Electronic Journal of Qualitative Theory of Differential Equations 2010, No. 2, 1-19; http://www.math.u-szeged.hu/ejqtde/

EXISTENCE RESULTS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS IN ORLICZ SPACES

HICHAM REDWANE

Faculté des Sciences Juridiques, Économiques et Sociales. Université Hassan 1, B.P. 784. Settat. Morocco

ABSTRACT. An existence result of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces is proved. No growth assumption is made on the nonlinearities.

1. INTRODUCTION

In this paper we consider the following problem:

(1.1)
$$\frac{\partial b(x,u)}{\partial t} - div \Big(a(x,t,u,\nabla u) + \Phi(u) \Big) = f \text{ in } \Omega \times (0,T),$$

(1.2)
$$b(x, u)(t = 0) = b(x, u_0)$$
 in Ω ,

(1.3)
$$u = 0 \text{ on } \partial\Omega \times (0, T),$$

where Ω is a bounded open subset of \mathbb{R}^N and T > 0, $Q = \Omega \times (0, T)$. Let *b* be a Carathéodory function (see assumptions (3.1)-(3.2) of Section 3), the data *f* and $b(x, u_0)$ in $L^1(Q)$ and $L^1(\Omega)$ respectively, $Au = -div(a(x, t, u, \nabla u))$ is a Leray-Lions operator defined on $W_0^{1,x}L_M(\Omega)$, *M* is an appropriate *N*-function and which grows like $\overline{M}^{-1}M(\beta_K^4|\nabla u|)$ with respect to ∇u , but which is not restricted by any growth condition with respect to *u* (see assumptions (3.3)-(3.6)). The function Φ is just assumed to be continuous on \mathbb{R} .

Under these assumptions, the above problem does not admit, in general, a weak solution since the fields $a(x, t, u, \nabla u)$ and $\Phi(u)$ do not belong in $(L^1_{loc}(Q)^N)$ in general. To overcome this difficulty we use in this paper the framework of renormalized solutions. This notion was introduced by Lions and DiPerna [31] for the study of Boltzmann equation (see also [27], [11], [29], [28], [2]).

A large number of papers was devoted to the study the existence of renormalized solution of parabolic problems under various assumptions and in different contexts: for a review on classical results see [7], [30], [9], [8], [4], [5], [34], [12], [13], [14].

The existence and uniqueness of renormalized solution of (1.1)-(1.3) has been proved in H. Redwane [34, 35] in the case where $Au = -div(a(x, t, u, \nabla u))$ is a Leray-Lions operator defined on $L^p(0, T; W_0^{1,p}(\Omega))$, the existence of renormalized solution in Orlicz spaces has been proved in E. Azroul, H. Redwane and M.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A15; Secondary 46A32, 47D20.

 $Key\ words\ and\ phrases.$ Nonlinear parabolic equations. Orlicz spaces. Existence. Renormalized solutions.

Rhoudaf [32] in the case where b(x, u) = b(u) and where the growth of $a(x, t, u, \nabla u)$ is controlled with respect to u. Note that here we extend the results in [34, 32] in three different directions: we assume b(x, u) depend on x, and the growth of $a(x, t, u, \nabla u)$ is not controlled with respect to u and we prove the existence in Orlicz spaces.

The paper is organized as follows. In section 2 we give some preliminaries and gives the definition of N-function and the Orlicz-Sobolev space. Section 3 is devoted to specifying the assumptions on b, a, Φ , f and $b(x, u_0)$. In Section 4 we give the definition of a renormalized solution of (1.1)-(1.3). In Section 5 we establish (Theorem 5.1) the existence of such a solution.

2. Preliminaries

Let $M : \mathbb{R}^+ \to \mathbb{R}^+$ be an N-function, i.e., M is continuous, convex, with M(t) > 0 for t > 0, $\frac{M(t)}{t} \to 0$ as $t \to 0$ and $\frac{M(t)}{t} \to \infty$ as $t \to \infty$. Equivalently, M admits the representation : $M(t) = \int_0^t a(s) \, ds$ where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is non-decreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0 and $a(t) \to \infty$ as $t \to \infty$. The N-function \overline{M} conjugate to M is defined by $\overline{M}(t) = \int_0^t \overline{a}(s) \, ds$, where $\overline{a} : \mathbb{R}^+ \to \mathbb{R}^+$ is given by $\overline{a}(t) = \sup\{s : a(s) \leq t\}$.

The N-function M is said to satisfy the Δ_2 condition if, for some k > 0,

(2.1)
$$M(2t) \le k M(t)$$
 for all $t \ge 0$

When this inequality holds only for $t \ge t_0 > 0$, M is said to satisfy the Δ_2 -condition near infinity.

Let P and Q be two N-functions. $P \ll Q$ means that P grows essentially less rapidly than Q; i.e., for each $\varepsilon > 0$,

(2.2)
$$\frac{P(t)}{Q(\varepsilon t)} \to 0 \quad \text{as } t \to \infty.$$

This is the case if and only if,

(2.3)
$$\frac{Q^{-1}(t)}{P^{-1}(t)} \to 0 \quad \text{as } t \to \infty.$$

We will extend these N-functions into even functions on all \mathbb{R} . Let Ω be an open subset of \mathbb{R}^N . The Orlicz class $\mathcal{L}_M(\Omega)$ (resp. the Orlicz space $L_M(\Omega)$) is defined as the set of (equivalence classes of) real-valued measurable functions u on Ω such that :

(2.4)
$$\int_{\Omega} M(u(x))dx < +\infty$$
 (resp. $\int_{\Omega} M(\frac{u(x)}{\lambda})dx < +\infty$ for some $\lambda > 0$).

Note that $L_M(\Omega)$ is a Banach space under the norm

(2.5)
$$||u||_{M,\Omega} = \inf\left\{\lambda > 0: \int_{\Omega} M(\frac{u(x)}{\lambda}) dx \le 1\right\}$$

and $\mathcal{L}_M(\Omega)$ is a convex subset of $L_M(\Omega)$. The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$. The equality $E_M(\Omega) = L_M(\Omega)$ holds if and only if M satisfies the Δ_2 -condition, for all t or for t large according to whether Ω has infinite measure or not.

EJQTDE, 2010 No. 2, p. 2

The dual of $E_M(\Omega)$ can be identified with $L_{\overline{M}}(\Omega)$ by means of the pairing $\int_{\Omega} u(x)v(x)dx$, and the dual norm on $L_{\overline{M}}(\Omega)$ is equivalent to $\|.\|_{\overline{M},\Omega}$. The space $L_M(\Omega)$ is reflexive if and only if M and \overline{M} satisfy the Δ_2 condition, for all t or for t large, according to whether Ω has infinite measure or not.

We now turn to the Orlicz-Sobolev space. $W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$) is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ (resp. $E_M(\Omega)$). This is a Banach space under the norm

(2.6)
$$||u||_{1,M,\Omega} = \sum_{|\alpha| \le 1} ||\nabla^{\alpha} u||_{M,\Omega}.$$

Thus $W^1L_M(\Omega)$ and $W^1E_M(\Omega)$ can be identified with subspaces of the product of N + 1 copies of $L_M(\Omega)$. Denoting this product by ΠL_M , we will use the weak topologies $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ and $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. The space $W_0^1E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^1E_M(\Omega)$ and the space $W_0^1L_M(\Omega)$ as the $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1L_M(\Omega)$. We say that u_n converges to u for the modular convergence in $W^1L_M(\Omega)$ if for some $\lambda > 0$, $\int_{\Omega} M\left(\frac{\nabla^{\alpha}u_n - \nabla^{\alpha}u}{\lambda}\right) dx \to 0$ for all $|\alpha| \leq 1$. This implies convergence for $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. If M satisfies the Δ_2 condition on \mathbb{R}^+ (near infinity only when Ω has finite measure), then modular convergence coincides with norm convergence.

Let $W^{-1}L_{\overline{M}}(\Omega)$ (resp. $W^{-1}E_{\overline{M}}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{M}}(\Omega)$ (resp. $E_{\overline{M}}(\Omega)$). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space $\mathcal{D}(\Omega)$ is dense in $W_0^1 L_M(\Omega)$ for the modular convergence and for the topology $\sigma(\Pi L_M, \Pi L_{\overline{M}})$ (cf. [21]). Consequently, the action of a distribution in $W^{-1}L_{\overline{M}}(\Omega)$ on an element of $W_0^1 L_M(\Omega)$ is well defined. For more details see [1], [23].

For K > 0, we define the truncation at height $K, T_K : \mathbb{R} \to \mathbb{R}$ by

(2.7)
$$T_K(s) = \min(K, \max(s, -K))$$

The following abstract lemmas will be applied to the truncation operators.

Lemma 2.1. [21] Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly lipschitzian, with F(0) = 0. Let M be an N-function and let $u \in W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$).

Then $F(u) \in W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$). Moreover, if the set of discontinuity points D of F' is finite, then

$$\frac{\partial}{\partial x_i} F(u) = \begin{cases} F'(u) \frac{\partial u}{\partial x_i} & a.e. \ in \ \{x \in \Omega : u(x) \notin D\} \\ 0 & a.e. \ in \ \{x \in \Omega : u(x) \in D\} \end{cases}$$

Lemma 2.2. [21] Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly lipschitzian, with F(0) = 0. We suppose that the set of discontinuity points of F' is finite. Let M be an N-function, then the mapping $F : W^1L_M(\Omega) \to W^1L_M(\Omega)$ is sequentially continuous with respect to the weak* topology $\sigma(\Pi L_M, \Pi E_{\overline{M}})$.

Let Ω be a bounded open subset of \mathbb{R}^N , T > 0 and set $Q = \Omega \times (0, T)$. M be an N-function. For each $\alpha \in \mathbb{N}^N$, denote by ∇_x^{α} the distributional derivative on Q of EJQTDE, 2010 No. 2, p. 3

order α with respect to the variable $x \in \mathbb{N}^N$. The inhomogeneous Orlicz-Sobolev spaces are defined as follows,

(2.8)
$$\begin{aligned} W^{1,x}L_M(Q) &= \{ u \in L_M(Q) : \nabla_x^{\alpha} u \in L_M(Q) \ \forall \ |\alpha| \le 1 \} \\ \text{and} \ W^{1,x}E_M(Q) &= \{ u \in E_M(Q) : \nabla_x^{\alpha} u \in E_M(Q) \ \forall \ |\alpha| \le 1 \} \end{aligned}$$

The last space is a subspace of the first one, and both are Banach spaces under the norm,

(2.9)
$$||u|| = \sum_{|\alpha| \le 1} ||\nabla_x^{\alpha} u||_{M,Q}.$$

We can easily show that they form a complementary system when Ω satisfies the segment property. These spaces are considered as subspaces of the product space $\Pi L_M(Q)$ which have as many copies as there is α -order derivatives, $|\alpha| \leq 1$. We shall also consider the weak topologies $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ and $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. If $u \in W^{1,x}L_M(Q)$ then the function : $t \mapsto u(t) = u(t, .)$ is defined on (0, T) with values in $W^1L_M(\Omega)$. If, further, $u \in W^{1,x}E_M(Q)$ then the concerned function is a $W^1E_M(\Omega)$ -valued and is strongly measurable. Furthermore the following imbedding holds: $W^{1,x}E_M(Q) \subset L^1(0,T; W^1E_M(\Omega))$. The space $W^{1,x}L_M(Q)$ is not in general separable, if $u \in W^{1,x}L_M(Q)$, we can not conclude that the function u(t) is measurable on (0,T). However, the scalar function $t \mapsto ||u(t)||_{M,\Omega}$ is in $L^1(0,T)$. The space $W_0^{1,x}E_M(Q)$ is defined as the (norm) closure in $W^{1,x}E_M(Q)$ of $\mathcal{D}(Q)$. We can easily show as in [22] that when Ω has the segment property, then each element u of the closure of $\mathcal{D}(Q)$ with respect of the weak * topology $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ is a limit, in $W^{1,x}L_M(Q)$, of some subsequence $(u_i) \subset \mathcal{D}(Q)$ for the modular convergence; i.e., there exists $\lambda > 0$ such that for all $|\alpha| \leq 1$,

(2.10)
$$\int_{Q} M\left(\frac{\nabla_{x}^{\alpha} u_{i} - \nabla_{x}^{\alpha} u}{\lambda}\right) dx \, dt \to 0 \text{ as } i \to \infty.$$

This implies that (u_i) converges to u in $W^{1,x}L_M(Q)$ for the weak topology $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. Consequently,

(2.11)
$$\overline{\mathcal{D}(Q)}^{\sigma(\Pi L_M,\Pi E_{\overline{M}})} = \overline{\mathcal{D}(Q)}^{\sigma(\Pi L_M,\Pi L_{\overline{M}})}$$

This space will be denoted by $W_0^{1,x}L_M(Q)$. Furthermore, $W_0^{1,x}E_M(Q) = W_0^{1,x}L_M(Q) \cap \Pi E_M$. Poincaré's inequality also holds in $W_0^{1,x}L_M(Q)$, i.e., there is a constant C > 0 such that for all $u \in W_0^{1,x}L_M(Q)$ one has,

(2.12)
$$\sum_{|\alpha| \le 1} \|\nabla_x^{\alpha} u\|_{M,Q} \le C \sum_{|\alpha|=1} \|\nabla_x^{\alpha} u\|_{M,Q}.$$

Thus both sides of the last inequality are equivalent norms on $W_0^{1,x}L_M(Q)$. We have then the following complementary system

(2.13)
$$\begin{pmatrix} W_0^{1,x}L_M(Q) & F \\ W_0^{1,x}E_M(Q) & F_0 \end{pmatrix}$$

F being the dual space of $W_0^{1,x} E_M(Q)$. It is also, except for an isomorphism, the quotient of $\prod L_{\overline{M}}$ by the polar set $W_0^{1,x} E_M(Q)^{\perp}$, and will be denoted by F =EJQTDE, 2010 No. 2, p. 4 $W^{-1,x}L_{\overline{M}}(Q)$ and it is shown that,

(2.14)
$$W^{-1,x}L_{\overline{M}}(Q) = \left\{ f = \sum_{|\alpha| \le 1} \nabla_x^{\alpha} f_{\alpha} : f_{\alpha} \in L_{\overline{M}}(Q) \right\}.$$

This space will be equipped with the usual quotient norm

(2.15)
$$||f|| = \inf \sum_{|\alpha| \le 1} ||f_{\alpha}||_{\overline{M},Q}$$

where the infimum is taken on all possible decompositions

(2.16)
$$f = \sum_{|\alpha| \le 1} \nabla_x^{\alpha} f_{\alpha}, \quad f_{\alpha} \in L_{\overline{M}}(Q).$$

The space F_0 is then given by,

(2.17)
$$F_0 = \left\{ f = \sum_{|\alpha| \le 1} \nabla_x^{\alpha} f_{\alpha} : f_{\alpha} \in E_{\overline{M}}(Q) \right\}$$

and is denoted by $F_0 = W^{-1,x} E_{\overline{M}}(Q)$.

Remark 2.3. We can easily check, using lemma 2.1, that each uniformly lipschitzian mapping F, with F(0) = 0, acts in inhomogeneous Orlicz-Sobolev spaces of order $1 : W^{1,x}L_M(Q)$ and $W_0^{1,x}L_M(Q)$.

3. Assumptions and statement of main results

Throughout this paper, we assume that the following assumptions hold true: Ω is a bounded open set on \mathbb{R}^N $(N \ge 2)$, T > 0 is given and we set $Q = \Omega \times (0, T)$. Let M and P be two N-function such that $P \ll M$.

(3.1)
$$b: \Omega \times \mathbb{R} \to \mathbb{R}$$
 is a Carathéodory function such that,

for every $x \in \Omega$: b(x, s) is a strictly increasing C^1 -function, with b(x, 0) = 0. For any K > 0, there exists $\lambda_K > 0$, a function A_K in $L^{\infty}(\Omega)$ and a function B_K in $L_M(\Omega)$ such that

(3.2)
$$\lambda_K \leq \frac{\partial b(x,s)}{\partial s} \leq A_K(x) \text{ and } \left| \nabla_x \left(\frac{\partial b(x,s)}{\partial s} \right) \right| \leq B_K(x).$$

for almost every $x \in \Omega$, for every s such that $|s| \leq K$.

Consider a second order partial differential operator $A: D(A) \subset W^{1,x}L_M(Q) \to W^{-1,x}L_{\overline{M}}(Q)$ in divergence form,

$$A(u) = -\operatorname{div}\left(a(x, t, u, \nabla u)\right)$$

where

(3.3) $a: \Omega \times (0,T) \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function satisfying

for any K > 0, there exist $\beta_K^i > 0$ (for i = 1, 2, 3, 4) and a function $C_K \in E_{\bar{M}}(Q)$ such that:

(3.4)
$$|a(x,t,s,\xi)| \le C_K(x,t) + \beta_K^1 \bar{M}^{-1} P(\beta_K^2 |s|) + \beta_K^3 \bar{M}^{-1} M(\beta_K^4 |\xi|)$$
EJQTDE, 2010 No. 2, p. 5

for almost every $(x,t) \in Q$ and for every $|s| \leq K$ and for every $\xi \in \mathbb{R}^N$.

(3.5)
$$\left[a(x,t,s,\xi) - a(x,t,s,\xi^*)\right] \left[\xi - \xi^*\right] > 0$$

(3.6)
$$a(x,t,s,\xi)\xi \ge \alpha M(|\xi|)$$

for almost every $(x,t) \in Q$, for every $s \in \mathbb{R}$ and for every $\xi \neq \xi^* \in \mathbb{R}^N$, where $\alpha > 0$ is a given real number.

(3.7)
$$\Phi : \mathbb{R} \to \mathbb{R}^N$$
 is a continuous function

(3.8)
$$f$$
 is an element of $L^1(Q)$.

(3.9)
$$u_0$$
 is an element of $L^1(\Omega)$ such that $b(x, u_0) \in L^1(\Omega)$.

Remark 3.1. As already mentioned in the introduction, problem (1.1)-(1.3) does not admit a weak solution under assumptions (3.1)-(3.9) (even when b(x, u) = u) since the growths of a(x, t, u, Du) and $\Phi(u)$ are not controlled with respect to u (so that these fields are not in general defined as distributions, even when u belongs to $W_0^{1,x}L_M(Q)$.

4. Definition of a renormalized solution

The definition of a renormalized solution for problem (1.1)-(1.3) can be stated as follows.

Definition 4.1. A measurable function u defined on Q is a renormalized solution of Problem (1.1)-(1.3) if

(4.1)
$$T_K(u) \in W_0^{1,x} L_M(Q) \quad \forall K \ge 0 \text{ and } b(x,u) \in L^{\infty}(0,T; L^1(\Omega)),$$

$$(4.2) \quad \int_{\{(t,x)\in Q \ ; \ m\leq |u(x,t)|\leq m+1\}} a(x,t,u,\nabla u)\nabla u\,dx\,dt \ \longrightarrow 0 \quad \text{ as } m \to +\infty \ ;$$

and if, for every function S in $W^{2,\infty}(\mathbb{R})$, which is piecewise C^1 and such that S' has a compact support, we have

(4.3)
$$\frac{\partial B_S(x,u)}{\partial t} - div \Big(S'(u)a(x,t,u,\nabla u) \Big) + S''(u)a(x,t,u,\nabla u)\nabla u \\ - div \Big(S'(u)\Phi(u) \Big) + S''(u)\Phi(u)\nabla u = fS'(u) \text{ in } D'(Q),$$

and

(4.4)
$$B_S(x,u)(t=0) = B_S(x,u_0) \text{ in } \Omega,$$

where $B_S(x,z) = \int_0^z \frac{\partial b(x,r)}{\partial r} S'(r) dr.$

The following remarks are concerned with a few comments on definition 4.1. EJQTDE, 2010 No. 2, p. 6 $\,$

Remark 4.2. Equation (4.3) is formally obtained through pointwise multiplication of equation (1.1) by S'(u). Note that due to (4.1) each term in (4.3) has a meaning in $L^1(Q) + W^{-1,x}L_{\overline{M}}(Q)$.

Indeed, if K is such that $suppS' \subset [-K, K]$, the following identifications are made in (4.3).

* $B_S(x,u) \in L^{\infty}(Q)$, because $|B_S(x,u)| \leq K ||A_K||_{L^{\infty}(\Omega)} ||S'||_{L^{\infty}(\mathbb{R})}$.

* $S'(u)a(x,t,u,\nabla u)$ identifies with $S'(u)a(x,t,T_K(u),\nabla T_K(u))$ a.e. in Q. Since indeed $|T_K(u)| \leq K$ a.e. in Q. Since $S'(u) \in L^{\infty}(Q)$ and with (3.4), (4.1) we obtain that

$$S(u)a\left(x,t,T_K(u),\nabla T_K(u)\right) \in (L_{\overline{M}}(Q))^N.$$

* $S'(u)a(x,t,u,\nabla u)\nabla u$ identifies with $S'(u)a(x,t,T_K(u),\nabla T_K(u))\nabla T_K(u)$ and in view of (3.2) and (4.1) one has

$$S'(u)a(x,t,T_K(u),\nabla T_K(u))\nabla T_K(u) \in L^1(Q).$$

* $S'(u)\Phi(u)$ and $S''(u)\Phi(u)\nabla u$ respectively identify with $S'(u)\Phi(T_K(u))$ and $S''(u)\Phi(T_K(u))\nabla T_K(u)$. Due to the properties of S and (3.7), the functions S', S'' and $\Phi \circ T_K$ are bounded on \mathbb{R} so that (4.1) implies that $S'(u)\Phi(T_K(u)) \in (L^{\infty}(Q))^N$, and $S''(u)\Phi(T_K(u))\nabla T_K(u) \in (L_M(Q))^N$.

The above considerations show that equation (4.3) takes place in D'(Q) and that

(4.5)
$$\frac{\partial B_S(x,u)}{\partial t} \text{ belongs to } W^{-1,x}L_{\overline{M}}(Q) + L^1(Q).$$

Due to the properties of S and (3.2), we have

(4.6)
$$|\nabla B_S(x,u)| \le ||A_K||_{L^{\infty}(\Omega)} ||\nabla T_K(u)|| ||S'||_{L^{\infty}(\Omega)} + K ||S'||_{L^{\infty}(\Omega)} B_K(x)$$

and

(4.7)
$$B_S(x,u) \text{ belongs to } W_0^{1,x} L_M(Q).$$

Moreover (4.5) and (4.7) implies that $B_S(x, u)$ belongs to $C^0([0, T]; L^1(\Omega))$ (for a proof of this trace result see [30]), so that the initial condition (4.4) makes sense.

Remark 4.3. For every $S \in W^{2,\infty}(\mathbb{R})$, nondecreasing function such that $\operatorname{supp} S' \subset [-K, K]$ and (3.2), we have

(4.8)
$$\lambda_K |S(r) - S(r')| \le |B_S(x, r) - B_S(x, r')| \le ||A_K||_{L^{\infty}(\Omega)} |S(r) - S(r')|$$

for almost every $x \in \Omega$ and for every $r, r' \in \mathbb{R}$.

5. EXISTENCE RESULT

This section is devoted to establish the following existence theorem.

Theorem 5.1. Under assumption (3.1)-(3.9) there exists at at least a renormalized solution of Problem (1.1)-(1.3).

Proof. The proof is divided into 5 steps.

EJQTDE, 2010 No. 2, p. 7

 \square

* Step 1. For $n \in \mathbb{N}^*$, let us define the following approximations of the data:

(5.1)
$$b_n(x,r) = b(x,T_n(r)) + \frac{1}{n}r \quad \text{a.e. in } \Omega, \ \forall s \in \mathbb{R},$$

(5.2)
$$a_n(x,t,r,\xi) = a(x,t,T_n(r),\xi)$$
 a.e. in $Q, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^N$,

(5.3) Φ_n is a Lipschitz continuous bounded function from \mathbb{R} into \mathbb{R}^N ,

such that Φ_n uniformly converges to Φ on any compact subset of \mathbb{R} as n tends to $+\infty$.

(5.4) $f_n \in C_0^{\infty}(Q)$: $||f_n||_{L^1} \le ||f||_{L^1}$ and $f_n \longrightarrow f$ in $L^1(Q)$ as *n* tends to $+\infty$, (5.5)

 $u_{0n} \in C_0^{\infty}(\Omega) : \|b_n(x, u_{0n})\|_{L^1} \le \|b(x, u_0)\|_{L^1} \text{ and } b_n(x, u_{0n}) \longrightarrow b(x, u_0) \text{ in } L^1(\Omega)$ as *n* tends to $+\infty$.

Let us now consider the following regularized problem:

(5.6)
$$\frac{\partial b_n(x,u_n)}{\partial t} - div \Big(a_n(x,t,u_n,\nabla u_n) + \Phi_n(u_n) \Big) = f_n \text{ in } Q,$$

(5.7)
$$u_n = 0 \text{ on } (0,T) \times \partial \Omega,$$

(5.8)
$$b_n(x, u_n)(t=0) = b_n(x, u_{0n})$$
 in Ω

As a consequence, proving existence of a weak solution $u_n \in W_0^{1,x} L_M(Q)$ of (5.6)-(5.8) is an easy task (see e.g. [25], [33]).

* Step 2. The estimates derived in this step rely on usual techniques for problems of the type (5.6)-(5.8).

Proposition 5.2. Assume that (3.1)-(3.9) hold true and let u_n be a solution of the approximate problem (5.6) – (5.8). Then for all K, n > 0, we have

(5.9)
$$||T_K(u_n)||_{W_0^{1,x}L_M(Q)} \le K \Big(||f||_{L^1(Q)} + ||b(x,u_0)||_{L^1(\Omega)} \Big) \equiv CK,$$

where C is a constant independent of n.

(5.10)
$$\int_{\Omega} B_K^n(x, u_n)(\tau) \, dx \le K(\|f\|_{L^1(Q)} + \|b(x, u_0)\|_{L^1(\Omega)}) \equiv CK,$$

for almost any τ in (0,T), and where $B_K^n(x,r) = \int_0^r T_K(s) \frac{\partial b_n(x,s)}{\partial s} ds$.

(5.11)
$$\lim_{K \to \infty} meas \left\{ (x,t) \in Q : |u_n| > K \right\} = 0 \quad uniformly \text{ with respect to } n.$$

Proof. We take $T_K(u_n)_{\chi(0,\tau)}$ as test function in (5.6), we get for every $\tau \in (0,T)$ (5.12)

$$\langle \frac{\partial b_n(x,u_n)}{\partial t}, T_K(u_n)_{\chi(0,\tau)} \rangle + \int_{Q_\tau} a_n(x,t,T_K(u_n),\nabla T_K(u_n))\nabla T_K(u_n) \, dx \, dt$$
$$+ \int_{Q_\tau} \Phi_n(u_n)\nabla T_K(u_n) \, dx \, dt = \int_{Q_\tau} f_n T_K(u_n) \, dx \, dt,$$
EJQTDE, 2010 No. 2, p. 8

which implies that,

$$\int_{\Omega} B_{K}^{n}(x, u_{n})(\tau) \, dx + \int_{Q_{\tau}} a_{n}(x, t, T_{K}(u_{n}), \nabla T_{K}(u_{n})) \nabla T_{K}(u_{n}) \, dx \, dt + \int_{Q_{\tau}} \Phi_{n}(u_{n}) \nabla T_{K}(u_{n}) \, dx \, dt = \int_{Q_{\tau}} f_{n} T_{K}(u_{n}) \, dx \, dt + \int_{\Omega} B_{K}^{n}(x, u_{0n}) \, dx$$

where, $B_K^n(x,r) = \int_0^r T_K(s) \frac{\partial b_n(x,s)}{\partial s} ds$. The Lipschitz character of Φ_n , Stokes formula together with the boundary condition (5.7), make it possible to obtain

(5.14)
$$\int_{Q_{\tau}} \Phi_n(u_n) \nabla T_K(u_n) \, dx \, dt = 0.$$

Due to the definition of B_K^n we have,

(5.15)
$$0 \le \int_{\Omega} B_K^n(x, u_{0n}) \, dx \le K \int_{\Omega} |b_n(x, u_{0n})| \, dx \le K ||b(x, u_0)||_{L^1(\Omega)}$$

By using (5.14), (5.15) and the fact that $B_K^n(x, u_n) \ge 0$, permit to deduce from (5.13) that (5.16)

$$\int_{Q} a_n(x,t,T_K(u_n),\nabla T_K(u_n))\nabla T_K(u_n) \, dx \, dt \le K(\|f_n\|_{L^1(Q)} + \|b_n(x,u_{0n})\|_{L^1(\Omega)}) \le CK,$$

which implies by virtue of (3.6), (5.4) and (5.5) that,

(5.17)
$$\int_{Q} M(\nabla T_{K}(u_{n})) \, dx \, dt \leq K(\|f\|_{L^{1}(Q)} + \|b(x, u_{0})\|_{L^{1}(\Omega)}) \equiv CK.$$

We deduce from that above inequality (5.13) and (5.15) that

(5.18)
$$\int_{\Omega} B_K^n(x, u_n)(\tau) \, dx \le (\|f\|_{L^1(Q)} + \|b(x, u_0)\|_{L^1(\Omega)}) \equiv CK.$$

for almost any τ in (0, T).

We prove (5.11). Indeed, thanks to lemma 5.7 of [21], there exist two positive constants δ, λ such that,

(5.19)
$$\int_{Q} M(v) \, dx \, dt \leq \delta \int_{Q} M(\lambda |\nabla v|) \, dx \, dt \quad \text{for all} \quad v \in W_0^{1,x} L_M(Q).$$

Taking $v = \frac{T_K(u_n)}{\lambda}$ in (5.19) and using (5.17), one has

(5.20)
$$\int_{Q} M\left(\frac{T_{K}(u_{n})}{\lambda}\right) dx dt \leq CK$$

where C is a constant independent of K and n. Which implies that,

(5.21)
$$meas \left\{ (x,t) \in Q : |u_n| > K \right\} \le \frac{C'K}{M(\frac{K}{\lambda})}.$$
EJQTDE, 2010 No. 2, p. 9

where C' is a constant independent of K and n. Finally,

$$\lim_{K \to \infty} meas \Big\{ (x,t) \in Q: \ |u_n| > K \Big\} = 0 \text{ uniformly with respect to } n.$$

We prove de following proposition:

Proposition 5.3. Let u_n be a solution of the approximate problem (5.6)-(5.8), then

 $(5.22) u_n \to u \quad a.e. \ in \ Q,$

$$(5.23) b_n(x,u_n) \to b(x,u) \quad a.e. \ in \ Q,$$

 $(5.24) b(x,u) \in L^{\infty}(0,T;L^{1}(\Omega)),$

(5.25)
$$a_n\left(x,t,T_k(u_n),\nabla T_k(u_n)\right) \rightharpoonup \varphi_k \quad in \quad (L_{\overline{M}}(Q))^N \quad for \quad \sigma(\Pi L_{\overline{M}},\Pi E_M)$$

for some $\varphi_k \in (L_{\overline{M}}(Q))^N$.

(5.26)
$$\lim_{m \to +\infty} \lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt = 0.$$

Proof. Proceeding as in [5, 9, 7], we have for any $S \in W^{2,\infty}(\mathbb{R})$ such that S' has a compact support (supp $S' \subset [-K, K]$)

(5.27)
$$B_S^n(x, u_n) \text{ is bounded in } W_0^{1,x} L_M(Q),$$

and

(5.28)
$$\frac{\partial B_S^n(x, u_n)}{\partial t} \text{ is bounded in } L^1(Q) + W^{-1, x} L_{\overline{M}}(Q),$$

independently of n.

As a consequence of (4.6) and (5.17) we then obtain (5.27). To show that (5.28) holds true, we multiply the equation for u_n in (5.6) by $S'(u_n)$ to obtain

(5.29)
$$\frac{\partial B_S^n(x,u_n)}{\partial t} = \operatorname{div}\left(S'(u_n)a_n(t,x,u_n,\nabla u_n)\right)$$

$$-S''(u_n)a_n(x,t,u_n,\nabla u_n)\nabla u_n + div\left(S'(u_n)\Phi_n(u_n)\right) + f_nS'(u_n) \text{ in } D'(Q).$$

Where $B_S^n(x,r) = \int_0^r S'(s) \frac{\partial b_n(x,s)}{\partial s} ds$. Since supp S' and supp S'' are both included in [-K, K], u^{ε} may be replaced by $T_K(u_n)$ in each of these terms. As a consequence, each term in the right hand side of (5.29) is bounded either in $W^{-1,x}L_{\overline{M}}(Q)$ or in $L^1(Q)$. As a consequence of (3.2), (5.29) we then obtain (5.28). Arguing again as in [5, 7, 6, 9] estimates (5.27), (5.28) and (4.8), we can show (5.22) and (5.23).

We now establish that b(x, u) belongs to $L^{\infty}(0, T; L^{1}(\Omega))$. To this end, recalling (5.23) makes it possible to pass to the limit-inf in (5.18) as n tends to $+\infty$ and to obtain

$$\frac{1}{K} \int_{\Omega} B_K(x, u)(\tau) \, dx \le (\|f\|_{L^1(Q)} + \|b(x, u_0)\|_{L^1(\Omega)}) \equiv C,$$

EJQTDE, 2010 No. 2, p. 10

for almost any τ in (0,T). Due to the definition of $B_K(x,s)$, and because of the pointwise convergence of $\frac{1}{K}B_K(x,u)$ to b(x,u) as K tends to $+\infty$, which shows that b(x,u) belongs to $L^{\infty}(0,T; L^1(\Omega))$. We prove (5.25). Let $\varphi \in (E_M(Q))^N$ with $\|\varphi\|_{M,Q} = 1$. In view of the mono-

We prove (5.25). Let $\varphi \in (E_M(Q))^N$ with $\|\varphi\|_{M,Q} = 1$. In view of the monotonicity of *a* one easily has, (5.30)

$$\int_{Q}^{(0,00)} a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) \varphi \, dx \, dt \leq \int_{Q} a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) \nabla T_k(u_n) \, dx \, dt \\ + \int_{Q} a_n \Big(x, t, T_k(u_n), \varphi \Big) [\nabla T_k(u_n) - \varphi] \, dx \, dt.$$

and (5.31)

$$(0.51) - \int_{Q} a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) \varphi \, dx \, dt \leq \int_{Q} a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) \nabla T_k(u_n) \, dx \, dt \\ - \int_{Q} a_n \Big(x, t, T_k(u_n), -\varphi \Big) [\nabla T_k(u_n) + \varphi] \, dx \, dt,$$

since $T_k(u_n)$ is bounded in $W_0^{1,x}L_M(Q)$, one easily deduce that $a_n(x,t,T_k(u_n),\nabla T_k(u_n))$ is a bounded sequence in $(L_{\overline{M}}(Q))^N$, and we obtain (5.25).

Now we prove (5.26). We take of $T_1(u_n - T_m(u_n))$ as test function in (5.6), we obtain

$$(5.32) \quad \langle \frac{\partial b_n(x, u_n)}{\partial t}, T_1(u_n - T_m(u_n)) \rangle + \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt \\ + \int_Q \operatorname{div} \left[\int_0^{u_n} \Phi(r) T_1'(r - T_m(r)) \right] \, dx \, dt = \int_Q f_n T_1(u_n - T_m(u_n)) \, dx \, dt.$$

Using the fact that $\int_0^{\infty} \Phi(r) T_1'(r-T_m(r)) dx dt \in W_0^{1,x} L_M(Q)$ and Stokes formula, we get

(5.33)
$$\int_{\Omega} B_n^m(x, u_n(T)) \, dx + \int_{\{m \le |u_n| \le m+1\}} a(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt$$
$$\le \int_{Q} |f_n T_1(u_n - T_m(u_n))| \, dx \, dt + \int_{\Omega} B_n^m(x, u_{0n}) \, dx,$$
where $B_n^m(x, r) = \int_{r}^{r} \frac{\partial b_n(x, s)}{\partial t_n} T_r(s, r) \, ds$

where $B_n^m(x,r) = \int_0^{\infty} \frac{\partial T_n(x,r)}{\partial s} T_1(s - T_m(s)) ds$. In order to pass to the limit as n tends to $+\infty$ in (5.33), we use $B_n^m(x, u_n(T)) \ge 0$ and (5.4)-(5.5), we obtain that

(5.34)
$$\lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt$$
$$\leq \int_{\{|u| > m\}} |f| \, dx \, dt + \int_{\{|u_0| > m\}} |b(x, u_0)| \, dx.$$

Finally by (3.8), (3.9) and (5.34) we obtain (5.26).

EJQTDE, 2010 No. 2, p. 11

* Step 3. This step is devoted to introduce for $K \ge 0$ fixed, a time regularization $w_{\mu,j}^i$ of the function $T_K(u)$ and to establish the following proposition:

Proposition 5.4. Let u_n be a solution of the approximate problem (5.6)-(5.8). Then, for any $k \ge 0$:

(5.35)
$$\nabla T_k(u_n) \to \nabla T_k(u) \quad a.e. \quad in \quad Q,$$

(5.36)

$$a_n\left(x,t,T_k(u_n),\nabla T_k(u_n)\right) \rightharpoonup a\left(x,t,T_k(u),\nabla T_k(u)\right) \text{ weakly in } (L_{\overline{M}}(Q))^N,$$

(5.37)
$$M(|\nabla T_k(u_n)|) \to M(|\nabla T_k(u)|)$$
 strongly in $L^1(Q)$,

as n tends to $+\infty$.

Let use give the following lemma which will be needed later:

Lemma 5.5. Under assumptions (3.1) - (3.9), and let (z_n) be a sequence in $W_0^{1,x}L_M(Q)$ such that,

(5.38)
$$z_n \rightharpoonup z \text{ in } W_0^{1,x} L_M(Q) \text{ for } \sigma(\Pi L_M(Q), \Pi E_{\overline{M}}(Q)),$$

(5.39)
$$(a_n(x,t,z_n,\nabla z_n))_n$$
 is bounded in $(L_{\overline{M}}(Q))^N$,

(5.40)
$$\int_{Q} \left[a_n(x,t,z_n,\nabla z_n) - a_n(x,t,z_n,\nabla z\chi_s) \right] \left[\nabla z_n - \nabla z\chi_s \right] dx \, dt \longrightarrow 0,$$

as n and s tend to $+\infty$, and where χ_s is the characteristic function of

$$Q_s = \Big\{ (x,t) \in Q \ ; \ |\nabla z| \le s \Big\}.$$

Then,

(5.41)
$$\nabla z_n \to \nabla z \quad a.e. \text{ in } Q,$$

(5.42)
$$\lim_{n \to \infty} \int_Q a_n(x, t, z_n, \nabla z_n) \nabla z_n \, dx \, dt = \int_Q a(x, t, z, \nabla z) \nabla z \, dx \, dt$$

(5.43)
$$M(|\nabla z_n|) \to M(|\nabla z|) \quad in \quad L^1(Q)$$

Proof. See [32].

Proof. (Proposition 5.4). The proof is almost identical of the one given in, e.g. [32]. where the result is established for b(x, u) = u and where the growth of a(x, t, u, Du) is controlled with respect to u. This proof is devoted to introduce for $k \ge 0$ fixed, a time regularization of the function $T_k(u)$, this notion, introduced by R. Landes (see Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231 in [24]). More recently, it has been exploited in [10] and [15] to solve a few nonlinear evolution problems with L^1 or measure data.

Let $v_j \in D(Q)$ be a sequence such that $v_j \to u$ in $W_0^{1,x} L_M(Q)$ for the modular convergence and let $\psi_i \in D(\Omega)$ be a sequence which converges strongly to u_0 in $L^1(\Omega)$.

Let $w_{i,j}^{\mu} = T_k(v_j)_{\mu} + e^{-\mu t} T_k(\psi_i)$ where $T_k(v_j)_{\mu}$ is the mollification with respect to time of $T_k(v_j)$, note that $w_{i,j}^{\mu}$ is a smooth function having the following properties:

(5.44)
$$\frac{\partial w_{i,j}^{\mu}}{\partial t} = \mu(T_k(v_j) - w_{i,j}^{\mu}), \ w_{i,j}^{\mu}(0) = T_k(\psi_i), \ |w_{i,j}^{\mu}| \le k,$$

(5.45)
$$w_{i,j}^{\mu} \to T_k(u)_{\mu} + e^{-\mu t} T_k(\psi_i) \text{ in } W_0^{1,x} L_M(Q),$$

for the modular convergence as $j \to \infty$.

(5.46)
$$T_k(u)_{\mu} + e^{-\mu t} T_k(\psi_i) \to T_k(u) \text{ in } W_0^{1,x} L_M(Q),$$

for the modular convergence as $\mu \to \infty$.

Let now the function h_m defined on $\mathbb R$ with $m \ge k$ by: $h_m(r) = 1$ if $|r| \le 1$ m, h(r) = -|r| + m + 1 if $m \le |r| \le m + 1$ and h(r) = 0 if $|r| \ge m + 1$. Using the admissible test function $\varphi_{n,j,m}^{\mu,i} = (T_k(u_n) - w_{i,j}^{\mu})h_m(u_n)$ as test func-

tion in (5.6) leads to

$$(5.47) \ \langle \frac{\partial b_n(x,u_n)}{\partial t}, \varphi_{n,j,m}^{\mu,i} \rangle + \int_Q a_n(x,t,u_n,\nabla u_n) (\nabla T_k(u_n) - \nabla w_{i,j}^{\mu}) h_m(u_n) \ dx \ dt + \int_Q a_n(x,t,u_n,\nabla u_n) (T_k(u_n) - w_{i,j}^{\mu}) \nabla u_n h'_m(u_n) \ dx \ dt + \int_{\{m \le |u_n| \le m+1\}} \Phi_n(u_n) \nabla u_n h'_m(u_n) (T_k(u_n) - w_{i,j}^{\mu}) \ dx \ dt + \int_Q \Phi_n(u_n) h_m(u_n) (\nabla T_k(u_n) - \nabla w_{i,j}^{\mu}) \ dx \ dt = \int_Q f_n \varphi_{n,j,m}^{\mu,i} \ dx \ dt.$$

Denoting by $\epsilon(n, j, \mu, i)$ any quantity such that,

$$\lim_{i\to\infty}\lim_{\mu\to\infty}\lim_{j\to\infty}\lim_{n\to\infty}\epsilon(n,j,\mu,i)=0.$$

The very definition of the sequence $w_{i,j}^{\mu}$ makes it possible to establish the following lemma.

Lemma 5.6. Let
$$\varphi_{n,j,m}^{\mu,i} = (T_k(u_n) - w_{i,j}^{\mu})h_m(u_n)$$
, we have for any $k \ge 0$:
(5.48) $\langle \frac{\partial b_n(x,u_n)}{\partial t}, \varphi_{n,j,m}^{\mu,i} \rangle \ge \epsilon(n,j,\mu,i),$

where \langle,\rangle denotes the duality pairing between $L^1(Q) + W^{-1,x}L_{\overline{M}}(Q)$ and $L^{\infty}(Q) \cap$ $W_0^{1,x}L_M(Q).$

Proof. See [34, 32].

Now, we turn to complete the proof of proposition 5.4. First, it is easy to see that (see also [32]):

(5.49)
$$\int_{Q} f_n \varphi_{n,j,m}^{\mu,i} \, dx \, dt = \epsilon(n,j,\mu),$$

(5.50)
$$\int_{Q} \Phi_{n}(u_{n})h_{m}(u_{n})(\nabla T_{k}(u_{n}) - \nabla w_{i,j}^{\mu}) dx dt = \epsilon(n, j, \mu),$$

EJQTDE, 2010 No. 2, p. 13

(5.51) $\int_{\{m \le |u_n| \le m+1\}} \Phi_n(u_n) \nabla u_n(T_k(u_n) - w_{i,j}^{\mu}) \, dx \, dt = \epsilon(n, j, \mu).$

Concerning the third term of the right hand side of (5.47) we obtain that

(5.52)
$$\int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n h'_m(u_n) (T_k(u_n) - w^{\mu}_{i,j}) \, dx \, dt$$
$$\le 2k \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt.$$

Then by (5.26). we deduce that, (5.53)

$$\int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n h'_m(u_n) (T_k(u_n) - w^{\mu}_{i,j}) \, dx \, dt \le \epsilon(n, \mu, m).$$

Finally, by means of (5.47)-(5.53), we obtain,

(5.54)
$$\int_Q a_n(x,t,u_n,\nabla u_n)(\nabla T_k(u_n)-\nabla w_{i,j}^{\mu})h_m(u_n)\ dx\ dt \le \epsilon(n,j,\mu,m).$$

Splitting the first integral on the left hand side of (5.54) where $|u_n| \le k$ and $|u_n| > k$, we can write,

$$\int_{Q} a_n(x,t,u_n,\nabla u_n)(\nabla T_k(u_n) - \nabla w_{i,j}^{\mu})h_m(u_n) \, dx \, dt$$

$$= \int_{Q} a_n(x,t,T_k(u_n),\nabla T_k(u_n))(\nabla T_k(u_n) - \nabla w_{i,j}^{\mu})h_m(u_n) \, dx \, dt$$

$$- \int_{\{|u_n| > k\}} a_n(x,t,u_n,\nabla u_n)\nabla w_{i,j}^{\mu}h_m(u_n) \, dx \, dt.$$

Since $h_m(u_n) = 0$ if $|u_n| \ge m + 1$, one has

(5.55)
$$\int_{Q} a_{n}(x,t,u_{n},\nabla u_{n})(\nabla T_{k}(u_{n}) - \nabla w_{i,j}^{\mu})h_{m}(u_{n}) dx dt$$
$$= \int_{Q} a_{n}(x,t,T_{k}(u_{n}),\nabla T_{k}(u_{n}))(\nabla T_{k}(u_{n}) - \nabla w_{i,j}^{\mu})h_{m}(u_{n}) dx dt$$
$$- \int_{\{|u_{n}| > k\}} a_{n}(x,t,T_{m+1}(u_{n}),\nabla T_{m+1}(u_{n}))\nabla w_{i,j}^{\mu}h_{m}(u_{n}) dx dt = I_{1} + I_{2}$$

In the following we pass to the limit in (5.55) as n tends to $+\infty$, then j then μ and then m tends to $+\infty$. We prove that

$$I_2 = \int_Q \varphi_m \nabla T_k(u)_\mu h_m(u)_{\chi_{\{|u|>k\}}} \, dx \, dt + \epsilon(n, j, \mu)$$

Using now the term I_1 of (5.55), we conclude that, it is easy to show that,

(5.56)
$$\int_{Q} a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) (\nabla T_k(u_n) - \nabla w_{i,j}^{\mu}) h_m(u_n) \, dx \, dt$$
$$= \int_{Q} \Big[a_n(x, t, T_k(u_n), \nabla T_k(u_n)) - a_n(x, t, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \Big]$$
EJQTDE, 2010 No. 2, p. 14

and

$$\times \Big[\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s\Big]h_m(u_n) \,dx \,dt$$
$$+ \int_Q a_n\Big(x, t, T_k(u_n), \nabla T_k(v_j)\chi_j^s\Big)\Big[\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s\Big]h_m(u_n) \,dx \,dt$$
$$+ \int_Q a_n\Big(x, t, T_k(u_n), \nabla T_k(u_n)\Big)\nabla T_k(v_j)\chi_j^sh_m(u_n) \,dx \,dt$$
$$- \int_Q a_n\Big(x, t, T_k(u_n), \nabla T_k(u_n)\Big)\nabla w_{i,j}^{\mu}h_m(u_n) \,dx \,dt = J_1 + J_2 + J_3 + J_4,$$
re χ^s denotes the characteristic function of the subset

where χ^s_j denotes the characteristic function of the subset

$$\Omega_s^j = \left\{ (x,t) \in Q : |\nabla T_k(v_j)| \le s \right\}$$

In the following we pass to the limit in (5.56) as n tends to $+\infty$, then j then μ then m tends and then s tends to $+\infty$ in the last three integrals of the last side. We prove that

$$(5.57) J_2 = \epsilon(n, j),$$

(5.58)
$$J_3 = \int_Q \varphi_k \nabla T_k(u) \chi_s \, dx \, dt + \epsilon(n, j),$$

and

(5.59)
$$J_4 = -\int_Q \varphi_k \nabla T_k(u) \, dx \, dt + \epsilon(n, j, \mu, s).$$

We conclude then that, (5.60)

$$\begin{aligned} \int_{Q} \left[a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) - a_n \Big(x, t, T_k(u_n), \nabla T_k(u) \chi_s \Big) \right] \Big[\nabla T_k(u_n) - \nabla T_k(u) \chi_s \Big] \, dx \, dt \\ &= \int_{Q} \left[a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) - a_n \Big(x, t, T_k(u_n), \nabla T_k(u) \chi_s \Big) \right] \\ &\times \Big[\nabla T_k(u_n) - \nabla T_k(u) \chi_s \Big] h_m(u_n) \, dx \, dt \\ &+ \int_{Q} a_n \Big(x, t, T_k(u_n), \nabla T_k(u_n) \Big) \Big[\nabla T_k(u_n) - \nabla T_k(u) \chi^s \Big] (1 - h_m(u_n)) \, dx \, dt \\ &- \int_{Q} a_n \Big(x, t, T_k(u_n), \nabla T_k(u) \chi_s \Big) \Big[\nabla T_k(u_n) - \nabla T_k(u) \chi_s \Big] (1 - h_m(u_n)) \, dx \, dt. \\ &\text{Combining (5.48), (5.56), (5.57), (5.58), (5.59) and (5.60) we deduce,} \end{aligned}$$

(5.61) $\int_{Q} \left[a_n \left(x, t, T_k(u_n), \nabla T_k(u_n) \right) - a_n \left(x, t, T_k(u_n), \nabla T_k(u) \chi_s \right) \right] \left[\nabla T_k(u_n) - \nabla T_k(u) \chi_s \right] dx dt$ $\leq \epsilon(n, j, \mu, m, s).$

To pass to the limit in (5.61) as n, j, m, s tends to infinity, we obtain

(5.62)
$$\lim_{s \to \infty} \lim_{n \to \infty} \int_{Q} \left[a_n \left(x, t, T_k(u_n), \nabla T_k(u_n) \right) - a_n \left(x, t, T_k(u_n), \nabla T_k(u) \chi_s \right) \right] \\ \times \left[\nabla T_k(u_n) - \nabla T_k(u) \chi_s \right] dx dt = 0.$$

EJQTDE, 2010 No. 2, p. 15

This implies by the lemma 5.5, the desired statement and hence the proof of Proposition 5.4 is achieved. $\hfill \Box$

* **Step 4**. In this step we prove that u satisfies (4.2).

Lemma 5.7. The limit u of the approximate solution u_n of (5.6)-(5.8) satisfies

(5.63)
$$\lim_{m \to +\infty} \int_{\{m \le |u| \le m+1\}} a(x, t, u, \nabla u) \nabla u \, dx \, dt = 0.$$

Proof. Remark that for any fixed $m \ge 0$ one has

$$\int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt$$
$$= \int_Q a_n(x, t, u_n, \nabla u_n) \Big[\nabla T_{m+1}(u_n) - \nabla T_m(u_n) \Big] \, dx \, dt$$
$$= \int_Q a_n \Big(x, t, T_{m+1}(u_n), \nabla T_{m+1}(u_n) \Big) \nabla T_{m+1}(u_n) \, dx \, dt$$
$$- \int_Q a_n \Big(x, t, T_m(u_n), \nabla T_m(u_n) \Big) \nabla T_m(u_n) \, dx \, dt$$

According to (5.42) (with $z_n = T_m(u_n)$ or $z_n = T_{m+1}(u_n)$), one is at liberty to pass to the limit as n tends to $+\infty$ for fixed $m \ge 0$ and to obtain

(5.64)
$$\lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt$$
$$= \int_Q a\Big(x, t, T_{m+1}(u), \nabla T_{m+1}(u)\Big) \nabla T_{m+1}(u) \, dx \, dt$$
$$- \int_Q a\Big(x, t, T_m(u), \nabla T_m(u)\Big) \nabla T_m(u) \, dx \, dt$$
$$= \int_{\{m \le |u| \le m+1\}} a(x, t, u, \nabla u) \nabla u \, dx \, dt$$

Taking the limit as m tends to $+\infty$ in (5.64) and using the estimate (5.26) it possible to conclude that (5.63) holds true and the proof of Lemma 5.7 is complete. \Box

★ Step 5. In this step, u is shown to satisfies (4.3) and (4.4). Let S be a function in $W^{2,\infty}(\mathbb{R})$ such that S' has a compact support. Let K be a positive real number such that $supp(S') \subset [-K, K]$. Pointwise multiplication of the approximate equation (5.6) by $S'(u_n)$ leads to

$$(5.65) \quad \frac{\partial B_S^n(x,u_n)}{\partial t} - div \Big(S'(u_n)a_n(x,t,u_n,\nabla u_n) \Big) + S''(u_n)a_n(x,t,u_n,\nabla u_n)\nabla u_n \\ - div \Big(S'(u_n)\Phi(u_n) \Big) + S''(u_n)\Phi(u_n)\nabla u_n = fS'(u_n) \quad \text{in } D'(Q),$$

where $B_S^n(x,z) = \int_0^z S'(r) \frac{\partial b_n(x,r)}{\partial r} dr$. It what follows we pass to the limit as n tends to $+\infty$ in each term of (5.65).

It what follows we pass to the limit as n tends to $+\infty$ in each term of (5.65). EJQTDE, 2010 No. 2, p. 16 * Since S' is bounded, and $B_S^n(x, u_n)$ converges to $B_S(x, u)$ a.e. in Q and in $L^{\infty}(Q)$ weak *. Then $\frac{\partial B_S^n(x, u_n)}{\partial t}$ converges to $\frac{\partial B_S(x, u)}{\partial t}$ in D'(Q) as n tends to $+\infty$.

★ Since $supp S \subset [-K, K]$, we have

$$S'(u_n)a_n(x,t,u_n,\nabla u_n) = S'(u_n)a_n\left(x,t,T_K(u_n),\nabla T_K(u_n)\right) \quad \text{a.e. in } Q$$

The pointwise convergence of u_n to u as n tends to $+\infty$, the bounded character of S', (5.22) and (5.36) of Lemma 5.4 imply that

$$S'(u_n)a_n\left(x,t,T_K(u_n),\nabla T_K(u_n)\right) \rightharpoonup S'(u)a\left(x,t,T_K(u),\nabla T_K(u)\right) \text{ weakly in } (L_{\overline{M}}(Q))^N$$

for $\sigma(\Pi L - \Pi E_K)$ as *n* tonds to $+\infty$ because $S(u) = 0$ for $|u| \ge K$ a.e. in Q . And

for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$ as *n* tends to $+\infty$, because S(u) = 0 for $|u| \ge K$ a.e. in *Q*. And the term $S'(u)a(x, t, T_K(u), \nabla T_K(u)) = S'(u)a(x, t, u, \nabla u)$ a.e. in *Q*.

★ Since $suppS' \subset [-K, K]$, we have

$$S''(u_n)a_n(x,t,u_n,\nabla u_n)\nabla u_n = S''(u_n)a_n\Big(x,t,T_K(u_n),\nabla T_K(u_n)\Big)\nabla T_K(u_n) \text{ a.e. in } Q.$$

The pointwise convergence of $S''(u_n)$ to S''(u) as n tends to $+\infty$, the bounded character of S'' and (5.22)-(5.36) of Lemma 5.4 allow to conclude that

$$S'(u_n)a_n(x,t,u_n,\nabla u_n)\nabla u_n \rightharpoonup S'(u)a\Big(x,t,T_K(u),\nabla T_K(u)\Big)\nabla T_K(u) \text{ weakly in } L^1(Q),$$

as n tends to $+\infty$. And

$$S''(u)a\Big(x,t,T_K(u),\nabla T_K(u)\Big)\nabla T_K(u) = S''(u)a(x,t,u,\nabla u)\nabla u \text{ a.e. in } Q.$$

★ Since $suppS' \subset [-K, K]$, we have $S'(u_n)\Phi_n(u_n) = S'(u_n)\Phi_n(T_K(u_n))$ a.e. in Q. As a consequence of (3.7), (5.3) and (5.22), it follows that:

$$S'(u_n)\Phi_n(u_n) \to S'(u)\Phi(T_K(u))$$
 strongly in $(E_M(Q))^N$

as n tends to $+\infty$. The term $S'(u)\Phi(T_K(u))$ is denoted by $S'(u)\Phi(u)$.

* Since $S \in W^{1,\infty}(\mathbb{R})$ with $suppS' \subset [-K,K]$, we have $S''(u_n)\Phi_n(u_n)\nabla u_n = \Phi_n(T_K(u_n))\nabla S''(u_n)$ a.e. in Q, we have, $\nabla S''(u_n)$ converges to $\nabla S''(u)$ weakly in $L_M(Q)^N$ as n tends to $+\infty$, while $\Phi_n(T_K(u_n))$ is uniformly bounded with respect to n and converges a.e. in Q to $\Phi(T_K(u))$ as n tends to $+\infty$. Therefore

$$S''(u_n)\Phi_n(u_n)\nabla u_n \rightharpoonup \Phi(T_K(u))\nabla S''(u)$$
 weakly in $L_M(Q)$.

* Due to (5.4) and (5.22), we have $f_n S(u_n)$ converges to fS(u) strongly in $L^1(Q)$, as *n* tends to $+\infty$.

As a consequence of the above convergence result, we are in a position to pass to the limit as n tends to $+\infty$ in equation (5.65) and to conclude that u satisfies (4.3).

It remains to show that $B_S(x, u)$ satisfies the initial condition (4.4). To this end, firstly remark that, S' has a compact support, we have $B_S^n(x, u_n)$ is bounded in $L^{\infty}(Q)$. Secondly, (5.65) and the above considerations on the behavior of the terms EJQTDE, 2010 No. 2, p. 17 of this equation show that $\frac{\partial B_S^n(x, u_n)}{\partial t}$ is bounded in $L^1(Q) + W^{-1,x}L_{\overline{M}}(Q)$. As a consequence, an Aubin's type Lemma (see e.g., [36], Corollary 4) (see also [16]) implies that $B_S^n(x, u^n)$ lies in a compact set of $C^0([0, T]; L^1(\Omega))$. It follows that, $B_S^n(x, u_n)(t=0)$ converges to $B_S(x, u)(t=0)$ strongly in $L^1(\Omega)$. Due to (4.8) and (5.5), we conclude that $B_S^n(x, u_n)(t=0) = B_S^n(x, u_{0n})$ converges to $B_S(x, u)(t=0)$ strongly in $L^1(\Omega)$. Then we conclude that

$$B_S(x,u)(t=0) = B_S(x,u_0)$$
 in Ω .

As a conclusion of step 1 to step 5, the proof of theorem 5.1 is complete.

References

- [1] R. ADAMS, Sobolev spaces, Press New York, (1975).
- [2] P. BÉNILAN, L. BOCCARDO, T. GALLOUËT, R. GARIEPY, M. PIERRE, and J.-L. VAZQUEZ, An L¹-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22, (1995), pp. 241-273.
- [3] A. BENKIRANE and J. BENNOUNA, Existence and uniqueness of solution of unilateral problems with L¹ data in Orlicz spaces, *Italian Journal of Pure and Applied Mathematics*, 16, (2004), pp. 87-102.
- [4] D. BLANCHARD, Truncation and monotonicity methods for parabolic equations, Nonlinear Anal., 21, (1993), pp. 725-743.
- [5] D. BLANCHARD and F. MURAT, Renormalized solutions of nonlinear parabolic problems with L¹ data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect., A127, (1997), pp. 1137-1152.
- [6] D. BLANCHARD, F. MURAT and H. REDWANE, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations, 177, (2001), pp. 331-374.
- [7] D. BLANCHARD, F. MURAT and H. REDWANE, Existence et unicité de la solution renormalisée d'un problème parabolique assez général, C. R. Acad. Sci. Paris Sér., **I329**, (1999), pp. 575-580.
- [8] D. BLANCHARD and A. PORRETTA, Stefan problems with nonlinear diffusion and convection, J. Diff. Equations, 210, (2005), pp. 383-428.
- [9] D. BLANCHARD and H. REDWANE, Renormalized solutions of nonlinear parabolic evolution problems, J. Math. Pure Appl., 77, (1998), pp. 117-151.
- [10] L. BOCCARDO, A. DALL'AGLIO, T. GALLOUËT and L. ORSINA, Nonlinear parabolic equations with measure data, J. Funct. Anal., 87, (1989), pp. 49-169.
- [11] L. BOCCARDO, D. GIACHETTI, J.-I. DIAZ and F. MURAT, Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms, J. Differential Equations, 106, (1993), pp. 215-237.
- [12] J. CARRILLO, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147(4), (1999), pp. 269-361.
- [13] J. CARRILLO and P. WITTBOLD, Uniqueness of renormalized solutions of degenerate ellipticparabolic problems, J. Differential Equations, 156, (1999), pp. 93-121.
- [14] J. CARRILLO and P. WITTBOLD, Renormalized entropy solution of a scalar conservation law with boundary condition, J. Differential Equations, 185(1), (2002), pp. 137-160.
- [15] A. DALL'AGLIO and L. ORSINA, Nonlinear parabolic equations with natural growth conditions and L^1 data, Nonlinear Anal., 27, (1996), pp. 59-73.
- [16] A. EL-MAHI and D. MESKINE, Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Analysis. Theory, Methods and Applications, 60, (2005), pp. 1-35.
- [17] A. EL-MAHI and D. MESKINE, Strongly nonlinear parabolic equations with natural growth terms and L¹ data in Orlicz spaces, *Portugaliae Mathematica. Nova*, **62**, (2005), pp. 143-183. EJQTDE, 2010 No. 2, p. 18

- [18] M. FUCHS and L. GONGBAO, Variational inequalities for energy functionals with nonstandard growth condition, Abstract App. Anal., 3, (1998), pp. 41-64.
- [19] M. FUCHS and G. SEREGIN, Variational methods for fluids for Prandtl-Egring type and plastic materials with logarithmic hardening, Preprint N. 476. SFB 256, Universitat Bonn, Math. Methods Appl. Sci. in press.
- [20] M. FUCHS and G. SEREGIN, Regularity of solutions of variational problems in the deformation theory of plasticity with logarithmic hardening, Preprint N. 421. SFB 256. Universitat Bonn.
- [21] J.-P. GOSSEZ, Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients, *Trans. Amer. Math. Soc.*, **190**, (1974), pp. 163-205.
- [22] J.-P. GOSSEZ, Some approximation properties in Orlicz-Sobolev, Studia Math., 74, (1982), pp. 17-24.
- [23] M. KRASNOSEL'SKII and Ya. RUTICKII, Convex functions and Orlicz spaces, Noordhoff, Groningen, (1969).
- [24] R. LANDES, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect., A89, (1981), pp. 217-237.
- [25] R. LANDES and V. MUSTONEN, A strongly nonlinear parabolic initial-boundary value problem, Ask. f. Mat, 25, (1987), pp. 29-40.
- [26] J.-L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunod et Gauthier-Villars, Paris, (1969).
- [27] P.-L. LIONS, Mathematical Topics in Fluid Mechanics, Vol. 1 : Incompressible Models, Oxford Univ. Press, (1996).
- [28] F. MURAT, Soluciones renormalizadas de EDP elipticas non lineales, Cours à l'Université de Séville, Publication R93023, Laboratoire d'Analyse Numérique, Paris VI, (1993).
- [29] P.-L. LIONS and F. MURAT, Solutions renormalisées d'équations elliptiques, in preparation.
- [30] A. PORRETTA, Existence results for nonlinear parabolic equations via strong convergence of trancations, Ann. Mat. Pura ed Applicata, 177, (1999), pp. 143-172.
- [31] R.-J. DiPERNA and P.-L. LIONS, On the Cauchy problem for Boltzmann equations : Global existence and weak stability, *Ann. Math.*, **130**, (1989), pp. 321-366.
- [32] A. AZROUL, H. REDWANE and M. RHOUDAF, Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces, *Portugal. Math.* 1, Vol. 66, (2009), 29-63.
- [33] H. REDWANE, Solution renormalisées de problèmes paraboliques et elliptiques non linéaires, Ph.D. thesis, Rouen, (1997).
- [34] H. REDWANE, Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dyn. Syst. Appl., 2, (2007), p.p. 241-264.
- [35] H. REDWANE, Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities, *Rendiconti di Matematica*, VII, (2008). pp. 189-200.
- [36] J. SIMON, Compact sets in L^p(0, T; B), Ann. Mat. Pura Appl., 146, (1987), pp. 65-96.

(Received June 11, 2009)

FACULTÉ DES SCIENCES JURIDIQUES, ÉCONOMIQUES ET SOCIALES. UNIVERSITÉ HASSAN 1, B.P. 764. SETTAT. MOROCCO

E-mail address: redwane_hicham@yahoo.fr

EJQTDE, 2010 No. 2, p. 19