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Abstract. In this paper, we study the non-negative solutions of initial boundary value
problems for some damped nonlinear conservation laws on the half line modelled by
first order nonlinear hyperbolic PDEs. We consider the class of initial profile which are
non-negative, bounded and compactly supported. Using the method of characteristics
and Rankine–Hugoniot jump condition, an entropy solution is constructed subject to a
top-hat initial profile. Then the large time behaviour of the constructed entropy solution
is obtained. Finally, taking recourse to some comparison principles and the method of
super and sub solutions the large time behaviour of entropy solutions subject to the
general class of bounded and compactly supported initial profiles are established as
the large time behaviour of the entropy solution subject to top-hat initial profiles.
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1 Introduction

Analysis of initial boundary value problems for partial differential equations on the semi-
infinite line describing nonlinear wave propagation, dispersion and dissipation phenomena
is paramount to large time asymptotic behaviour of such systems. We refer to [1–6] as some
interesting references in this direction. In this paper we consider an initial boundary value
problem (IBVP) on the semi-infinite line for an inviscid generalized Burgers equation in the
form

ut + uαux + g(x, t)u = 0, (x, t) ∈ (0, ∞)× (0, ∞), (1.1)

u(x, 0) = u0(x), x ∈ [0, ∞), (1.2)

u(0, t) = u0(0) f (t), t ≥ 0, (1.3)
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where α ≥ 1. The inviscid generalized Burgers equation (1.1) model a nonlinear conservation
law with variable linear damping. We choose

g(x, t) = j/(2(t + 1)) or λ (1.4)

to study the IBVP (1.1)–(1.3) for the well studied inviscid non-planar Burgers equation and
the inviscid α− λ equation, respectively. Here j ≥ 0, λ ≥ 0. Further, we choose

f (t) = (t + 1)−j/2 or e−λt (1.5)

according as g(x, t) = j/(2(t + 1)) or λ. We may note that the choice of f makes the initial
and boundary data given in (1.2) and (1.3) compatible with each other. We study the IBVP
(1.1)–(1.3) using the method of characteristics for a typical ‘top hat’ initial profile, u0(x) of the
form

u0(x) =

{
h, 0 ≤ x ≤ l,

0, x > l,
(1.6)

where h and l are some positive constants. We refer [9, 10] and the references therein for an
extensive discussion on the physical background and applications of the inviscid generalized
Burgers equation.

The motivation for studying the IBVP (1.1)–(1.3) is due to the work of Murray [6]. He
considered an initial boundary value problem on the semi-infinite line of the form

ut + g(u)ux + λh(u) = 0, x ∈ (0, ∞)× (0, ∞), (1.7)

u(x, 0) = u0(x), x ∈ [0, ∞), (1.8)

u(0, t) = 0, t ≥ 0, (1.9)

where λ ≥ 0 and g(u) and h(u) are non-negative monotonic increasing functions of u. The
initial profile u0(x) was taken as

u0(x) =


0, x < 0,

f (x), 0 < x < X,

0, x > X,

(1.10)

where 0 ≤ f (x) ≤ 1 and X > 0. Murray [6] studied the IBVP (1.7)–(1.10) via the method of
characteristics. He discussed the existence of discontinuities in the solution of the IBVP (1.7)–
(1.10) and their propagation speeds. Rao and Yadav [9] established large time asymptotic be-
haviour of Cauchy problem for the inviscid non-planar Burgers equation subject to bounded,
non-negative and compactly supported initial data. Large time asymptotic behaviour of en-
tropy solution to Cauchy problem for a nonlinearly damped conservation law is studied in
[7, 8].

In the present work, we are interested in analyzing the contribution of the bounadry data
(1.3) to the formation of discontinuities in the solution of the IBVP (1.1)–(1.3) and their prop-
agation speeds.

Now, we summarize the main results of this study. Let u0 ∈ L∞(R) be non-negative and
compactly supported in R and supp u0 := [0, l], where l > 0. Then, the solution u(x, t) of
the IBVP (1.1)–(1.3) is also non-negative. The support function s : [0, ∞) → [l, ∞) of u(x, t) is
defined as

s(t) := sup{x > 0 : u(x, t) > 0 in (0, x)}.
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We have the following two theorems. The first theorem is for the IBVP (1.1)–(1.3) with g(x, t) =
j/(2(t+ 1)) and f (t) = (t+ 1)−j/2, whereas the second theorem is for the IBVP (1.1)–(1.3) with
g(x, t) = λ and f (t) = e−λt.

Theorem 1.1.

(i) Let αj > 2. Then, there exists x0 > 0 such that

l ≤ s(t) ≤ l + x0, for all t ≥ 0.

(ii) Let 0 < αj ≤ 2. Then there exist three constants c0, c1 and c2 such that

lim
t→∞

(log t)−1(s(t)− l) = c0, if αj = 2,

and for t large
c1t(2−αj)/2 ≤ s(t)− l ≤ c2t(2−αj)/2, if 0 < αj < 2.

Further, there exists c > 0 such that

t
[

h2/j − t‖u(., t)‖2/j
∞

]
→ c, as t→ ∞.

Theorem 1.2. Let α > 0, λ > 0 and u0 ∈ L∞(R) be compactly supported. Then there exists x0 > 0
such that

l ≤ s(t) ≤ l + x0, for all t ≥ 0.

Further, the large time behaviour of the solution to the IBVP (1.1)–(1.3) is given by

lim
t→∞

eλt‖u(., t)‖∞ = h.

The organisation of this paper is as follows. In Section 2, we have constructed an entropy
solution of IBVP (1.1)–(1.3) corresponding to the inviscid non-planar Burgers equation. Fur-
ther, we have proved Theorem 1.1 concerning large time behaviours of support function and
the constructed entropy solution. In Section 3, we have constructed an entropy solution of
IBVP (1.1)–(1.3) corresponding to the inviscid α − λ equation. Theorem 1.2 concerns large
time behaviour of support function and the constructed entropy solution is proved. Finally,
Section 4 presents the conclusions of the study.

2 Inviscid non-planar Burgers equation

In this section, we study the IBVP (1.1)–(1.3) with g(x, t) = j/(2(t + 1)), via the method of
characteristics.

Let x = x(t, x0) denote the characteristic curve emanating from (x0, 0) and set

U = U(x0, t) := u(x(t, x0), t).

Then, for some fixed x0 the characteristic equations are

dx
dt

= Uα, x(0, x0) = x0

dU
dt

= − jU
2(t + 1)

, U(x0, 0) = u0(x0).
(2.1)
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Integrating the system (2.1), we get

U(x0, t) = u0(x0)(t + 1)−j/2, (2.2)

x(t, x0) =

x0 + uα
0(x0) log(t + 1), if αj = 2,

x0 +
2uα

0(x0)
αj−2

[
1− (t + 1)−(αj−2)/2

]
, if αj 6= 2.

(2.3)

Let us denote the characteristic curve issued at (0, 0) by x = c(t). Then,

c(t) =

hα log(t + 1), if αj = 2,
2hα

αj−2

[
1− (t + 1)−(αj−2)/2

]
, if αj 6= 2

(2.4)

Let us denote the shock issued at (l, 0) by x = s0(t). Then, the Rankine–Hugoniot jump
condition requires s0 to satisfy

ds0

dt
=

1
α + 1

uα(s0(t)− 0, t), s0(0) = l. (2.5)

As long as c does not intersect s0

u(s0(t)− 0, t) = U(0, t) = h(t + 1)−j/2. (2.6)

Using (2.6) we integrate (2.5) to obtain

s0(t) =

l + hα

α+1 log(t + 1), if αj = 2,

l + 2hα

(α+1)(αj−2)

[
1− (t + 1)−(αj−2)/2

]
, if αj 6= 2.

(2.7)

Proposition 2.1.

(i) Let αj > 2. Then the characteristic c intersects the shock s0 if and only if

2αhα > l(α + 1)(αj− 2). (2.8)

(ii) Let 0 < αj ≤ 2. Then there is a unique intersection between s0 and c.

Proof. It is easy to see from (2.4) and (2.7) that any intersection between c and s0 has the
abscissa

x̄ =
l(α + 1)

α
. (2.9)

Hence an intersection exists if and only if for some t̄ > 0, c(t̄) = x̄ = s0(t̄). Since c(0) = 0, c is
strictly increasing in t and

c∞ := lim
t→∞

c(t) =

{ 2hα

αj−2 if αj > 2,

∞ if 0 < αj ≤ 2;

the conclusions follow from the fact that c(t̄) < c∞.

In case of intersection between c and s0 the shock path changes from time t̄ onwards and

t̄ =

el(α+1)/(αhα) − 1, if αj = 2,[
1− l(α+1)(αj−2)

2αhα

]−2/(αj−2)
− 1, if αj 6= 2.

(2.10)
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Let s1 denote the new shock path then, once again by Rankine–Hugoniot jump condition we
have

ds1

dt
=

1
α + 1

uα(s1(t)− 0, t), s1(t̄) = x̄, t > t̄, (2.11)

where u(s1(t)− 0, t) is given by the characteristic solution of the IBVP (1.1)–(1.3) in the region
0 ≤ x < c(t), t ≥ t̄.

Now we consider the characteristics emanating from the line x = 0. Let X = X(t, t0)

denote the characteristic curve issued from some point (0, t0), t0 > 0. Further, let

V = V(t, t0) = u(X(t, t0), t)

denote the characteristic solution of the IBVP (1.1)–(1.3) along the curve X = X(t, t0). Then
the characteristic equations for some fixed t0 > 0 are

dX
dt

= Vα, X(t0, t0) = 0

dV
dt

= − jV
2(t + 1)

, V(t0, t0) = u0(0)(t0 + 1)−j/2.
(2.12)

Integrating the system (2.12), we get

V(t, t0) = V(t0, t0)
( t + 1

t0 + 1

)−j/2
= u0(0)(t + 1)−j/2, (2.13)

X(t, t0) =


Vα(t0, t0)(t0 + 1) log t+1

t0+1 , if αj = 2,

2Vα(t0,t0)(t0+1)αj/2

αj−2

[
(t0 + 1)1−αj/2 − (t + 1)1−αj/2] , if αj 6= 2.

(2.14)

On substituting V(t0, t0) = u0(0)(t0 + 1)−j/2 in (2.14), we get

X(t, t0) =


uα

0(0) log t+1
t0+1 , if αj = 2,

2uα
0(0)

αj−2

[
(t0 + 1)1−αj/2 − (t + 1)1−αj/2] , if αj 6= 2.

(2.15)

We may note that the characteristic, X = X(t, t0), emanating from (0, t0) intersect the charac-
teristics x = x0, x0 > x̄. Therefore,

u(s1(t)− 0, t) = V(t, t0), t > t̄. (2.16)

Now using (2.16) and (2.13) in (2.11), we get

ds1

dt
=

1
α + 1

uα
0(0)(t + 1)−αj/2, s1(t̄) = x̄, t > t̄. (2.17)

On integrating (2.17), the new shock path is obtained as

s1(t) =


x̄ +

uα
0(0)

α+1 log t+1
t̄+1 , if αj = 2,

x̄ +
2uα

0(0)
(α+1)(αj−2)

[
(t̄ + 1)1−αj/2 − (t + 1)1−αj/2] , if αj 6= 2,

t > t̄. (2.18)

On simplifying (2.18), we get
s1(t) = s0(t), t > t̄. (2.19)
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Now we define a function s : [0, ∞)→ [l, ∞) as

s(t) := s0(t), t ∈ [0, ∞). (2.20)

In due course we see that s is nothing but the support function of u(x, t). Now we divide the
quarter-plane [0, ∞)× [0, ∞) into the following disjoint regions

I1 := {(x, t) : t ≥ 0, 0 ≤ x < min(c(t), s(t))},
I2 := {(x, t) : t ≥ 0, min(c(t), s(t)) ≤ x ≤ s(t)},
I3 := {(x, t) : t ≥ 0, x > s(t)},

and define u : [0, ∞)× [0, ∞)→ [0, ∞) as

u(x, t) :=

{
h(t + 1)−j/2, (x, t) ∈ I1 ∪ I2

0, (x, t) ∈ I3.
(2.21)

The regions I2 and I3 are separated by the curve x = s(t). Hence, s(t) is the support function
of u(x, t) defined by (2.21).

2.1 Large time behaviour of support function and solution

In this section, we study the large time behaviour of the support function defined in (2.20)
and prove Theorem 1.1.

Lemma 2.2. s ∈ C1(0, ∞).

Proof. It is easy to see that s0 ∈ C1(0, t̄). Now if t̄ = ∞, then s(t) = s0(t) for all t ∈ [0, ∞)

and the lemma is proved. In case of t̄ < ∞, we have s1 ∈ C1(t̄, ∞) and s is continuous at t̄.
It remains to show the continuity of ds/dt at t̄. Using the expression for V(t, t0) in (2.13) and
the initial value problems (2.5), (2.11) satisfied by s0 and s1, respectively, we have

ds
dt
(t̄− 0) =

hα

α + 1
(t̄ + 1)−αj/2,

ds
dt
(t̄ + 0) =

1
α + 1

Vα(t̄, t0)

=
hα

α + 1
(t̄ + 1)−αj/2,

since u0(0) = h. Thus, ds/dt is continuous at t̄. Hence the lemma.

Lemma 2.3. For any t ≥ 0, s(t) ≤ s0(t).

Proof. It is easy to see that s satisfies the initial value problem

ds
dt

=
1

α + 1
uα(s(t)− 0, t), s(0) = l.

By the solution (2.21),

ds
dt
≤ hα

α + 1
(t + 1)−αj/2, s(0) = l, t ≥ 0.

Hence s(t) ≤ s0(t) for all t ≥ 0.
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We may note that limt→∞ s0(t) := s∞
0 exist when αj > 2 and

s∞
0 = l +

2hα

(α + 1)(αj− 2)
. (2.22)

Proof of Theorem 1.1.

(i) It is easy to see that s(0) = l and s is increasing on [0, ∞). Hence l ≤ s(t) for all t ≥ 0.
Now by Lemma 2.3 and equation (2.22), whenever αj > 2, there exist x0 := s∞

0 − l > 0
such that s(t) ≤ l + x0 for all t ≥ 0.

(ii) By Proposition 2.1, whenever 0 < αj ≤ 2, there is a unique intersection point (x̄, t̄)
between s0 and c. Thus, s(t) = s1(t) for t ≥ t̄ and equation (2.19) gives

lim
t→∞

(log t)−1(s(t)− l) =
hα

α + 1
, if αj = 2,

s(t)− l ≤ 2hα

(α + 1)(2− αj)
(t + 1)(2−αj)/2, if αj < 2.

Let c2 := 2hα

(α+1)(2−αj) , then we may choose c1 < c2 such that for t large

c1t(2−αj)/2 ≤ s(t)− l ≤ c2t(2−αj)/2.

Further, by (2.21) for all α ≥ 1 and j > 0, we have

‖u(., t)‖∞ = h(t + 1)−j/2, t ≥ 0. (2.23)

From (2.23), it is easy to see that

lim
t→∞

t[h2/j − t‖u(., t)‖2/j
∞ ] = h2/j. (2.24)

This completes the proof of Theorem 1.1.

3 Inviscid α − λ equation

In this section, we study the IBVP (1.1)–(1.3) with g(x, t) = λ, via the method of characteristics.
Let x = x(t, x0) denote the characteristic curve emanating from (x0, 0) and set

U = U(x0, t) := u(x(t, x0), t).

Then, for some fixed x0 the characteristic equations are

dx
dt

= Uα, x(0, x0) = x0

dU
dt

= −λU, U(x0, 0) = u0(x0).
(3.1)

Integrating the system (3.1), we get

U(x0, t) = u0(x0)e−λt, (3.2)

x(t, x0) = x0 +
uα

0(x0)

αλ
(1− e−αλt). (3.3)
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Let us denote the characteristic curve issued at (0, 0) by x = c(t). Then,

c(t) =
hα

αλ
(1− e−αλt). (3.4)

Let us denote the shock issued at (l, 0) by x = s0(t). Then, the Rankine–Hugoniot jump
condition requires s0 to satisfy

ds0

dt
=

1
α + 1

uα(s0(t)− 0, t), s0(0) = l. (3.5)

As long as c does not intersect s0

u(s0(t)− 0, t) = U(0, t) = he−λt. (3.6)

Using (3.6) we integrate (3.5) to obtain

s0(t) = l +
c(t)

α + 1
. (3.7)

Proposition 3.1. The characteristic curve c intersects the shock path s0 if and only if

hα > lλ(α + 1). (3.8)

Proof. It is easy to see from (3.4) and (3.7) that any intersection between c and s0 has the
abscissa

x̄ =
l(α + 1)

α
. (3.9)

Hence an intersection exists if and only if for some t̄ > 0, c(t̄) = x̄ = s0(t̄). Since c(0) = 0, c is
strictly increasing in t and

c∞ :=
hα

αλ
,

the conclusions follow from the fact that c(t̄) < c∞.

In case of intersection between c and s0 the shock path changes from time t̄ onwards and

t̄ =
1

αλ
log

hα

hα − lλ(α + 1)
. (3.10)

Let s1 denote the new shock path then, once again by Rankine–Hugoniot jump condition we
have

ds1

dt
=

1
α + 1

uα(s1(t)− 0, t), s1(t̄) = x̄, t > t̄, (3.11)

where u(s1(t)− 0, t) is given by the characteristic solution of the IBVP (1.1)–(1.3) in the region
0 ≤ x < c(t), t ≥ t̄.

Now we consider the characteristics emanating from the line x = 0. Let X = X(t, t0)

denote the characteristic curve issued from some point (0, t0), t0 > 0. Further, let

V = V(t, t0) = u(X(t, t0), t)

denote the characteristic solution of the IBVP (1.1)–(1.3) along the curve X = X(t, t0). Then
the characteristic equations for some fixed t0 > 0 are

dX
dt

= Vα, X(t0, t0) = 0

dV
dt

= −λV, V(t0, t0) = u0(0)e−λt0 .
(3.12)
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Integrating the system (3.12), we get

V(t, t0) = V(t0, t0)e−λ(t−t0) = u0(0)e−λt, (3.13)

X(t, t0) =
Vα(t0, t0)

αλ

(
1− e−αλ(t−t0)

)
. (3.14)

On substituting V(t0, t0) = u0(0)e−λt0 in (3.14), we get

X(t, t0) =
uα

0(0)
αλ

(
e−αλt0 − e−αλt

)
. (3.15)

We may note that the characteristic, X = X(t, t0), emanating from (0, t0) intersect the charac-
teristics x = x0, x0 > x̄. Therefore,

u(s1(t)− 0, t) = V(t, t0), t > t̄. (3.16)

Now using (3.16) and (3.13) in (3.11), we get

ds1

dt
=

1
α + 1

uα
0(0)e

−αλt, s1(t̄) = x̄, t > t̄. (3.17)

On integrating (3.17), the new shock path is obtained as

s1(t) = x̄ +
uα

0(0)
αλ(α + 1)

(
e−αλt̄ − e−αλt

)
, t > t̄. (3.18)

On simplifying (3.18), we get

s1(t) = s0(t), t > t̄. (3.19)

Now we define a function s : [0, ∞)→ [l, ∞) as

s(t) := s0(t), t ∈ [0, ∞). (3.20)

In due course we see that s is nothing but the support function of u(x, t). Now we divide the
quarter-plane [0, ∞)× [0, ∞) into the following disjoint regions

I1 := {(x, t) : t ≥ 0, 0 ≤ x < min(c(t), s(t))},
I2 := {(x, t) : t ≥ 0, min(c(t), s(t)) ≤ x ≤ s(t)},
I3 := {(x, t) : t ≥ 0, x > s(t)},

and define u : [0, ∞)× [0, ∞)→ [0, ∞) as

u(x, t) :=

{
he−λt, (x, t) ∈ I1 ∪ I2

0, (x, t) ∈ I3.
(3.21)

The regions I2 and I3 are separated by the curve x = s(t). Hence, s(t) is the support function
of u(x, t) defined by (3.21).
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3.1 Large time behaviour of support function and solution

In this section, we study the large time behaviour of the support function defined in (3.20)
and the large time behaviour of the entropy solution (3.21) of the IBVP (1.1)–(1.3) and prove
Theorem 1.2. Before we proceed further, we have the following lemmas on s(t).

Lemma 3.2. s ∈ C1(0, ∞).

Proof. It is easy to see that s0 ∈ C1(0, t̄). Now if t̄ = ∞, then s(t) = s0(t) for all t ∈ [0, ∞)

and the lemma is proved. In case of t̄ < ∞, we have s1 ∈ C1(t̄, ∞) and s is continuous at t̄.
It remains to show the continuity of ds/dt at t̄. Using the expression for V(t, t0) in (3.13) and
the initial value problems (3.5), (3.17) satisfied by s0 and s1, respectively, we have

ds
dt
(t̄− 0) =

hα

α + 1
e−αλt̄,

ds
dt
(t̄ + 0) =

1
α + 1

Vα(t̄, t0)

=
hα

α + 1
e−αλt̄,

since u0(0) = h. Thus, ds/dt is continuous at t̄. Hence the lemma.

Lemma 3.3. For any t ≥ 0, s(t) ≤ s0(t).

Proof. It is easy to see that s satisfies the initial value problem

ds
dt

=
1

α + 1
uα(s(t)− 0, t), s(0) = l.

By the solution (3.21),
ds
dt
≤ hα

α + 1
e−αλt, s(0) = l, t ≥ 0.

Hence s(t) ≤ s0(t) for all t ≥ 0.

We may note that limt→∞ s0(t) := s∞
0 exist and

s∞
0 = l +

hα

αλ(α + 1)
. (3.22)

Proof of Theorem 1.2. It is easy to see that s(0) = l and s is increasing on [0, ∞). Hence
l ≤ s(t) for all t ≥ 0. Now by Lemma 3.3 and equation (3.22), there exist x0 := s∞

0 − l > 0 such
that s(t) ≤ l + x0 for all t ≥ 0.

Further, by (3.21) for all α ≥ 1 and λ > 0, we have

‖u(·, t)‖∞ = he−λt, t ≥ 0. (3.23)

From (3.23), it is easy to see that

lim
t→∞

eλt‖u(·, t)‖∞ = h. (3.24)

This completes the proof of Therem 1.2.
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4 Conclusions

Inspired by Murray’s work [6], we have studied initial boundary value problems (1.1)–(1.3) for
the inviscid non-planar Burgers equation and the α− λ equation on the semi-infinite line. The
boundary data (1.3) is suitably chosen so that it is compatible with the initial data (1.2). Using
the method of characteristics and Rankine–Hugoniot jump condition an entropy solution is
constructed. The novelty of this work lies in using the information coming from the boundary
t = 0 for constructing the entropy solution. Further, we have found the large time behaviour
of the entropy solution and its support function.
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