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Abstract. The present paper deals with non-real eigenvalues of regular Sturm–Liouville
problems with odd symmetry indefinite weight functions applying the two-parameter
method. Sufficient conditions for the existence and non-existence of non-real eigenval-
ues are obtained. Furthermore, an explicit expression of the bound of non-real eigen-
values will be given in the paper.
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1 Introduction

Consider the Sturm–Liouville problem

− y′′(x)− µy(x) = λw(x)y(x), x ∈ [−1, 1], (1.1)

with the Dirichlet boundary condition

y(1) = y(−1) = 0, (1.2)

where µ is real, λ is the spectral parameter and the weight function w is a real-valued inte-
grable function satisfying the following conditions.

For a.e. x ∈ [0, 1], w(x) is a monotone nonincreasing function.

For a.e. x ∈ [0, 1], w(x) = −w(−x) and w(x) > 0.
(1.3)

Set T(y) := −y′′. Then we can rewrite problems (1.1), (1.2) in Hilbert space L2[−1, 1], with
the inner product 〈 f , g〉 :=

∫ 1
−1 f g, as

Ty− µy = λWy, y ∈ D(T), (1.4)
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where D(T) is the natural domain of T, i.e.,

D(T) =
{

y ∈ L2[−1, 1] : y, y′ ∈ AC[−1, 1]. Ty ∈ L2[−1, 1], y(±1) = 0
}

.

Here AC[−1, 1] is the set of absolutely continuous functions on [−1, 1] and W is the operator
of multiplication by w. Then T is self-adjoint, bounded below with compact resolvents and W
is self-adjoint in Hilbert space L2[−1, 1].

Such problem is called to be right-indefinite if the weighted function w(x) changes signs on
[−1, 1] in the sense of

mes{x : w(x) > 0, x ∈ (−1, 1)} > 0 and mes{x : w(x) < 0, x ∈ (−1, 1)} > 0.

Hence, the problem (1.1), (1.2) or (1.4) is a right-indefinite problem. As a special case, the
existence of non-real eigenvalues for the Richardson equation [19, 20]

− y′′ − µy = λ sgn(x)y, x ∈ [−1, 1] (1.5)

associated to the Dirichlet conditions y(±1) = 0 was studied. Various authors have investi-
gated such kind of equations, see, for example, Volkmer [22, 23], Turyn [21], Fleckinger and
Mingarelli [9].

We can regard µ as another spectral parameter. Meanwhile, we call (λ, µ) is an eigenpair of
(1.1), (1.2) or (1.4). If λ ∈ R is fixed, then (1.1), (1.2) poses a regular Sturm–Liouville problem
with the eigenvalue parameter µ. It is well known that it possesses exactly one real eigenvalue
µ with an eigenfunction which has exactly n− 1 zeros in (−1, 1) for n = 1, 2, . . . We denote
this eigenvalue by µ = µn(λ), then µn(λ) is continuous on λ ∈ R (see Lemma 2.1). It also
follows from the classical Sturm–Liouville theory (cf. [26]) that µ1(λ) < µ2(λ) < µ3(λ) < · · · .
Clearly, µ2m−1(0) = ( 2m−1

2 )2π2, µ2m(0) = m2π2, m = 1, 2, 3, . . . At this time, we call the graph
of the continuous function µ = µn(λ) is the nth real eigencurve. If λ is non-real but µ is real, we
call such eigenpair (λ, µ) is a non-real eigenpair. If there exists an interval J ⊂ R for µ ∈ J ⊂ R

is fixed, there exists non-real eigenpair (λ, µ). Then we denote this non-real eigenvalue by
λ = λ(µ) and if λ(µ) is continuous on µ ∈ J ⊂ R, we call the graph of the function λ = λ(µ)

is the non-real eigencurve. For more details about eigencurve, we can see Binding and Volkmer
[6, 7], Binding and Browne [5].

Under the condition that the first two eigenvalues of

− y′′(x)− µy(x) = λy(x), x ∈ [−1, 1], y(±1) = 0 (1.6)

have contrary signs, papers [15,25] tell us that (1.1), (1.2) has exactly two non-real eigenvalues.
In more general conditions, Volkmer [23, pp. 233–234] studies the existence of non-real eigen-
values for the Richardson equation (1.5) associated to the Dirichlet conditions y(±1) = 0 (see
Corollary 3.12). For the general Sturm–Liouville problems, Mingarelli [14] made a summary
of regular indefinite Sturm–Liouville problems and posed many questions about the bounds
and the existence of the non-real eigenvalues. Recently, Behrndt, Philipp and Trunk [3] and
Behrndt, Schmitz and Trunk [4] studied the existence and obtained a bound on non-real
eigenvalues in a special singular case. For the regular case, Behrndt, Chen, Philipp and Qi [1],
Kikonko, Mingarelli [11] and other papers [10, 15, 24] got bounds on non-real eigenvalues.
The existences of non-real eigenvalues were studied in [2, 18, 25]. Papers [16, 17] gave some
applications about the non-real eigenvalues of indefinite Sturm–Liouville problems.

In this paper, we will prove the existence of non-real eigenvalues of problem (1.1), (1.2),
for µ ∈ (µ2m−1(0), µ2m(0)), m = 1, 2, . . . , (see Theorem 3.11). And a sufficient condition for the
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non-existence of non-real eigenvalues of (1.1), (1.2) is obtained in Theorem 4.3. The arrange-
ment of the present paper is as follows. The next section gives some preliminary knowledge
and some properties of real eigencurves. The main result of this paper, the existence of non-
real eigenvalues, Theorems 3.11 and its proof are stated in Section 3. Furthermore, an explicit
expression of non-real eigenvalues’ bound will be given in Lemma 3.2 of Section 3. The last
section, Section 4, gives the non-existence of non-real eigenvalues, Theorems 4.3 and its proof.

2 Properties of real eigencurves and preliminary knowledge

This section gives some preliminary knowledge and some properties of real eigencurves, µ =

µn(λ), n = 1, 2, 3, . . . In paper [6], Binding and Volkmer have made a comprehensive summary
and further research on real eigencurves about two-parameter Sturm–Liouville problems. The
following first five lemmas are from paper [6].

Lemma 2.1 (see [6, Theorem 2.1]). For every positive integer n, the real eigencurve µn(λ) is
(real-)analytic for λ ∈ R.

Lemma 2.2 (see [6, Theorem 2.2]). For every positive integer n,

lim
λ→∞

µn(λ)

λ
= − ess sup w and lim

λ→−∞

µn(λ)

λ
= − ess inf w,

where the ess sup w and ess inf w denote the essential supremum and essential infimum of w.

From this lemma and ess sup w > 0 and ess inf w < 0, we can get

µn(±∞) := lim
λ→±∞

µn(λ) = −∞. (2.1)

Lemma 2.3 (see [6, Theorem 2.5]). Consider m distinct real numbers λ1, . . . , λm and m (not neces-
sarily distinct) positive integers n1, . . . , nm such that µn1(λ1) = µn2(λ2) = · · · = µnm(λm) = µ∗. If
µ′nj

(λj)(λ
∗ − λj) ≤ 0 for some λ∗ and for all j = 1, . . . , m, then µm(λ∗) ≤ µ∗.

Lemma 2.4 (see [6, Corollary 2.6]). The intersection of any straight line in the (Re λ, µ)-plane with
the union of the first n eigencurves consists of at most 2n points for every positive integer n.

Lemma 2.5 (see [6, Theorem 2.9]). For λ ∈ R, the order of µn(λ) is at most 2n for every positive
integer n, i.e., µ

(2n)
n (λ) 6= 0.

We call the point λ0 is a critical point of u, if u′(λ0) = 0. If there are 2n critical points about
un(λ), then it can lead that there exists a point λ0 such that µ

(2n)
n (λ0) = 0, by the mean value

theorem. Applying (2.1) and Lemma 2.5 to real eigencurves, we can obtain the next result.

Lemma 2.6.

(i) For any λ ∈ R, µ′′1 (λ) < 0.

(ii) For every positive integer n, there are at most 2n− 1 critical points for un(λ).

Next, we will prove 0 is an extreme point of every eigencurve.

Lemma 2.7. 0 is a minimum (resp. maximum) of the real eigencurve µ2m(λ) (resp. µ2m−1(λ)) and
µ′′2m(0) > 0 (resp. µ′′2m−1(0) < 0), m = 1, 2, . . .
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Proof. Since (λ, µ) is an eigenpair of the linear problem (1.1) and (1.2), we can suppose the
corresponding eigenfunction φ(x; λ, µ) satisfying φ(−1) = 0, φ′(−1) = 1. φ(x; λ, µ) is contin-
uously differentiable with respect to (λ, µ), and µ := µ2m(λ) is an analytic function, hence we
can denote y1 := ∂y

∂λ , where y := y(x, λ) := φ(x; λ, µ). From y is an eigenfunction, we can get
y, y1 ∈ D(T).

Differentiating (1.1), (1.2) or (1.4) with respect to λ yields

(T − λW − µ(λ))y1 = (w + µ′(λ))y.

Note T and W are self-adjoint, hence 〈·, y〉, we obtain

〈(w + µ′(λ))y, y〉 = 〈(T − λW − µ(λ))y1, y〉 = 〈y1, (T − λW − µ(λ))y〉 = 0.

This gives

µ′(λ) = −〈wy, y〉
〈y, y〉 = −

∫ 1
−1 wy2∫ 1
−1 y2

.

Then µ′(0) = 0 since at this time y(x, 0) = A sin(mπx), where A is the constant satisfying
y′(x, 0)|x=−1 = 1, and y2(x, 0) = y2(−x, 0).

Repeating the differentiation, we have

(T − λW − µ(λ))y2 = 2(w + µ′(λ))y1 + µ′′(λ)y,

where y2 := ∂y1
∂λ . With the same method above, using µ′(0) = 0 we obtain

µ′′(0) = −2〈wy, y1〉
〈y, y〉 = −

2
∫ 1
−1 wyy1∫ 1
−1 y2

.

To find the second derivative we calculate y1(x, 0) by solving the linear inhomogeneous dif-
ferential equation

−y′′1 = wy + µ(0)y1, y1(−1) = y′1(−1) = 0,

where µ(0) = µ2m(0) = m2π2. Hence

y1(x, 0) =
−1
mπ

∫ x

−1
w(t) sin mπt sin mπ(x− t)dt

and the sign of µ′′(0) is the same as the sign of∫ 1

−1
w(x) sin mπx

∫ x

−1
w(t) sin mπt sin mπ(x− t)dtdx. (2.2)

Set l = −t, s = x, then we have∫ 0

−1

∫ −t

t
w(x) sin mπxw(t) sin mπt sin mπ(x− t)dxdt

=
∫ 1

0

∫ l

−l
w(s) sin mπsw(l) sin mπl sin mπ(s + l)dsdl

=
∫ 1

0

∫ l

−l
w(s) sin mπsw(l) sin2 mπl cos mπsdsdl

=
∫ 1

0

∫ x

−x
w(x) sin mπxw(t) sin mπt sin mπ(x− t)dtdx.
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Hence (2.2) can be written as∫ 1

−1
w(x) sin mπx

∫ x

−1
w(t) sin mπt sin mπ(x− t)dtdx

=
∫ 0

−1

∫ −t

t
w(x) sin mπxw(t) sin mπt sin mπ(x− t)dxdt

+
∫ 1

0

∫ x

−x
w(x) sin mπxw(t) sin mπt sin mπ(x− t)dtdx

= 2
∫ 1

0

∫ x

−x
w(x) sin mπxw(t) sin mπt sin mπ(x− t)dtdx

= 2
∫ 1

0

∫ x

−x
w(x) sin mπxw(t) sin mπt sin mπx cos mπtdtdx

=
∫ 1

0
w(x) sin2 mπx

∫ x

−x
w(t) sin 2mπtdtdx

= 2
∫ 1

0
w(x) sin2 mπx

∫ x

0
w(t) sin 2mπtdtdx.

From (1.3), we know that w is monotone non-increasing on (0, 1). Hence we can obtain∫ x
0 w(t) sin 2mπtdt > 0 for a.e. x ∈ (0, 1) and the formula (2.2) is greater than zero, i.e.,

µ′′2m(0) > 0. This fact and µ′2m(0) = 0 can lead that 0 is the minimum of the real eigencurve
µ2m(λ).

With the same method, we can get the sign of µ′′2m−1(0) is as same as the sign of

−
∫ 1

0
w(x) cos2(m− 1

2
)πx

∫ x

0
w(t) sin(2m− 1)πtdtdx.

Hence
∫ x

0 w(t) sin(2m− 1)πtdt > 0 for x ∈ (0, 1) and µ′′2m−1(0) < 0, by this and µ′2m−1(0) = 0,
we can get 0 is a maximum of real eigencurve µ2m−1(λ).

3 Existence of non-real eigenvalues

In this section, we will obtain sufficient conditions of the existence about non-real eigenvalues
of problem (1.1), (1.2). In Lemma 3.2, we will give an a priori bound on the modulus of the
largest non-real eigenvalue which might appear. For this purpose, the lower bound about µ

for any non-real eigenpair (λ, µ) must be given first.
It is well known that if the indefinite problem (1.1), (1.2), is a left-definite problem, then

the problem only has real eigenvalues (see [12,13,26]). Since T ≥ π2

4 , hence as µ ≤ µ1(0) = π2

4
the problem is left-definite and thus has real spectrum.

Lemma 3.1. λ(µ) ∈ R, for any µ ≤ µ1(0) = π2

4 .

This lemma means that if (λ, µ) is an eigenpair of (1.1), (1.2) and λ /∈ R, then µ > µ1(0) =
π2

4 . An explicit bound for the non-real eigenvalues will be obtained.

Lemma 3.2. Suppose (λ, µ) is an eigenpair of (1.1), (1.2) and λ /∈ R, then for µ > µ1(0) = π2

4 ,

|λ| ≤ M(µ) :=
16(2 + 1√

2
)µ2

w(1− 1
4µ )

. (3.1)

Clearly, M(µ) is a bounded function on any finite interval in (π2

4 , ∞).
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Proof. Let ϕ(x) be a normalized eigenfunction of (1.1), (1.2), i.e.,
∫ 1
−1 |ϕ|

2 = 1, corresponding

to the eigenpair (λ, µ). Without loss of generality, we assume that
∫ 1

0 |ϕ|
2 ≥ 1

2 . Multiplying
both sides of the equations in (1.1) by ϕ and integrating by parts on the interval [x, 1], we get

ϕϕ′(x) +
∫ 1

x
|ϕ′|2 = λ

∫ 1

x
w|ϕ|2 + µ

∫ 1

x
|ϕ|2, (3.2)

Im(ϕϕ′)(x) = Im λ
∫ 1

x
w|ϕ|2. (3.3)

Set x = −1 in (3.2), (3.3), we obtain∫ 1

−1
w|ϕ|2 = 0,

∫ 1

−1
|ϕ′|2 = µ

∫ 1

−1
|ϕ|2 = µ, (3.4)

by Im λ 6= 0 and ϕ(−1) = 0. Clearly µ > 0 by Lemma 3.1 and from the Cauchy inequality
and (3.4), for x ∈ [0, 1]

|ϕ(x)| =
∣∣∣∣∫ 1

x
ϕ′
∣∣∣∣ ≤ √1− x

(∫ 1

0
|ϕ′|2

) 1
2

≤
√

1− x
√

µ. (3.5)

This inequality together with (3.2) yields for x ∈ [0, 1]

|λ|
∫ 1

x
w|ϕ|2 ≤ √µ

√
1− x|ϕ′(x)|+ 2µ.

Integrating this inequality on the interval [0, 1] and using the Cauchy–Schwarz inequality
again, it follows that

|λ|
∫ 1

0
xw(x)|ϕ(x)|2dx = |λ|

∫ 1

0

∫ 1

x
w|ϕ|2 ≤ √µ

∫ 1

0

√
1− x|ϕ′(x)|dx + 2µ

≤ √µ

(∫ 1

0
(1− x)dx

∫ 1

0
|ϕ′|2

) 1
2

+ 2µ ≤
(

2 +
1√
2

)
µ.

(3.6)

Now, for every a ∈ (0, 1
2 ),∫ 1−a

a
|φ(x)|2dx ≥ 1

2
−
∫ a

0
(1− x)µdx−

∫ 1

1−a
(1− x)µdx =

1
2
− aµ

by (3.5). Hence∫ 1

0
xw(x)|ϕ(x)|2dx ≥

(
1
2
− aµ

) ∫ 1−a

a
xw(x)dx ≥ a

(
1
2
− aµ

)
w(1− a).

The function a 7→ a
( 1

2 − aµ
)

attains its maximum at a = 1
4µ . And so,∫ 1

0
xw(x)|ϕ(x)|2dx ≥ 1

16µ
w
(

1− 1
4µ

)
. (3.7)

Note that for any non-real eigenpair (λ, µ), µ > π2

4 by Lemma 3.1, therefore 0 < 1
4µ <

1− 1
4µ < 1 and the last inequality is reasonable. (3.6) and (3.7) lead to

|λ| ≤
16
(

2 + 1√
2

)
µ2

w
(

1− 1
4µ

) .

The proof is finished.
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Let φ(x; λ, µ) be the solution of (1.1) satisfying the initial conditions

φ(−1) = 0, φ′(−1) = 1.

Here λ and µ can be arbitrary complex numbers. By analytic parameter dependence, the
function

D(λ, µ) := φ(1; λ, µ) (3.8)

is an entire function and the zeros (λ, µ) of D are the eigenpairs of (1.1), (1.2). Hence by the
continuity of zeros of analytic functions (see [8, p. 248] or the next proposition), we can obtain
the corresponding conclusion about the analytic function D, in Lemma 3.4.

Proposition 3.3 (The continuity of zeros of analytic functions). Let A be an open set in the
complex plane C, X a metric space, f a continuous complex valued function on A× X such that for
each α ∈ X, the map z → f (z, α) is an analytic function on A. Let B be an open set of A whose
closure B in C is compact and contained in A, and let α0 ∈ X be such that no zero of f (z, α0) is on the
boundary of B. Then there exists a neighborhood W of α0 in X such that

(1) for any α ∈W, f (z, α) has no zero on the boundary of B;

(2) for any α ∈W, the sum of the order of the zeros of f (z, α) contained in B is independent of α.

Using Proposition 3.3, let the metric space X be R, then

Lemma 3.4. Let B be an open set of C whose closure B is compact, and let α0 ∈ R be such that no
zero of D(z, α0) is on the boundary of B. Then there exists a neighborhood W of α0 in R such that

(1) for any α ∈W, D(z, α) has no zero on the boundary of B;

(2) for any α ∈W, the sum of the order of the zeros of D(z, α) contained in B is independent of α.

In the sequel, we obtain the existence and multiplicity of non-real eigencurves nearby the
extremum point of real eigencurves. First, we give the multiplicity of the function D about µ

on the real eigencurve.

Lemma 3.5. For the real eigenvalue (λ, µ), as a root of the µ-equation D(λ, µ) = 0, the multiplicity
of µ is exactly one, i.e., ∂D

∂µ (λ, µ) 6= 0.

Proof. See the proof of [6, Theorem 2.1, equation (2.3) p. 34].

Lemma 3.6. Suppose λ0 is a maximum (resp. minimum) of the nth real eigencurve µn(λ) on R,
satisfying µ′′n(λ0) < 0 (resp. µ′′n(λ0) > 0), n = 1, 2, 3, . . . Then for every ε > 0 sufficiently small,
there exists δ > 0 such that for each µ ∈ (µn(λ0), µn(λ0) + δ) (resp. µ ∈ (µn(λ0) − δ, µn(λ0))),
O(λ0, ε) contains exactly two non-real eigenvalues(in the sense of multiplicity) of (1.1), (1.2). Here
O(λ0, ε) = {λ ∈ C : |λ− λ0| < ε}.

Proof. Suppose λ0 is the maximum of real eigencurve µn(λ), satisfying µ′′n(λ0) < 0, n =

1, 2, 3, . . .
First, we will prove, above nearby (λ0, µn(λ0)), the existence of non-real eigenvalues. Since

D(λ0, µn(λ0)) = 0 and there is no intersection point between any two distinct real eigencurves,
we have that for sufficient small ε > 0, there exist δε > 0 such that

{O(λ0, ε)× (µn(λ0), µn(λ0) + δε)} ∩ {(λ, µm(λ)) : λ ∈ R} = ∅, m ≥ 1, (3.9)
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where O(λ0, ε) = {λ ∈ C : |λ − λ0| < ε} and for each µ ∈ (µn(λ0), µn(λ0) + δε) the λ-
equation D(λ, µ) = 0 has roots in O(λ0, ε) by Lemma 3.4. However, from (3.9) we know, for
µ ∈ (µn(λ0), µn(λ0) + δε) the λ-equation D(λ, µ) = 0 has no real roots in O(λ0, ε). Therefore,
there only exist non-real λ-roots and this proves the existence of non-real eigenvalues above
nearby (λ0, µn(λ0)).

The next, we will prove, nearby (λ0, µn(λ0)), for any fixed µ there exactly exist two non-
real eigenvalues above. We only need to prove that

∂D
∂λ

(λ0, µn(λ0)) = 0 and
∂2D
∂λ2 (λ0, µn(λ0)) 6= 0.

Differentiating D(λ, µn(λ)) = 0 with respect to λ we have

∂D
∂λ

+ µ′n(λ)
∂D
∂µn

= 0. (3.10)

Set λ = λ0 in (3.10) we get from µ′n(λ0) = 0 that ∂D
∂λ (λ0, µn(λ0)) = 0. Differentiating twice

D(λ, µn(λ)) = 0 with respect to λ we have

∂2D
∂λ2 + 2µ′n(λ)

∂2D
∂λ∂µn

+ µ′n(λ)
∂2D
∂µ2

n
+ µ′′n(λ)

∂D
∂µn

= 0. (3.11)

Set λ = λ0 in (3.11) we get from µ′n(λ0) = 0, µ′′n(λ0) < 0 and ∂D
∂µn
6= 0 by Lemma 3.5 that

∂2D
∂λ2 (λ0, µn(λ0)) 6= 0.

The proof of the other case is similar and the proof of this lemma is finished.

Using Lemma 3.4 again, we will get that the point set of the non-real eigenvalues in
Lemma 3.6 can compose two non-real eigencurves λ(µ), i.e., there exists an interval J ⊂ R

such that λ = λ(µ) is continuous on µ ∈ J ⊂ R. We continue Lemma 3.6 the following way.

Lemma 3.7. Suppose λ0 is a maximum (resp. minimum) of the nth real eigencurve µn(λ) on R,
satisfying µ′′n(λ0) < 0 (resp. µ′′n(λ0) > 0), n = 1, 2, 3, . . . Then there exists ε, δ > 0, such that
there exactly exist two simple multiplicity non-real eigencurves λ(µ), λ(µ) ∈ O(λ0, ε), for every
µ ∈ (µn(λ0), µn(λ0) + δ) (resp. µ ∈ (µn(λ0)− δ, µn(λ0))).

Proof. Suppose (λ, µ) is an eigenpair and ϕ(x) is a corresponding eigenfuntion(nontrivial
complex-valued function) of problem (1.1) and (1.2), i.e.,

−ϕ(x)′′ = (λw(x) + µ)ϕ(x), ϕ(±1) = 0,

then
−ϕ(x)

′′
= (λw(x) + µ)ϕ(x), ϕ(±1) = 0.

Hence, if λ is non-real, then (λ, µ) is another distinct non-real eigenpair.
Suppose λ0 is a maximum of real eigencurve µn(λ), satisfying µ′′n(λ0) < 0, n = 1, 2, 3, . . .

Following the proof of the last lemma, there exist ε > 0, δε > 0 such that for each µ ∈
(µn(λ0), µn(λ0) + δε), there are two distinct roots of the λ-equation D(λ, µ) = 0 in O(λ0, ε).
These roots are λ(µ) and λ(µ), by the discussion above. We may assume that Im λ(µ) > 0
for any µ ∈ (µn(λ0), µn(λ0) + δε) since either Im λ(µ) > 0 or Im λ(µ) > 0. We will prove the
nonreal value function λ(µ), µ ∈ (µn(λ0), µn(λ0) + δε) is a non-real eigencurve nearby above
(λ0, µn(λ0)). Clearly, we only need to prove that λ = λ(µ) is continuous on (µn(λ0), µn(λ0) +

δε) by the definition of non-real eigencurves.
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Suppose on the contrary, there exist ν0 ∈ (µn(λ0), µn(λ0) + δε) such that λ(µ) is discon-
tinuous at ν0. We assume that λ(µ) is not right continuous at ν0, without loss of generality.
Then there exist {νn, n = 1, 2, 3, . . . } ⊂ (ν0, µn(λ0) + δε) and ε > 0 such that νn → ν0+ as
n → ∞ and |λ(νn) − λ(ν0)| > ε, n = 1, 2, 3, . . . However, there exist δε > 0 such that for
each µ ∈ (ν0, ν0 + δε), the λ-equation D(λ, µ) = 0 has exactly one root in O(λ(ν0), ε). This
is clearly a contradiction and leads to the non-real eigencurve λ = λ(µ) is continuous on
(µn(λ0), µn(λ0) + δε).

The other case about the minimum of the real eigencurve is the same as the proof above.

If λ = 0, we can calculate the eigenvalues of (1.1), (1.2),

µ2m−1(0) =
(

2m− 1
2

)2

π2, µ2m(0) = m2π2, m = 1, 2, 3, . . .

Lemma 3.8. For enough small δ > 0, there exactly exist two distinct simple multiplicity non-real
(imaginary-valued) eigencurves λ(µ) and λ(µ) start at (0, µ2m−1(0)) (resp. (0, µ2m(0))) for µ ∈
(µ2m−1(0), µ2m−1(0) + δ) (resp. µ ∈ (µ2m(0)− δ, µ2m(0))) , m = 1, 2, 3, . . .

Proof. We only need consider the (2m− 1)th eigencurve. From Lemma 2.7, µ′′2m−1(0) < 0, and
hence there exists ε, δ > 0, such that there exactly exist two distinct simple multiplicity non-
real(imaginary-valued) eigencurves λ(µ), λ(µ) ∈ O(0, ε), for every µ ∈ (µ2m−1(0), µ2m−1(0) +
δ), by Lemma 3.7. Now, we will prove these two non-real eigencurves must be imaginary-
valued.

Suppose (λ, µ) is an eigenpair and ϕ(x) is a corresponding eigenfuntion of problem (1.1),
(1.2), i.e.,

−ϕ(x)′′ = (λw(x) + µ)ϕ(x), ϕ(±1) = 0,

then by w(x) = −w(−x),

−ϕ(−x)′′ = (−λw(x) + µ)ϕ(−x), ϕ(∓1) = 0,

−ϕ(x)
′′
= (λw(x) + µ)ϕ(x), ϕ(±1) = 0,

−ϕ(−x)
′′
= (−λw(x) + µ)ϕ(−x), ϕ(∓1) = 0.

(3.12)

Hence, (−λ, µ), (λ, µ), (−λ, µ) are also eigenpairs. However, there exactly exist two distinct
non-real eigencurves λ(µ), λ(µ) ∈ O(0, ε), for every µ ∈ (µ2m−1(0), µ2m−1(0) + δ). This fact
leads to −λ(µ) = λ(µ) and the proof is finished.

Suppose λ0 is a maximum of the real eigencurve µn(λ), satisfying µ′′n(λ0) < 0, n =

1, 2, 3, . . . and λ(µ), µ ∈ (µn(λ0), µn(λ0) + δε) is a non-real eigencurve. Then we can get
limµ↓µn(λ0) λ(µ) = λ0 with the same method in the proof of Lemma 3.6. Moreover, for any
non-real eigenpair (λ, µ), there exists at least one non-real eigencurve through it.

Lemma 3.9. Suppose λ = λ(µ), µ ∈ J ⊂ R is a non-real eigencurve of (1.1), (1.2), where J is a
bounded interval, then for the right (resp. left) end-point of J, η, the limitation of λ(µ), λ(η±), exists
finitely as µ→ η±. Clearly, (λ(η±), η±) are also eigenpairs.

Proof. Suppose η is the right end-point of J. Let Λ be the set of all limit points of λ(µ) as
µ→ η−,

Λ =
{

ξ : ∃µ(n) → η − such that lim
n→∞

λ(µ(n)) = ξ
}

.
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From Lemma 3.2, Λ is bounded, by the boundedness of the interval J. Then it follows from
D(λ(µ(n)), µ(n)) = 0 and the continuity of the function D that D(ξ, η) = 0 for any ξ ∈ Λ. We
only need to prove that Λ has only one point.

Suppose on the contrary, if Λ has more than one point ξ1, ξ2. Then by the continuity
of λ(µ), µ ∈ J, we know that for any fixed r, 0 < r < |ξ1 − ξ2|, and any δ > 0 such that
(η − δ, η] ⊂ J, the set

{(λ(µ), µ) : µ ∈ (η − δ, η]} ∩ S(ξ1, r)

must contain infinite points, where S(ξ1, r) denotes the sphere in C with the center ξ1 and
the radius r, respectively. This means that the number of the λ-solutions about the η-equation
D(λ, η) = 0 on the compact set S(ξ1, r) is infinite. Hence for any 0 < r < |ξ1 − ξ2| there
exists at least one accumulation point λr for these λ-solutions and D(λr, η) = 0. That is to say
that the zeros of D(λ, η) are uncountable and hence D(λ, η) = 0 for any λ ∈ R, since for the
fixed η, D(λ, η) is analytic about λ. Clearly, this is a contradiction since for the fixed η the
eigenvalue problem has only countable eigenvalues. Therefore, Λ has only one point, say ξ0,
and ξ0 is a finite point of C. The proof about the left end-point of J is the same as the one
above and Lemma 3.9 is proved.

In the next lemma, we will give the existence of non-real eigencurves between the 2mth
and (2m− 1)th real eigencurves µ2m−1(λ) and µ2m(λ), m = 1, 2, 3, . . .

Lemma 3.10. Consider the problem (1.1) and (1.2). There exist at least two non-real (imaginary-
valued) eigencurves λ(µ) and λ(µ) on µ ∈

(( 2m−1
2

)2
π2, m2π2), m = 1, 2, 3, . . .

Proof. For any fixed m = 1, 2, 3, . . . , we will prove there exist two imaginary value eigencurves

±iλ̃(µ), µ ∈
((

2m− 1
2

)2

π2, m2π2

)
,

where λ̃ is a real function. Let
( ( 2m−1

2

)2
π2, η

)
be the maximal interval on which iλ̃(µ) ∈ iR

is a non-real eigencurve, then η >
( 2m−1

2

)2
π2 by Lemma 3.8. Without loss of generality, we

assume that λ̃(µ) > 0 and η < +∞. Note if η = +∞ this theorem is true clearly. Then by
Lemma 3.9, the limitation of λ̃(µ) exists finitely as µ→ η−, denoted as λ̃(η−). We only need
to prove η ≥ m2π2.

Suppose on the contrary, η < m2π2. Since D(iλ̃(µ), µ) ≡ 0 on
( ( 2m−1

2

)2
π2, η

)
, we have

D(iλ̃(η−), η) = 0 and λ̃(η−) ≥ 0 by the continuity of D. If λ̃(η−) = 0, it is a contrary for
η < µ2m(0) = m2π2, hence λ̃(η−) > 0. With the same method of Lemma 3.7, we can conclude
that there exist δ > 0 sufficiently small such that there exists an imaginary-valued eigencurve
(for convenience, also writing λ̃ here) λ̃(µ), µ ∈ (η, η + δ) and λ̃(η−) = λ̃(η+). That is to say,
the imaginary-valued function λ̃(µ) can be defined continuously on

( ( 2m−1
2

)2
π2, η + δ

)
. This

clearly contradicts the choice of η and the proof is over.

Lemma 3.10 can lead to the main result of this paper.

Theorem 3.11. Suppose µ ∈
( ( 2m−1

2

)2
π2, m2π2), m = 1, 2, 3, . . . Then (1.1), (1.2) has at least two

non-real (imaginary value) eigenvalues.

Applying Theorem 3.11 to the Richardson equation

− y′′ − µy = λ sgn(x)y, x ∈ [−1, 1] (3.13)

associated to the Dirichlet conditions y(±1) = 0, we immediately have
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Corollary 3.12. Suppose µ ∈
(( 2m−1

2

)2
π2, m2π2), m = 1, 2, 3, . . . Then the Richardson problem

(3.13) with Dirichlet boundary condition (1.2) has at least two non-real (imaginary value) eigenvalues.

In fact, this conclusion has been contained in Volkmer [23, pp. 233–234].
Any non-real eigenpair must be contained in a non-real eigencurve. If a non-real eigen-

curve λ(µ) intersects a real eigencurve µ(λ), the intersection must be a critical point of µ(λ).
Moreover, by Lemma 3.1, for any non-real eigenpair of (1.1), (1.2), (λ, µ), i.e., λ /∈ R, we have

µ(λ) > µ1(0) =
π2

4
, for any λ /∈ R. (3.14)

The following is a summary of the properties of non-real eigencurves.

Remark 3.13. Any non-real eigencurve λ(µ) must start from a maximum of a real eigencurve
and go upwards, ending at a minimum of a real eigencurve or to +∞, i.e.,

sup{µ : λ(t) is non real, for any t ∈ (µ̂, µ)} = µ̌ or + ∞,

where µ̂ is a maximum of a real eigencurve and µ̌ a minimum of a real eigencurve.
Another description can be given that for any non-real eigencurve, it must start from a

minimum of a real eigencurve and downwards end at a maximum of a real eigencurve. In
such case, any non-real eigencurve downwards at most arrives at µ1(0) = π2

4 .

4 Nonexistence of non-real eigenvalues

In this section, we will obtain sufficient conditions for the non-existence of non-real eigenval-
ues. The next two lemmas give some properties about the maximum and minimum of the
real eigencurves.

Lemma 4.1. For every positive integer n, the real eigencurve µn(λ), λ ∈ R, is an even function in the
(Re λ, µ)-plane, i.e., µn(−λ) = µn(λ). Furthermore, for the 2nd real eigencurve µ2(λ), there exactly
exist two maxima(maximal points) and one minimum. And for the 3rd real eigencurve µ3(λ), there
exist either three maxima and two minima or one maximum (maximal point) and no minimum.

Proof. Suppose (λ, µ) is a real eigenpair and ϕ(x) is a corresponding eigenfuntion of problem
(1.1), (1.2), i.e.,

−ϕ(x)′′ = (λw(x) + µ)ϕ(x), ϕ(±1) = 0,

then
−ϕ(−x)′′ = (−λw(−x) + µ)ϕ(−x), ϕ(∓1) = 0.

Hence, (−λ, µ) is another real eigenpair. This fact leads to µn(−λ) = µn(λ), for every positive
integer n.

Furthermore, for the 2nd real eigencurve µ2(λ), 0 is a minimum and µ′′2 (0) > 0 by
Lemma 2.7. Therefore, there exist at least two maxima by µ2(±∞) = −∞, see Lemma 2.2.
From Lemma 2.6 (ii), we know there are at most 3 critical points for u2(λ). Hence for u2(λ)

there exactly exist two maxima, one minimum. By µ2(λ) is an even function, these two max-
ima are equal and are the maximal points.

For the 3rd real eigencurve µ3(λ), there are at most 5 critical points, by Lemma 2.6 (ii).
This fact, u′′3 (0) < 0, µ3(±∞) = −∞ and µ3(λ) is an even function can lead that there exist
either three maxima or one maximum for µ3(λ). Moveover, from µ3(±∞) = −∞, we know
there exist two minima when there are three maxima and there no minimum when there is
one maximum.
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Lemma 4.2. Suppose λn ∈ R is a minimum of the nth real eigencurve µn(λ), n > 2 and ±λ2 ∈ R are
the maxima (maximal points) of the 2nd real eigencurve µ2(λ). Then µn(λn) ≥ µ2(λ2)(= µ2(−λ2)),
n > 2.

Proof. If n = 2m − 1, m ≥ 2, λ2m−1 6= 0, since 0 is a maximum of µ2m−1. From µ2m−1 is
an even function, see Lemma 4.1, and µn(±∞) = −∞, see (2.1), we know for every ε > 0
sufficiently small, the horizontal µ = µ2m−1(λ2m−1) + ε intersect with the real eigencurve
µ2m−1 on at least 6 points. This fact and Lemma 2.3 can lead to µ2(λ2) ≤ µ2m−1(λ2m−1) + ε,
hence µ2(λ2) ≤ µ2m−1(λ2m−1).

Now we consider the case n = 2m, m ≥ 2. In the case λ2m 6= 0, the proof is the same
as n = 2m − 1. In the case λ2m = 0, µ2m(0) > µ3(0). By Lemma 4.1, there are also two
cases for µ3(λ). If for µ3(λ) there exists a minimum λ3 such that µ3(λ3) < µ3(0), then
µ2m(0) > µ3(0) > µ3(λ3) ≥ µ2(λ2)(= µ2(−λ2)). If for µ3(λ) there exists no minimum, then
0 is the only maximal point of µ3(λ). Hence for any λ ∈ R, µ3(0) > µ2(λ) and µ2m(0) >

µ3(0) > µ2(λ2)(= µ2(−λ2)).

From Lemma 4.2, we know that below the maxima (maximal points) of the 2nd real eigen-
curve µ2(λ), there is only one maximum of all real eigencurves, that is the first real eigen-
curve’s maximum (maximal point), (0, µ1(0)) = (0, π2

4 ).

Theorem 4.3. Suppose ±λ2 ∈ R are the maxima (maximal points) of the 2nd real eigencurve µ2(λ).
Then the problem (1.1), (1.2) has no non-real eigenvalue λ for µ ∈ (µ2(0), µ2(λ2)).

Proof. Suppose on the contrary, then there exists a non-real eigenpair (λ̃(µ̃), µ̃) such that µ̃ ∈
(µ2(0), µ2(λ2)) and there exists a non-real eigencurve through (λ̃(µ̃), µ̃). Since µ1(0) is the
only maximum of all real eigencurves below µ2(λ2), this non-real eigencurve must connect
(λ(µ̃), µ̃) and (0, µ1(0)), by Remark 3.13. Hence we can set this non-real eigencurve as

λ̃(µ), µ ∈ (µ1(0), µ̃).

Then

λ̃(µ), µ ∈ (µ1(0), µ̃)

is an other non-real eigencurve through (0, µ1(0)) = (0, π2

4 ). By Lemma 3.10, we know

λ(µ) and λ(µ), µ ∈ (µ1(0), µ2(0)) =
(

π2

4
, π2
)

are two other non-real eigencurves through (0, µ1(0)).
These non-real eigencurves may coincide, i.e., there may exists δ > 0 such that

λ̃(µ) = λ(µ), µ ∈ (µ1(0), µ1(0) + δ).

In this case, the multiplicity of this non-real eigencurve is two. Hence, in the sense of multiplic-
ity, there exist at least four non-real eigencurves starting from (0, µ1(0)). However, Lemma 3.8
tells us there are only two distinct simple multiplicity non-real (imaginary-valued) eigencurves
starting from (0, µ1(0)). This is a contradiction and the proof is finished.
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