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Abstract: In this paper, by defining a class of functions, we establish some oscillation
criteria for the second order nonlinear dynamic equations with forced term

x
∆∆(t) + a(t)f(x(q(t))) = e(t)

on a time scale T. Our results unify the oscillation of the second order forced differential

equation and the second order forced difference equation. An example is considered to

illustrate the main results.
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1 Introduction

The theory of time scales, which has recently received a lot of attention, was introduced by Hilger
in his PhD thesis in 1988 in order to unify continuous and discrete analysis (see Hilger [19]). The
area of dynamic equations on time scales is a new component of applied analysis that describes
processes that feature both continuous and discrete elements. Several authors have expounded
on various aspects of this new theory, see the survey paper by Agarwal et al. [1] and references
cited therein. A book on the subject of time scales, by Bohner and Peterson [7], summarizes and
organizes much of the time scale calculus. We refer also to the last book by Bohner and Peterson
[8] for advances in dynamic equations on time scales.
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We are concerned here with second-order forced nonlinear dynamic equations of the form

x∆∆(t) + a(t)f(x(q(t))) = e(t) (1.1)

on a time scale T, where a(t), q(t) and e(t) are real-valued rd-continuous functions defined on T,
the function q(t) also satisfies q : T → T, q(t) → ∞ as t → ∞, and f ∈ C(R, R), xf(x) > 0
whenever x 6= 0.

Agarwal and Grace [4], Ou and Wong [27], Wong [28] studied the n-order forced functional
differential equations of the form

x(n)(t) + a(t)f(x(q(t))) = e(t).

Çakmak and Tiryaki [11] studied (1.1) in the case when T = R. Sun and Saker [26] considered the
n-order forced delay difference equations of the form

∆mx(n) + q(n)f(x(n − τ)) = e(n).

In recent years, there has been much research activity concerning the oscillation of solutions
of various second order dynamic equations on time scales, we refer the reader to the articles [2, 3,
5, 6, 9, 10, 12–17, 20, 21, 23–25] and references cited therein. Agarwal et al. [3] investigated the
second order forced dynamic equations with mixed nonlinearities

(r(t)φα(x∆))∆ + f(t, xσ) = e(t), t ∈ T,

with f(t, x) = q(t)φα(x) +
∑n

i=1 qi(t)φβi
(x), φ∗(u) = |u|∗−1u. Anderson [5] considered the oscilla-

tions of the forced dynamic equations

(rx∆)∆(t) + p(t)|x(τ(t))|α−1x(τ(t)) + q(t)|x(θ(t))|β−1x(θ(t)) = f(t), t ∈ T,

and Anderson [6] studied the second order dynamic equations

(rx∆)∆(t) + f(t, xσ(t), x∆(t)) = 0, t ∈ T.

Bohner and Tisdell [10] examined oscillation and nonoscillation for

(rx∆)∆(t) + p(t)xσ(t) = e(t), t ∈ T.

Huang and Feng [20] considered the following second-order forced nonlinear dynamic equations

x∆∆(t) + p(t)f(xσ(t)) = e(t), t ∈ T,

and in [21] the authors studied the oscillation of the forced dynamic equations

x∆∆(t) + p(t)f(x(t)) = e(t), t ∈ T.

Oscillatory criteria for the forced dynamic equations

(a(t)x∆(t))∆ + p(t)f(x(σ(t))) = r(t), t ∈ T,

where
∞
∫

t0

|r(s)|∆s < ∞ are analyzed in [24].

Philos-type functions [22] are used extensively in the theory of oscillations, for example, Erbe
et al. [12], Han et al. [17], Saker et al. [25] established some Philos-type oscillation criteria
for the second-order delay dynamic equations on time scales. In [12], the authors utilized the
class of functions as follows: Assume H is defined for t0 ≤ s ≤ σ(t), t, s ∈ [t0,∞)T, H(t, s) ≥
0, H(σ(t), t) = 0, H∆s(t, s) ≤ 0 for t ≥ s ≥ t0, and for each fixed t, H∆s(t, s) is delta integrable
with respect to s.

As we are interested in oscillatory behavior, we assume throughout this paper that the given
time scale T is unbounded above. We assume t0 ∈ T and it is convenient to assume t0 > 0. We
define the time scale interval of the form [t0,∞)T by [t0,∞)T = [t0,∞) ∩ T.
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2 Main Results

In this section, we give some new oscillation criteria for (1.1). Motivated by [22], let us introduce
the class of functions H which will be extensively used in the sequel.

Let D0 ≡ {(t, s) ∈ T
2 : t > s ≥ t0} and D ≡ {(t, s) ∈ T

2 : t ≥ s ≥ t0}. We say that the function
H ∈ Crd(D, R) belongs to the class H, if

(i) H(t, t) = 0, t ≥ t0, H(t, s) > 0 on D0,

(ii) H has a nonpositive continuous ∆-partial derivative H∆s(t, s) and a nonnegative continuous

second-order ∆-partial derivative H∆2

s2 (t, s) with respect to the second variable,

(iii) H∆s(σ(t), σ(t)) = 0,

(iv) lim
t→∞

H∆s (σ(t),t0)
H(σ(t),t0) = O(1).

Theorem 2.1 Let a(t) ≥ 0. If there exists a function H ∈ H, such that

lim sup
t→∞

1

H(σ(t), t0)

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s = +∞ (2.1)

and

lim inf
t→∞

1

H(σ(t), t0)

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s = −∞, (2.2)

then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality we assume
x(t) > 0, x(q(t)) > 0 for t ≥ t0. Multiplying (1.1) by H (σ(t), σ(s)) , and integrating from t0 to
σ(t), we have

σ(t)
∫

t0

H (σ(t), σ(s)) x∆∆(s)∆s

+

σ(t)
∫

t0

H (σ(t), σ(s)) a(s)f(x(q(s)))∆s =

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s. (2.3)

Using the integration by parts formula two times, we get

σ(t)
∫

t0

H (σ(t), σ(s)) x∆∆(s)∆s = −H(σ(t), t0)x
∆(t0) −

σ(t)
∫

t0

H∆s(σ(t), s)x∆(s)∆s

= −H(σ(t), t0)x
∆(t0) + H∆s(σ(t), t0)x(t0) +

σ(t)
∫

t0

H∆2

s2 (σ(t), s)x(σ(s))∆s. (2.4)

Substituting (2.4) into (2.3) and dividing through by H(σ(t), t0), we arrive at

1

H(σ(t), t0)

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s = −x∆(t0) +
H∆s(σ(t), t0)

H(σ(t), t0)
x(t0)

+
1

H(σ(t), t0)

σ(t)
∫

t0

[

H∆2

s2 (σ(t), s)xσ(s) + H (σ(t), σ(s)) a(s)f(x(q(s)))
]

∆s. (2.5)

Taking lim inf as t → ∞, we derive a contradiction. The proof is complete.
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Remark 2.1 This theorem is true for (1.1), i.e., q(t) = t, and true for q(t) ≤ t and for
q(t) ≥ t.

When T = R, let H(t, s) = (t − s)β , β > 1. It is easy to see that H ∈ H. Therefore, we have
the following result.

Corollary 2.1 Let a(t) ≥ 0 and T = R. If

lim sup
t→∞

1

(t − t0)β

t
∫

t0

(t − s)βe(s)ds = +∞

and

lim inf
t→∞

1

(t − t0)β

t
∫

t0

(t − s)βe(s)ds = −∞,

then (1.1) is oscillatory.

When T = Z, let H(t, s) = (t − s)(k) = (t − s)(t − s + 1) · · · (t − s + k − 1), k ≥ 2. It is easy to
see that H ∈ H. Therefore, we have the following result.

Corollary 2.2 Let a(t) ≥ 0 and T = Z. If

lim sup
t→∞

1

(t + 1 − t0)(k)

t
∑

s=t0

(t − s)(k)e(s) = +∞

and

lim inf
t→∞

1

(t + 1 − t0)(k)

t
∑

s=t0

(t − s)(k)e(s) = −∞,

then (1.1) is oscillatory.

Theorem 2.2 Assume H ∈ H,

(1) a(t) < 0 for t ≥ t0, q(t) = σ(t),

(2) there exist two positive constants c and λ such that either

|f(x)| ≥ c|x|λ, λ > 1, (2.6)

or
|f(x)| ≤ c|x|λ, 0 < λ < 1, (2.7)

(3)

lim sup
t→∞

1

H(σ(t), t0)

σ(t)
∫

t0

(H(σ(t), σ(s))e(s) − G(t, s)) ∆s = +∞, (2.8)

(4)

lim inf
t→∞

1

H(σ(t), t0)

σ(t)
∫

t0

(H(σ(t), σ(s))e(s) − G(t, s)) ∆s = −∞, (2.9)

where
G(t, s) = (λ − 1)λ

λ

1−λ (H∆2

s2 (σ(t), s))
λ

λ−1 (−cH (σ(t), σ(s)) a(s))
1

1−λ .

Then (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality we assume
x(t) > 0 for t ≥ t0. Assume first that (2.6) holds. Multiplying (1.1) by H (σ(t), σ(s)) , and
integrating from t0 to σ(t), we have

σ(t)
∫

t0

H (σ(t), σ(s)) x∆∆(s)∆s

+

σ(t)
∫

t0

H (σ(t), σ(s)) a(s)f(x(σ(s)))∆s =

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s. (2.10)

Substituting (2.4) and (2.6) into (2.10) and note that a(t) < 0, we obtain

1

H(σ(t), t0)

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s ≤ −x∆(t0) +
H∆s(σ(t), t0)

H(σ(t), t0)
x(t0)

+
1

H(σ(t), t0)

σ(t)
∫

t0

[

H∆2

s2 (σ(t), s)x(σ(s)) + cH (σ(t), σ(s)) a(s)xλ(σ(s))
]

∆s. (2.11)

Set F (x) = ax − bxλ for x > 0, a ≥ 0, b > 0. If λ > 1, then F (x) has the maximum Fmax =

(λ − 1)λ
λ

1−λ a
λ

λ−1 b
1

1−λ , (see [18]). Thus from (2.11), we have

1

H(σ(t), t0)

σ(t)
∫

t0

(H(σ(t), σ(s))e(s) − G(t, s))∆s ≤ −x∆(t0) +
H∆s(σ(t), t0)

H(σ(t), t0)
x(t0).

Taking lim sup as t → ∞ into the above inequality and applying (2.8), we obtain a desired
contradiction. If condition (2.7) holds, substituting (2.4) and (2.6) into (2.10) and note that
a(t) < 0, we obtain

1

H(σ(t), t0)

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s ≥ −x∆(t0) +
H∆s(σ(t), t0)

H(σ(t), t0)
x(t0)

+
1

H(σ(t), t0)

σ(t)
∫

t0

[

H∆2

s2 (σ(t), s)x(σ(s)) + cH (σ(t), σ(s)) a(s)xλ(σ(s))
]

∆s. (2.12)

Set F (x) = ax − bxλ for x > 0, a ≥ 0, b > 0. If 0 < λ < 1, then F (x) has the minimum

Fmin = (λ − 1)λ
λ

1−λ a
λ

λ−1 b
1

1−λ , (see [18]). Thus from (2.12), we have

1

H(σ(t), t0)

σ(t)
∫

t0

(H(σ(t), σ(s))e(s) − G(t, s))∆s ≥ −x∆(t0) +
H∆s(σ(t), t0)

H(σ(t), t0)
x(t0).

Taking lim inf as t → ∞ into the above inequality and applying (2.9), we obtain a desired contra-
diction. The proof is complete.

Theorem 2.3 Assume a(t) < 0, q(t) = σ(t), H ∈ H, conditions (2.1) and (2.2) hold. If
|f(x)| ≥ |x| holds with

H∆2

s2 (σ(t), s) + H(σ(t), σ(s))a(s) ≤ 0, (2.13)

or |f(x)| ≤ |x| holds with

H∆2

s2 (σ(t), s) + H(σ(t), σ(s))a(s) ≥ 0, (2.14)

then (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality we assume
x(t) > 0 for t ≥ t0. Substituting (2.4) and |f(x)| ≥ |x| into (2.10) and note that a(t) < 0, we obtain

1

H(σ(t), t0)

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s ≤ −x∆(t0) +
H∆s(σ(t), t0)

H(σ(t), t0)
x(t0)

+
1

H(σ(t), t0)

σ(t)
∫

t0

[

H∆2

s2 (σ(t), s)x(σ(s)) + H (σ(t), σ(s)) a(s)x(σ(s))
]

∆s. (2.15)

From (2.13), taking lim sup as t → ∞ into (2.15) and applying (2.1), we obtain a desired contra-
diction. Substituting (2.4) and |f(x)| ≤ |x| into (2.10) and note that a(t) < 0, we obtain

1

H(σ(t), t0)

σ(t)
∫

t0

H (σ(t), σ(s)) e(s)∆s ≥ −x∆(t0) +
H∆s(σ(t), t0)

H(σ(t), t0)
x(t0)

+
1

H(σ(t), t0)

σ(t)
∫

t0

[

H∆2

s2 (σ(t), s)x(σ(s)) + H (σ(t), σ(s)) a(s)x(σ(s))
]

∆s. (2.16)

Taking lim inf as t → ∞ into (2.16) and applying (2.2), we obtain a desired contradiction. The
proof is complete.

Remark 2.2 The results in Saker [24] cannot be applied in (1.1) when
∞
∫

t0

|r(s)|∆s = ∞.

3 Example

As an application, we consider the following example.

Example Consider the equation

x∆∆(t) + a(t)f(x(q(t))) = tα sin t, (3.1)

where a(t) ≥ 0, α > 0. When T = R, by Corollary 2.1, (3.1) is oscillatory for α > 1. When T = Z,

by Corollary 2.2, we have that (3.1) is oscillatory for α > 1.
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[11] D. Çakmak, A. Tiryaki, Oscillation criteria for certain forced second-order nonlinear differen-
tial equations with delayed argument, Comput. Math. Appl. 49 (2005), 1647–1653.

[12] L. Erbe, A. Peterson, S. H. Saker, Oscillation criteria for second-order nonlinear delay dynamic
equations, J. Math. Anal. Appl. 333 (2007), 505–522.

[13] L. Erbe, T. S. Hassan, A. Peterson, S. H. Saker, Interval oscillation criteria for forced second-
order nonlinear delay dynamic equations with oscillatory potential, Dynamics of Continuous,
Discrete, and Impulsive Systems, to appear.

[14] S. R. Grace, R. P. Agarwal, B. Kaymakcalan, Wichuta Sae-Jie, Oscillation criteria for scond
order nonlinear dynamic equations, Canadian Applied Mathematics Quarterly, 16 (1) (2008),
59–76.

[15] S. R. Grace, R. P. Agarwal, M. Bohner, D. O’Regan, Oscillation of second-order strongly
superlinear and strongly sublinear dynamic equations, Communications in Nonlinear Science
and Numerical Simulation, 14 (2009), 3463–3471.

[16] Zhenlai Han, Shurong Sun, Bao Shi, Oscillation criteria for a class of second order Emden-
Fowler delay dynamic equations on time scales, J. Math. Anal. Appl. 334 (2007), 847–858.

[17] Zhenlai Han, Tongxing Li, Shurong Sun, Chenghui Zhang, Oscillation for second-order nonlin-
ear delay dynamic equations on time scales, Advances in Difference Equations, Volume 2009,
Article ID 756171, 13 pages.

[18] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press,
Cambridge, 1988.

[19] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus,
Results Math. 18 (1990), 18–56.

[20] Mugen Huang, Weizhen Feng, Oscillation for forced second-order nonlinear dynamic equations
on time scales, Electronic Journal of Differential Equations, 145 (2006), 1–8.

[21] Mugen Huang, Weizhen Feng, Forced oscillation of second order nonlinear dynamic equations
on time scales, Electronic Journal of Qualitative Theory of Differential Equations, 36 (2008),
1–13.

[22] Ch. G. Philos, Oscillation theorems for linear differential equation of second order, Archive
for Mathematical Logic, 53 (1989), 483–492.

[23] Y. Sahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear
Anal, TMA 63 (2005), 1073–1080.

[24] S. H. Saker, Oscillation of second-order forced nonlinear dynamic equations on time scales,
Electronic Journal of Qualitative Theory of Differential Equations, 23 (2005), 1–17.

EJQTDE, 2009 No. 60, p. 7



[25] S. H. Saker, R. P. Agarwal, D. O’Regan, Oscillation results for second-order nonlinear neutral
delay dynamic equations on time scales, Applicable Analysis, 86 (1) (2007), 1–17.

[26] Y. G. Sun, S. H. Saker, Forced oscillation of higher order nonlinear difference equations, Appl.
Math. Comput., 187 (2007), 868–872.

[27] C. H. Ou, J. S. W. Wong, Forced oscillation of nth-order functional differential equations, J.
Math. Anal. Appl., 262 (2001), 722–732.

[28] J. S. W. Wong, Oscillation criteria for a forced second-order linear differential equation, J.
Math. Anal. Appl., 231 (1999), 235–240.

(Received August 26, 2009)

EJQTDE, 2009 No. 60, p. 8


