (s)ds.

Inequality (5.3) and the boundedness of f imply that solution x of problem (5.4) is a bounded
function on [t0, ∞).

Suppose u(t), a(t) ≥ u(t) ≥ 0 is a solution of (5.2) and z(t) = ẋ(t)− u(t)x(t), z(t0) = 0.
Hence

x(t) =
∫ t

t0

e
∫ t

s u(ξ)dξz(s)ds, ẋ = z + ux, ẍ = ż + uz + (u̇ + u2)x.

We have after substitution of x, ẋ, ẍ in (5.4):

ż(t)− (a(t)− u(t))z(t)

=

[
−u̇(t) + a(t)u(t)− u2(t)−

m

∑
k=1

b+k (t)e
−
∫ t

hk(t)
u(s)ds

] ∫ t

t0

e
∫ t

s u(τ)dτz(s)ds

+
m

∑
k=1

b+k (t)
∫ t

hk(t)
e
∫ t

hk(t)
u(τ)dτz(s)ds +

m

∑
k=1

b−k (t)
∫ hk(t)

t0

e
∫ hk(t)

s u(τ)dτz(s)ds + f (t).

Inequality (5.2) implies that ż(t)− (a(t)− u(t))z(t) ≥ f (t). We have f (t) ≥ ε, t ≥ t0. Then

z(t) ≥ ε
∫ t

t0

e
∫ t

s (a(τ)−u(τ))dτds, t ≥ t0,

and therefore

x(t) ≥ ε
∫ t

t0

e
∫ t

s u(τ)dτ
∫ s

t0

e
∫ s

ξ (a(τ)−u(τ))dτdξds ≥ ε
∫ t

t0

∫ s

t0

dξds = ε
(t− t0)2

2
.

It is evident that x is an unbounded function. We have a contradiction with the assumption,
hence equation (5.1) is not exponentially stable.

Corollary 5.3. Let b+k (t) ≤ b̃k, a(t) ≥ ã > 0, t− hk(t) ≥ τk, t ≥ t0, and

m

∑
k=1

b̃ke−
τk ã
2 ≤ ã2

2
.

Then equation (5.1) is not exponentially stable.
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Proof. u(t) ≡ ã
2 is a solution of inequality (5.2).

Consider now an equation with delay in the damping term

ẍ(t)− a(t)ẋ(g(t)) + b(t)x(h(t)) = 0, (5.5)

where

a(t) ≥ ã > 0, |b(t)| ≤ b̃, t− g(t) ≤ σ, σ ≥ 0, t− h(t) ≥ τ ≥ 0, t ≥ t0.

Theorem 5.4. Assume there exists λ > 0 such that the following inequality holds

λ2 − λe−λσ ã + e−λτ b̃ ≤ 0. (5.6)

Then equation (5.5) is exponentially unstable.

Proof. Suppose λ > 0 is a solution of (5.6). Then the function x(t) = eλt is a solution of the
following problem

ẍ(t)− a(t)ẋ(g(t)) + b(t)x(h(t)) = f (t), (5.7)

where

x(t) = eλt, ẋ(t) = λeλt, t ≤ t0, x0 = x(t0) = eλt0 , x
′
0 = ẋ(t0) = λeλt0 ,

f (t) = eλt(λ2 − λe−λ(t−g(t))a(t) + e−λ(t−h(t)b(t)).

By Lemma 2.2

eλt = x1(t)x0 + x2(t)x
′
0 +

∫ t

t0

X(t, s) f (s)ds

−
∫ t

t0

X(t, s)[a(s)ψ(g(s)) + b(s)ϕ(h(s))]ds, t ≥ t0,
(5.8)

where X(t, s) is the fundamental solution of equation (5.5). Suppose that equation (5.5) is
exponentially stable and |X(t, s)| ≤ Ne−µ(t−s), t ≥ s ≥ t0, N > 0, µ > 0. Then limt→∞ x1(t) =
limt→∞ x2(t) = 0 and the second integral in (5.8) also tends to zero since ψ(g(s)) = ϕ(h(s)) =
0, t > t0 + max{σ, τ}.

For the function f (t) we have

f (t) ≤ eλt
(

λ2 − λe−λσ ã + e−λτ b̃
)

, t ≥ t0.

Hence for the first integral in (5.8) we have∫ t

t0

X(t, s) f (s)ds ≤ eλt
(

λ2 − λe−λσ ã + e−λτ b̃
) N

λ + µ
≤ 0.

We have a contradiction, since the left-hand side of (5.8) is a unbounded positive function, but
the right-hand side is non-positive for t sufficiently large.

Thus equation (5.5) is exponentially unstable.

Corollary 5.5. Assume the following inequality holds

ã
σe
≥ 1

σ2 + b̃e−
τ
σ .

Then equation (5.5) is exponentially unstable.
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Proof. λ = 1
σ is a solution of inequality (5.6).

Example 5.6. By Corollary 5.5 the following equation

ẍ(t)− 4ẋ(t− 1) + bx(t− 1) = 0

is exponentially unstable for b < 4− e ≈ 1.28. This result is supported numerically (MAT-
LAB).

6 Reducing to a system of two first order equations

Consider the autonomous system

ẋ(t) =
m

∑
k=1

Akx(t− τk), (6.1)

where Ak, k = 1, . . . , m are constant n× n matrices, τk ≥ 0, k = 1, . . . , m.

Lemma 6.1 ([27]). If the determinant det(−∑m
k=1 Ak) < 0, then system (6.1) is unstable.

To apply Lemma 6.1 consider the following autonomous equation

ẍ(t) +
m

∑
k=1

ak ẋ(t− δk) +
l

∑
k=1

bkx(t− τk) = 0, (6.2)

where δk ≥ 0, τk ≥ 0.

Theorem 6.2. If ∑l
k=1 bk < 0, then equation (6.2) is unstable.

Proof. Denote ẋ = x1, x = x2, x = {x1, x2}T,

A0 =

(
0 0
1 0

)
, Ak =

(
−ak 0

0 0

)
, k = 1, . . . , m,

Bk =

(
−bk 0

0 0

)
, k = 1, . . . , l.

Then equation (6.2) can be written in the form form

ẋ = A0x +
m

∑
k=1

Akx(t− δk) +
l

∑
k=1

Bkx(t− τk). (6.3)

We have
m

∑
k=0

Ak +
l

∑
k=1

Bk =

(
−∑m

k=1 ak −∑l
k=1 bk

1 0

)
,

then

det

(
−
(

m

∑
k=0

Ak +
l

∑
k=1

Bk

))
=

l

∑
k=1

bk < 0.

By Lemma 6.1 system (6.3) is unstable. Hence equation (6.2) is unstable.
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7 Discussion and topics for a future research

For instability we know very little even for the simple nonautonomous equation

ẋ(t) + b(t)x(h(t)) = 0. (7.1)

We know that equation (7.1) is not exponentially stable if b is asymptotically small or b(t) ≤ 0,
t ≥ t0. We do not know if the last condition can be replaced by an integral one:

lim sup
t→∞

∫ t+1

t
b(s)ds ≤ 0.

Also it is known that if b(t) ≥ b0 > 0, t ≥ t0 and

lim sup
t→∞

∫ t

h(t)
b(s)ds <

3
2

then equation (7.1) is exponentially stable. But we do not know if there exists b0 > 3
2 such that

a condition

lim inf
t→∞

∫ t

h(t)
b(s)ds > b0

implies the instability of equation (7.1).
In this paper we obtain several instability conditions for linear delay differential equations

of the second order assuming that all or part of the coefficients are asymptotically small
and/or negative. We suppose that the results of the paper can be improved or extended for
a more general class of equations. Bellow we present some of such problems for a future
research.

1. Prove or disprove that equation 2.1 is exponentially unstable if ∑l
k=1 bk(t) ≤ b0 < 0,

t ≥ t0.

2. Prove or disprove that there exists a0 < 0 such that the condition ∑m
k=1 ak(t) < a0, t ≥ t0

implies exponential instability of equation (2.1).

3. Derive sufficient conditions of asymptotic/exponential instability for nonlinear equa-
tions

ẍ(t) + f (t, ẋ(g(t))) + p(t, x(h(t))) = 0.
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