
Electronic Journal of Qualitative Theory of Differential Equations
2016, No. 77, 1–10; doi: 10.14232/ejqtde.2016.1.77 http://www.math.u-szeged.hu/ejqtde/

Analytical estimations of limit cycle amplitude for
delay-differential equations

Dedicated to Professor Tibor Krisztin on the occasion of his 60th birthday

Tamás G. MolnárB 1, Tamás Insperger2 and Gábor Stépán1

1Department of Applied Mechanics, Budapest University of Technology and Economics
1111 Budapest, Hungary

2Department of Applied Mechanics, Budapest University of Technology and Economics and
MTA-BME Lendület Human Balancing Research Group, 1111 Budapest, Hungary

Received 4 July 2016, appeared 12 September 2016

Communicated by Ferenc Hartung

Abstract. The amplitude of limit cycles arising from Hopf bifurcation is estimated for
nonlinear delay-differential equations by means of analytical formulas. An improved
analytical estimation is introduced, which allows more accurate quantitative prediction
of periodic solutions than the standard approach that formulates the amplitude as a
square-root function of the bifurcation parameter. The improved estimation is based
on special global properties of the system: the method can be applied if the limit cy-
cle blows up and disappears at a certain value of the bifurcation parameter. As an
illustrative example, the improved analytical formula is applied to the problem of stick
balancing.
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1 Introduction

Delay-differential equations (DDEs) appear in various fields of science. Examples include neu-
ral networks [18], human balancing [13], epidemiology [6, 15], control theory [12, 17], wheel
shimmy [22], and machine tool vibrations [1, 21], just to mention a few. Investigating the
dynamics of systems with time delay is therefore an important field of research. The mathe-
matical analysis of DDEs is complicated by the fact that their phase space is infinite dimen-
sional. The infinite-dimensional nature often yields rich dynamics, including the possibility
of periodic, quasi-periodic, and even chaotic solutions [2, 21].

In this paper, we focus on the computation of periodic solutions (limit cycles) of nonlinear
DDEs occurring via Hopf bifurcation. An analytical approach is proposed to give an accurate
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estimation of the amplitude of limit cycles. The whole concept is based on the center manifold
reduction technique [3, 8, 11], by which a two-dimensional center subsystem can be decom-
posed from the infinite-dimensional DDE. With the two-dimensional subsystem at hand, the
normal form theory of ordinary differential equations (ODEs) can be applied to deduce a
polar-form equation, which determines the amplitude of the periodic solutions arising from
the Hopf bifurcation. We remark that this polar form can be obtained by other methods as
well (see e.g. the method of multiple scales [16]). Based on the polar-form equation, the stan-
dard analytical estimation of the limit cycle amplitude is given by a square-root function of
the bifurcation parameter [7]. Although the square-root function provides good approxima-
tion in the vicinity of the Hopf bifurcation, its accuracy may be insufficient if the bifurcation
parameter is far from the bifurcation point. In this paper, a special hyperbolic function is
proposed for the limit cycle amplitude by considering special global properties of the DDE.
This way, a more accurate analytical prediction of large-amplitude periodic solutions of DDEs
can be given.

We consider nonlinear autonomous DDEs of the form

ẏ(t) =
∫ 0

−σ
dη(θ)y(t + θ)dθ + f(yt) . (1.1)

The evolution of the system is described by the shift yt ∈ H : [−σ, 0] → Rn, yt(ϑ) = y(t + ϑ)

defined in the Hilbert space H of continuously differentiable vector-valued functions. The
integral on the right-hand side of Eq. (1.1), which accounts for the linear terms, is a Stieltjes
integral with η : [−σ, 0] → Rn×n being a matrix-valued function of bounded variation. The
nonlinearities in the system are included in the continuous functional f : H → Rn. In what
follows, we assume that a Hopf bifurcation is associated with Eq. (1.1), and analyze the arising
limit cycle.

The rest of the paper is organized as follows. Section 2 gives an introduction to center
manifold reduction and shows the polar-form equation determining the amplitude of the limit
cycle. Section 3 proposes an analytical approach by which the amplitude can be approximated
by a higher-order function of the bifurcation parameter. Section 4 demonstrates the results
through an example: periodic solutions are computed for the single-degree-of-freedom model
of an inverted pendulum subjected to a nonlinear feedback control. Section 5 summarizes the
conclusions of the paper.

2 Flow on center manifold

In this section, we shortly revise a possible method to derive the polar-form equation that
determines the amplitude of limit cycles arising from the Hopf bifurcation associated with
Eq. (1.1). The analysis is based on the center manifold reduction technique discussed in
[3,8,11], which allows us to characterize the long-term dynamics of infinite-dimensional time-
delay systems undergoing Hopf bifurcation. The center manifold reduction uses an abstract
representation of system (1.1) given by the operator differential equation (OpDE) form

ẏt = Ayt +F (yt) , (2.1)

where A,F : H → H are the linear and the nonlinear operators, respectively, defined by

Au =


d

dϑ
u(ϑ) if ϑ ∈ [−σ, 0) ,∫ 0

−σ
dη(θ)u(θ)dθ if ϑ = 0 ,

(2.2)
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F (u) =
{

0 if ϑ ∈ [−σ, 0) ,
f(u) if ϑ = 0 .

(2.3)

We assume that system (2.1) has a trivial equilibrium y(t) ≡ 0. Then, the associated linear
system is described by operator A, and the eigenvalues of A (called as the characteristic expo-
nents) determine the stability and bifurcations of the equilibrium. Let p denote the bifurcation
parameter and assume that a Hopf bifurcation takes place at p = pH. When the equilibrium
of system (2.1) loses stability via Hopf bifurcation, a complex conjugate pair λ = ±iω of
eigenvalues lies on the imaginary axis (i2 = −1, ω > 0), whereas all the other infinitely many
eigenvalues of operator A are located in the left half of the complex plane. Accordingly, a
two-dimensional center manifold embedded in the infinite-dimensional phase space attracts
the solutions of the differential equation. The long-term dynamics of the system is therefore
determined by the flow on the two-dimensional center manifold. The flow on this manifold
can be analyzed by decomposing the two-dimensional center subsystem. This procedure is
referred to as center manifold reduction, and it can be done using the decomposition theorem
given by Eqs. (3.10) and (3.11) in Chapter 7 of [8].

Here, we do not present all the details of the decomposition, we just remark that the center
manifold reduction technique uses the operator A∗, which is formally adjoint to operator A
relative to a certain bilinear form. We rather focus on the analysis of the center subsystem.
The center manifold reduction allows us to decouple the two-dimensional center subsystem
from the infinite-dimensional time-delay system to obtain the form ż1

ż2

ẏtn

 =

 0 ω O
−ω 0 O
o o A

 z1

z2

ytn

+

 g1(z1, z2, ytn)

g2(z1, z2, ytn)

G(z1, z2, ytn)

 , (2.4)

where o : R→ H is a zero operator, O : H → R is a zero functional. Here, z1 and z2 denote the
two local coordinates on the center manifold, whereas ytn represents the remaining infinite-
dimensional component of yt transverse to the center subspace. The first term on the right-
hand side of Eq. (2.4) is linear, while g1, g2 : R×R×H → R and G : R×R×H → H contain
all nonlinear terms. Parameter ω gives the approximate angular frequency of the arising
periodic solutions.

Note that the two-dimensional center subsystem described by z1 and z2 is decoupled only
on the linear level from the remaining infinite-dimensional stable subsystem described by ytn.
There is still a coupling through the nonlinear terms g1 and g2. In order to fully decouple
the two-dimensional center subsystem in the first two rows of Eq. (2.4), the dynamics must
be restricted to the center manifold. This manifold is embedded in the infinite-dimensional
phase space and can be given in the form ytn = yCM

tn (z1, z2). The expansion of the center
manifold yCM

tn (z1, z2) into Taylor series in terms of z1 and z2 allows us to construct a third-
order approximation of the decoupled center subsystem in the form

[
ż1

ż2

]
=

[
0 ω

−ω 0

][
z1

z2

]
+

 ∑
j+k=2,3

ajkzj
1zk

2

∑
j+k=2,3

bjkzj
1zk

2

 . (2.5)

That is, the nonlinearity is approximated only by quadratic and cubic terms, which is neces-
sary and suitable for bifurcation analysis. Here, we do not investigate the effect of higher-order
nonlinearities.
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Finally, using near-identity transformation, the center subsystem (2.5) with quadratic and
cubic nonlinearity can be transformed into a simple polar form. In the vicinity of the Hopf
bifurcation taking place at p = pH, the polar-form system reads

ṙ =r
(
σ(p) + δ(p)r2) , (2.6)

ϕ̇ =α(p) + β(p)r2 , (2.7)

where r and ϕ are the amplitude and the phase variable, respectively. The coefficients σ(p),
α(p), δ(p), and β(p) are functions of the bifurcation parameter p. Actually, σ(p) is the real
and α(p) is the imaginary part of the eigenvalues λ = σ(p)± iα(p) that cross the imaginary
axis during the Hopf bifurcation. Consequently, at the Hopf bifurcation, i.e., at p = pH,
the real part is zero: σH := σ(pH) = 0, and the imaginary part is equal to parameter ω:
α(pH) = ω. Besides, parameter δ(p) is related to the so-called Poincaré-Lyapunov constant
(PLC): δH := δ(pH). The criticality of the Hopf bifurcation is determined by the sign of the
PLC: the bifurcation is subcritical for δH > 0 and supercritical for δH < 0. A limit cycle arising
from the Hopf bifurcation is associated with the nontrivial equilibrium of Eq. (2.6):

r2(p) = −σ(p)
δ(p)

. (2.8)

The limit cycle is stable (attractive) if the bifurcation is supercritical and unstable (repelling) if
it is subcritical.

3 Analysis of limit cycles

As indicated in Eq. (2.8), the limit cycle amplitude r is a function of the bifurcation parame-
ter p. In this section, we propose methods to accurately estimate this function. The standard
approach [7] is to expand the parameter σ(p) into Taylor series in terms of p up to first order
and approximate the parameter δ(p) by constant (by the PLC). According to Eq. (2.8), this
yields a linear function for r2(p) and hence a square-root function for the amplitude r(p):

rstan(p) =

√
−

σ′H (p− pH)

δH
, (3.1)

where prime indicates differentiation with respect to p, subscript H refers to the substitution
p = pH, and we used σH = 0. The calculation of σ′H (and also the higher derivatives of σ) is
possible via the implicit differentiation of the characteristic equation Ker(A− λI) 6= {0} ⇔
D(λ) = 0 defining the characteristic exponents, where I is the unit operator and D(λ) is the
characteristic function. After the implicit differentiation of D(λ) = 0 with respect to p, and
after the substitution of p = pH and λ = ±iω, the derivative σ′H = <(λ′H) can be expressed
analytically. The PLC δH can also be calculated by a closed-form formula, see [9].

From this point on, we refer to Eq. (3.1) as standard analytical estimation as indicated by the
superscript of r. The standard estimation is accurate only for p ≈ pH, and it may become
inaccurate if p lies farther from pH. The standard estimation can be improved if the following
special global properties hold for the system.

1. Without loss of generality, let us assume that the point where the special properties hold
is at p = 0. Note that p = 0 does not have to lie in the vicinity of p = pH.
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2. Assume that rstan(0) exists and is real, but the time-delay system (1.1) in fact does not
have a periodic solution for p = 0. That is, the periodic solution vanishes when changing
p from pH to 0, which is not described by the standard analytical estimation (3.1).

3. Furthermore, assume that the Hopf bifurcation is unique in the sense that no other Hopf
bifurcation takes place between 0 and pH.

4. Finally, assume that the actual amplitude r(p) is a bijective function of the bifurcation
parameter.

These assumptions imply that the periodic solution can only vanish at p = 0 by fulfilling

lim
p→0

r(p) = ∞ . (3.2)

Now we propose two methods by which the standard analytical estimation (3.1) can be im-
proved if the above assumptions hold.

The first method to improve the standard estimation is by means of the expansion of σ(p)
and δ(p) into higher-order Taylor polynomials. It requires the calculation of the derivatives
of σ and δ at p = pH. The higher derivatives of σ can be calculated by implicit differentiation
in a similar manner to σ′H, however, the derivatives of δ cannot easily be obtained. Still, we
can use this approach by taking advantage of property (3.2). The simplest way to improve the
analytical estimation is the approximation of both σ(p) and δ(p) by a linear Taylor polynomial:

r(p) ≈

√
−

σ′H(p− pH)

δH + δ′H(p− pH)
. (3.3)

The unknown coefficient δ′H can be determined so that property (3.2) is fulfilled. Equivalently,
the denominator on the right-hand side of Eq. (3.3) must be zero for p = 0. This yields the
coefficient δ′H = δH/pH and the improved analytical estimation

rimpr(p) =

√√√√√−σ′H(p− pH)

δH

pH
p

. (3.4)

The same result can be obtained by a slightly different approach. This second method also
incorporates the global property (3.2), and fits a bifurcation curve to the limit cycle ampli-
tude by considering the behavior away from the bifurcation (at r → ∞). However, now we
approximate r2(p) by a hyperbola as

r2(p) ≈ a0 +
a1

p
(3.5)

rather than expanding σ(p) and δ(p) into polynomials. The core idea is that Eq. (3.5) is the
simplest function, which ensures the automatic fulfillment of Eq. (3.2). The coefficients a0 and
a1 can be calculated based on Eq. (2.8) and using σH = 0, which give

r2(pH) = 0 , (3.6)

dr2

dp
(pH) = −

σ′H
δH

. (3.7)



6 T. G. Molnár, T. Insperger and G. Stépán

This way, Eqs. (3.5), (3.6), and (3.7) imply

a0 = −σ′H pH

δH
, (3.8)

a1 =
σ′H p2

H
δH

, (3.9)

which yields the improved analytical estimation

rimpr(p) =

√
−

σ′H pH

δH

(
1− pH

p

)
. (3.10)

Note that estimation (3.10) is exactly the same as that in Eq. (3.4).

4 Applications

The idea of the improved analytical estimation (3.4) for the amplitude of limit cycles originates
in the problem of regenerative machine tool vibrations in metal cutting [4, 20], where Hopf
bifurcation occurs due to the nonlinearity of the cutting force characteristics and gives rise
to an unstable limit cycle in the vicinity of the linearly stable equilibrium. Correspondingly,
an unsafe zone exists in the plane of the technological parameters, where the equilibrium is
only locally (but not globally) stable. From practical point of view, it is important to avoid
these unsafe parameters, therefore in [14] we used the above approach for the special case
of machine tool vibrations to accurately estimate large-amplitude periodic solutions and to
accurately compute the unsafe zone. The present paper generalizes the results of [14] for a
class of DDEs and provides the theoretical background, as the approach is not restricted to the
problem of machine tool vibrations. In the metal cutting example, the difference of the delayed
and the actual variable appears in the governing equation. Similar expressions can be found
for example in the Pyragas control strategy [17] and in the Duffing oscillator with delayed
feedback [23]. The method in Section 3 may help in the bifurcation analysis of these systems.
As an additional example, now we demonstrate the application of formula (3.4) on a model of
stick balancing: an inverted pendulum subjected to a nonlinear proportional-derivative (PD)
controller is investigated.

The equation of motion related to the single-degree-of-freedom model of an inverted pen-
dulum with delayed PD control can be written in the form [10]

ẍ(t)− ax(t) = −p
(
x(t− τ) + x3(t− τ)

)
− dẋ(t− τ) . (4.1)

Accordingly, the inverted pendulum is represented by an unstable second-order system
(a > 0) on the left-hand side. The expression on the right-hand side is originated in the
control force exerted by the PD controller in order to maintain the stick at its upright position
(at the equilibrium x(t) ≡ 0). Parameters p and d are the proportional and the derivative con-
trol gains, respectively, whereas τ represents the delay in the control loop. The proportional
term on the right-hand side has a cubic nonlinearity, which can be considered as a simplified
smooth model of sensory dead zone [13].

Stability and bifurcation analysis of Eq. (4.1) was carried out for τ = 1, a = 0.1, and d = 1,
using p as bifurcation parameter. The equilibrium x(t) ≡ 0 is linearly stable for a < p < pH.
At p = a = 0.1, a fold bifurcation occurs, whereas at p = pH = 0.5983, a subcritical Hopf
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Figure 4.1: Bifurcation diagrams showing the amplitude of limit cycles.

bifurcation takes place. Due to the subcritical Hopf bifurcation, an unstable limit cycle exists
for 0 < p ≤ pH. The bifurcation scenario is shown in Fig. 4.1 (a). Solid line indicates the
numerical result rnum(p) for the limit cycle amplitude obtained by the continuation software
DDE-Biftool [5]. Here, rnum stands for the half of the peak-to-peak amplitude of the non-
harmonic periodic solution. According to numerical continuation, the limit cycle blows up at
p = 0, which implies that property (3.2) holds and, along with this, the bijective property of
r(p) and the uniqueness of the Hopf bifurcation for 0 < p ≤ pH is fulfilled. Therefore, the
improved analytical estimation rimpr(p) given by Eq. (3.4) can be computed as shown by the
dash-dot line in the figure. The parameters σ′H = 0.6976 and δH = 0.3173 were determined
numerically by DDE-Biftool, although they can also be derived analytically. Dashed line
shows the standard analytical estimation rstan(p) given by Eq. (3.1).

As shown in Fig. 4.1 (a), the standard analytical estimation is accurate and agrees well
with the numerical results only in the vicinity of the Hopf bifurcation at p = pH. For zero
proportional gain (p = 0), the nonlinearity on the right-hand side of Eq. (4.1) vanishes. Since
the resulting linear system does not have a periodic solution, the limit cycle vanishes (blows
up) at p = 0. The standard analytical estimation fails to capture this phenomenon as rstan(p)
exists and is real at p = 0. In contrast, the improved analytical estimation captures the blow-
up phenomenon at p = 0, and is everywhere in a very good agreement with the numerical
results: the dash-dot curve overlaps with the solid line.

Similarly, Fig. 4.1 (b) shows the bifurcation diagram with the same color scheme for a = 0.1
p = 0.5, d = 1, and with bifurcation parameter τ. The corresponding parameters are
τH = 1.0959, σ′H = 0.6776, and δH = 0.2668. Again, the periodic solution blows up at τ = 0,
since the corresponding delay-free system does not have a limit cycle. The standard analyt-
ical estimation again fails to capture this phenomenon and the dashed curve deviates from
the numerical bifurcation curve, while the improved analytical estimation agrees well with
numerics.

Consequently, we can use the improved analytical estimation (3.4) to give an accurate
analytical prediction of the unstable oscillations, even at large amplitudes. The unstable large-
amplitude oscillations are important, because they determine the basin of attraction of the
stable equilibrium and affect global stability.
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5 Conclusions

In this paper, the analytical estimation of the amplitude of limit cycles arising from Hopf bi-
furcation was addressed for nonlinear DDEs. The standard analytical estimation (3.1) known
from the literature describes the amplitude as a square-root function of the bifurcation param-
eter. Here, an improved analytical estimation (3.4) was proposed to estimate the amplitude
more accurately for large-amplitude vibrations outside the vicinity of the bifurcation. The
method uses the concept of center manifold reduction and the polar-form equation of the
two-dimensional center subsystem. From the polar-form equation, the limit cycle amplitude
is expressed as a special hyperbolic function of the bifurcation parameter, whose coefficients
can be determined using some special global properties of the system. Namely, the limit cycle
must disappear at a certain value of the bifurcation parameter, where the amplitude accord-
ing to the standard analytical estimation exists and is real. The application of the method
was demonstrated through the example of the inverted pendulum subjected to a nonlinear
feedback control.
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