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Abstract. In this paper, we study the following diffusion system{
∂tu− ∆xu + b(t, x) · ∇xu + V(x)u = g(t, x, v),

−∂tv− ∆xv− b(t, x) · ∇xv + V(x)v = f (t, x, u)

where z = (u, v) : R×RN → R2, b ∈ C1(R×RN , RN) and V(x) ∈ C(RN , R). Under
suitable assumptions on the nonlinearity, we establish the existence of ground state
solutions by the generalized Nehari manifold method developed recently by Szulkin
and Weth.
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1 Introduction and main result

We study the following diffusion system on R×RN{
∂tu− ∆xu + b(t, x) · ∇xu + V(x)u = g(t, x, v),

−∂tv− ∆xv− b(t, x) · ∇xv + V(x)v = f (t, x, u)
(1.1)

where z = (u, v) : R×RN → R2, b = (b1, . . . , bN) ∈ C1(R×RN , RN) with the gauge condition
div b(t, x) = 0 (div b(t, x) := ∑N

i=1 ∂xi bi(t, x)), V(x) ∈ C(RN , R), and the primitives of the
nonlinearities g(t, x, v), f (t, x, u) are periodic in (t, x) and superquadratic in v, u at infinity.
Such problem arises in control of systems governed by partial differential equations and is
related to the Schrödinger equations (see [15] and [19]). In this paper, we are interested in the
existence of ground state solutions of Nehari type of problem (1.1).
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For the case of a bounded domain the systems like or similar to (1.1) were studied by a
number of authors. For instance, see [3–6, 8, 10, 11, 17, 18] and the references therein. When
assuming b(t, x) = 0, V(x) = 0, Brézis and Nirenberg [3] considered the following system{

∂tu− ∆xu = −v5 + f

−∂tv− ∆xv = u3 + g
in (0, T)×Ω.

Using Schauder’s fixed point theorem, they obtained a solution (u, v) with u ∈ L4 and v ∈ L6.
In [4], Clément et al. considered the problem{

∂tu− ∆xu = |v|q−2v

−∂tv− ∆xv = |u|p−2u
in (−T, T)×Ω,

where p, q satisfy
N

N + 2
<

1
p
+

1
q
< 1.

The existence of a positive periodic solution was obtained by using a mountain pass argument
and then a homoclinic solution was obtained as a limit of 2k-periodic solution. Recently, based
on a local linking theorem, Mao et al. [18] proved that the problem (1.1) has at least one
nontrivial periodic solution, also see [17]. For other related elliptic system problems, we refer
the readers to [5, 6, 10, 11].

The problem in the whole space RN was considered recently in some works. Assum-
ing b(t, x) = 0, V(x) 6= 0, Bartsch and Ding [2] dealt with the problem under the classic
Ambrosetti–Rabinowitz condition

0 < µH(t, x, z) ≤ Hz(t, x, z)z, z 6= 0 (1.2)

for µ > 2 and
|Hz(t, x, z)|ν ≤ cHz(t, x, z)z, for |z| > 1 (1.3)

for some 1 + N/(N + 4) < ν < 2. Assumptions (1.2) and (1.3) were improved later by
Schechter and Zou in [25]. Nearly, Ding et al. [9] and Wei and Yang [31] considered the case
b(t, x) 6= 0 via variational methods. Under periodic assumption, the existence of infinitely
many solutions were obtained for both superquadratic or asymptotically linear cases when the
nonlinearity is symmetric. Without the symmetric assumption, Wang et al. [29] also obtained
infinitely many solutions by using a reduction method. For asymptotically periodic and non-
periodic case, we refer the readers to [30, 35, 36, 44, 45] and the references therein.

The main purpose of this paper is to prove the existence of ground state solutions for
problem (1.1) without Ambrosetti–Rabinowitz condition. To the best of our knowledge, there
is no work focusing on the existence of ground state solutions up to now. Next, we denote by
F(t, x, s) and G(t, x, s) the primitives of f (t, x, s) and g(t, x, s), respectively. Our assumptions
for f and g are standard, roughly speaking “superlinear” at zero and infinity and “subcritical”
at infinity. More precisely, we make the following assumptions.

(V) V ∈ C(RN , R) is 1-periodic in xi for i = 1, . . . , N and a := minx∈RN V(x) > 0;

(B) b ∈ C1(R×RN , RN) is 1-periodic in t and xi for i = 1, . . . , N and div b = 0;

(S1) f (t, x, s) and g(t, x, s) are continuous and 1-periodic in t and xi for i = 1, . . . , N, and
there is a constant C > 0 such that

| f (t, x, s)| ≤ C(1 + |s|p−1) and |g(t, x, s)| ≤ C(1 + |s|p−1) for all (t, x, s),
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where p ∈ (2, N∗), N∗ = ∞ if N = 1 and N∗ = 2(N+2)
N if N ≥ 2;

(S2) f (t, x, s) = o(|s|) and g(t, x, s) = o(|s|) as |s| → 0 uniformly in (t, x);

(S3) lim|s|→∞
F(t,x,s)
|s|2 = ∞ and lim|s|→∞

G(t,x,s)
|s|2 = ∞ uniformly in (t, x);

(S4) s 7→ f (t,x,s)
|s| and s 7→ g(t,x,s)

|s| are strictly increasing on (−∞, 0) and (0,+∞).

Our main result is the following theorem.

Theorem 1.1. Let (V), (B) and (S1)–(S4) be satisfied, then problem (1.1) has at least one ground state
solutions.

It is well known that for the study of ground state solution, Szulkin and Weth developed
a powerful approach to treat the indefinite problem in [23]. More precisely, they used the
generalized Nehari manifold (which was first introduced in [20] for the smooth case) to con-
struct a natural constrained problem and obtained the ground state solution for more general
strongly indefinite periodic Schrödinger equation.

Motivated by this work, in the present paper, we are devoted to study the existence of a
ground state solution via the generalized Nehari manifold method for problem (1.1). Addi-
tionally, based on the linking theorem in [12] and [24], there are also many works devoted to
the ground state solution for periodic Schrödinger equation, elliptic system and Hamiltonian
system. For example, see [13, 16, 20, 21, 23, 26–28, 33, 34, 37–43] and the references therein.

The remainder of this paper is organized as follows. In Section 2, the variational setting
and the method of the generalized Nehari manifold are briefly presented. The existence of a
ground state solution is proved in Section 3.

2 Variational setting and generalized Nehari manifold method

Below by | · |q we denote the usual Lq- norm, (·, ·)2 denote the usual L2 inner product, c, ci
or Ci stand for different positive constants. Denote by σ(A) and σe(A) the spectrum and the
essential spectrum of the operator A, respectively. In order to continue the discussion, we
need the following notations. Set

J =

(
0 −1
1 0

)
, J0 =

(
0 1
1 0

)
, S = −∆x + V

and
A0 := J0S + J b · ∇x.

Then (1.1) can be read as

J ∂tz + A0z = Hz(t, x, z), z = (u, v),

where H(t, x, z) = F(t, x, u) + G(t, x, v). It is called an unbounded Hamiltonian system [1], or
an infinite-dimensional Hamiltonian system (see [2] and [8]). Indeed, it has the representation

J ∂tz = gradzH(t, x, z)

with the Hamiltonian

H(t, x, z) := −
∫

RN
(∇xu · ∇xv + b · ∇xuv + V(x)uv− H(t, x, z)) dx
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in L2(RN , R2), where gradz denotes the gradient operator in L2(RN , R2).
In order to state our main result, we introduce for r ≥ 1 the Banach space,

Br = Br(R×RN , R2) := W1,r(R, Lr(RN , R2)) ∩ Lr(R, W1,r ∩W1,r(RN , R2)),

equipped with the norm

‖z‖Br =

(∫
R×RN

(|z|r + |∂tz|r +
N

∑
j=1
|∂2

xj
z|r)
) 1

r

.

Clearly, Br is the completion of C∞
0 (R×RN , R2) with respect to the norm ‖ · ‖Br . If r = 2, B2

is a Hilbert space.
Let A := J ∂t + A0, under the conditions (V) and (B), it is easy to show that A is a self-

adjoint operator acting in L2 := L2(R×RN , R2) with domain D(A) = B2(R×RN , R2) and
there exist c1, c2, such that

c1‖z‖2
B2
≤ |Az|22 ≤ c2‖z‖2

B2

for all z ∈ B2, (see [9, (2.1) and Lemma 2.2]).
Now, in order to establish suitable variational framework for the problem (1.1), we need

the following Lemma due to [9].

Lemma 2.1 ([9, Lemma 2.1]). Suppose that (V) and (B) are satisfied. Then

(1) σ(A) = σe(A), i.e., A has only essential spectrum;

(2) σ(A) ⊂ R \ (−a, a) and σ(A) is symmetric with respect to the origin.

It follows from Lemma 2.1 that L2 possesses the orthogonal decomposition

L2 = L− ⊕ L+, z = z− + z+, z± ∈ L±,

such that A is negative definite (resp. positive definite) in L− (resp. L+). Let |A| denote the
absolute value of A and |A| 12 be the square root of |A|. Let E = D(|A| 12 ) be the Hilbert space
with the inner product

(z, w) =
(
|A| 12 z, |A| 12 w

)
2

and norm ‖z‖ = (z, z)
1
2 . There is an induced decomposition

E = E− ⊕ E+, E± = E ∩ L±

which is orthogonal with respect to the inner products (·, ·)2 and (·, ·). Moreover, we have the
following embedding theorem in [9].

Lemma 2.2 ([9, Lemma 2.6]). E is continuously embedded in Lp for any p ≥ 2 if N = 1, and for
p ∈ [2, N∗] if N ≥ 2. E is compactly embedded in Lp

loc for all p ∈ [1, N∗).

On E we define the following energy functional of (1.1)

Φ(z) =
1
2
(Az, z)2 −Ψ(z) =

1
2
(‖z+‖2 − ‖z−‖2)−Ψ(z), z = (u, v), (2.1)

where Ψ(z) =
∫

R×RN H(t, x, z) =
∫

R×RN (F(t, x, u) + G(t, x, v)). Lemma 2.1 implies that Φ is
strongly indefinite. Our hypotheses imply that Φ ∈ C1(E, R), and a standard argument shows
that critical points of Φ are solutions of (1.1) (see [7] and [32]).
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Next, we introduce the generalized Nehari manifold method. We consider the following
set introduced by Pankov [20] (see also [23] and [22]):

M :=
{

z ∈ E \ E− : Φ′(z)z = 0 and Φ′(z)w = 0, ∀w ∈ E−
}

.

Following Szulkin and Weth [23] (see also [22]), we will call the setM the generalized Nehari
manifold. Obviously,M contains all nontrivial critical points of Φ. Let

c := inf
z∈M

Φ(z).

If c is attained by a solution z0, since c is the lowest level for Φ, z0 will be called a ground state
solution of Nehari type for (1.1).

We denote by S+ the unit sphere in E+, that is

S+ :=
{

z ∈ E+ : ‖z‖ = 1
}

.

For z = z+ + z− ∈ E, where z± ∈ E±, we define the subspace

E(z) := Rz⊕ E− ≡ Rz+ ⊕ E−,

and the convex set
Ê(z) := R+z⊕ E− ≡ R+z+ ⊕ E−,

where R+ = [0, ∞). It is clear that E(z) = E(z+), Ê(z) = Ê(z+), E(z) = E(αz) for α 6= 0 and
Ê(z) = Ê(βz) for β > 0.

Before giving the proof of the main theorem, we need some preliminary results.

Lemma 2.3. Assume that (S1)–(S4) are satisfied. Then for z ∈ M, we have Φ(z + w) < Φ(z), where
w 6= 0, w = rz + η, η ∈ E− and r ≥ −1, and z is the unique global maximum of Φ|Ê(z).

Proof. Let w = rz + η with η = (ϕ, ψ) ∈ E− and r ≥ −1. Then z + w = (1 + r)z + η =

((1 + r)u + ϕ, (1 + r)v + ψ). By (2.1) we have

Φ(z + w)−Φ(z)

=
1
2
(
((1 + r)2 − 1)(Az, z)2 + 2(1 + r)(Az, η)2 + (Aη, η)2

)
+
∫

R×RN
F(t, x, u)− F(t, x, (1 + r)u + ϕ) +

∫
R×RN

G(t, x, v)− G(t, x, (1 + r)v + ψ)

= −‖η‖
2

2
+ (Az, r

( r
2
+ 1
)

z + (1 + r)η)2

+
∫

R×RN
F(t, x, u)− F(t, x, (1 + r)u + ϕ) +

∫
R×RN

G(t, x, v)− G(t, x, (1 + r)v + ψ)

= −‖η‖
2

2
+
∫

R×RN

[
f (t, x, u)

(
r
( r

2
+ 1
)

u + (1 + r)ϕ
)
+ F(t, x, u)− F(t, x, (1 + r)u + ϕ)

]
+
∫

R×RN

[
g(t, x, v)

(
r
( r

2
+ 1
)

v + (1 + r)ψ
)
+ G(t, x, v)− G(t, x, (1 + r)v + ψ)

]
.

In the last step we used the fact that z ∈ M and ξ := r( r
2 + 1)z + (1 + r)η ∈ E(z), therefore

0 = 〈Φ′(z), ξ〉 = (Au, ξ)2 −
∫

R×RN
f (t, x, u)

(
r
( r

2
+ 1
)

u + (1 + r)ϕ
)

−
∫

R×RN
g(t, x, v)

(
r
( r

2
+ 1
)

v + (1 + r)ψ
)

.
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Similar to Lemma 2.2 in [23], by (S3) and (S4) we have

f (t, x, u)
(

r
( r

2
+ 1
)

u + (1 + r)ϕ
)
+ F(t, x, u)− F(t, x, (1 + r)u + ϕ) < 0

and

g(t, x, v)
(

r
( r

2
+ 1
)

v + (1 + r)ψ
)
+ G(t, x, v)− G(t, x, (1 + r)v + ψ) < 0.

From the above argument, we conclude that Φ(z + w) < Φ(z).

Lemma 2.4. Assume that (S1) and (S2) are satisfied. Then there exists ρ > 0 such that c ≥ κ :=
infSρ

Φ(z) > 0, where Sρ = {z ∈ E+ : ‖z‖ = ρ}.

Proof. Observe that, given ε > 0, there is Cε > 0 such that

| f (t, x, u)| ≤ ε|u|+ Cε|u|p−1, |g(t, x, v)| ≤ ε|v|+ Cε|v|p−1, (2.2)

and
|F(t, x, u)| ≤ ε|u|2 + Cε|u|p, |G(t, x, v)| ≤ ε|v|2 + Cε|v|p (2.3)

where p ∈ [2, N∗). For z = (u, v) ∈ E+ with ‖z‖ small, by Lemma 2.2 and (2.3) we have

Φ(z) =
1
2
‖z‖2 −

∫
R×RN

F(t, x, u) + G(t, x, v)

≥ 1
2
‖z‖2 − ε(|u|22 + |v|22)− Cε(|u|pp + |v|

p
p)

≥ (
1
2
− c2

2ε)‖z‖2 − cp
pCε‖z‖p,

where c2 and cp are constants of the embedding. Hence the second inequality follows if ρ and
ε are sufficiently small. Now, the first inequality follows from Lemma 2.3.

Lemma 2.5. Let (S1)–(S4) be satisfied. If V ⊂ E+ \ {0} is a compact subset. Then there exists R > 0
such that Φ(·) ≤ 0 on E(z) \ BR(0) for every z ∈ V .

Proof. Without loss of generality, we may assume that ‖z‖ = 1 for every z ∈ V . By contra-
diction, suppose that there exists a sequence zn ∈ V and wn = (un, vn) ∈ E(zn) such that
Φ(wn) > 0 for all n and ‖wn‖ → ∞ as n → ∞. Since V is a compact set, passing to a sub-
sequence, we may assume that zn → z ∈ E+, ‖z‖ = 1. Set yn = wn

‖wn‖ = snzn + y−n , then
1 = ‖yn‖2 = s2

n + ‖y−n ‖2 and

0 <
Φ(wn)

‖wn‖2 =
1
2
(s2

n − ‖y−n ‖2)−
∫

R×RN

F(t, x, un) + G(t, x, vn)

|wn|2
|yn|2.

From (S4), we have F(t, x, u), G(t, x, v) ≥ 0 and have

‖y−n ‖2 ≤ s2
n = 1− ‖y−n ‖2,

therefore

‖y−n ‖2 ≤ 1
2

and
1
2
≤ s2

n ≤ 1.
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Going to a subsequence if necessary, we may assume sn → s > 0, yn ⇀ y and y−n (t, x) →
y−(t, x) a.e. in R×RN . Hence y = sz + y− 6= 0, therefore |wn| = ‖wn‖|yn| → ∞. By (S3), (S4)
and Fatou’s lemma, we have

0 ≤ lim
n→∞

Φ(wn)

‖wn‖2 = lim
n→∞

(
1
2
(s2

n − ‖y−n ‖2)−
∫

R×RN

F(t, x, un) + G(t, x, vn)

|wn|2
|yn|2

)
≤ 1

2
− lim inf

n→∞

∫
R×RN

F(t, x, un) + G(t, x, vn)

|wn|2
|yn|2

≤ 1
2
−
∫

R×RN
lim inf

n→∞

F(t, x, un) + G(t, x, vn)

|wn|2
|yn|2

= −∞.

This is a contradiction.

Now we define the mappings m̂ : E \ E− → M, z 7→ m̂(z) and m := m̂|S+ , and have the
following results.

Lemma 2.6. Let (S1)–(S4) be satisfied. Then for each z ∈ E \ E−, the set Ê(z) ∩M consists of
precisely one point m̂(z) which is the unique global maximum of Φ|Ê(z).

Proof. By Lemma 2.3, it suffices to prove that M∩ Ê(z) is not empty. Since Ê(z) = Ê(z+),
we may assume that z ∈ E+ and ‖z‖ = 1. By Lemma 2.4, Φ(sz) > 0 for small s > 0 and
by Lemma 2.5, Φ(·) ≤ 0 on Ê(z) \ BR(0), hence 0 < supÊ(z) Φ < ∞. Suppose that zn ⇀ z0

in Ê(z). By Lemma 2.2, up to a subsequence, we see that zn(t, x) → z0(t, x) a.e. in R×RN .
It follows from (S4) and Fatou’s lemma that Ψ(z) is weakly lower semicontinuous on Ê(z).
Setting zn = snz + z−n and z0 = s0z + z−0 , then z−n ⇀ z−0 and sn → s0. Hence

−Φ(z0) =
1
2
(−s2

0 + ‖z−0 ‖
2) + Ψ(z0)

≤ lim inf
n→∞

(
1
2
(−s2

n + ‖z−n ‖2) + Ψ(zn)

)
= lim inf

n→∞
−Φ(zn),

which implies that Φ is weakly upper semicontinuous on Ê(z). Therefore, supÊ(z) Φ is achieved
at some z̃ ∈ Ê(z) \ {0}. This z̃ is a critical point of Φ|E(z). So z̃ ∈ M∩ Ê(z).

Lemma 2.7. Suppose that the assumptions of Theorem 1.1 hold. Then

(a) m̂ is continuous;

(b) m is a homeomorphism between S+ andM.

Proof. The proofs were given in [22, Proposition 4.1], here we omit the details.

Lemma 2.8. Under the assumptions of Theorem 1.1, the functional Φ is coercive onM.

Proof. Suppose to the contradiction that there exist some M ∈ R and a sequence {zn} =

{(un, vn)} ⊂ M such that Φ(zn) ≤ M for all n and ‖zn‖ → ∞ as n → ∞. Set wn = zn
‖zn‖ , after

passing to a subsequence, wn ⇀ w in E and wn(t, x) → w(t, x) a.e. in R×RN . By (S4) we
have

0 ≤ Φ(zn)

‖zn‖2 =
1
2
(‖w+

n ‖2 − ‖w−n ‖2)−
∫

R×RN

F(t, x, un) + G(t, x, vn)

‖zn‖2 ≤ 1
2
(‖w+

n ‖2 − ‖w−n ‖2)



8 Z. Luo, J. Zhang and W. Zhang

and ‖w+
n ‖2 ≥ ‖w−n ‖2. Moreover, from 1 = ‖w+

n ‖2 + ‖w−n ‖2, we deduce that ‖w+
n ‖2 ≥ 1

2 . After
passing a subsequence, {w+

n } is either vanishing, i.e.,

lim
n→∞

sup
y∈R×RN

∫
B(y,1)

|w+
n |2 = 0,

or non-vanishing, i.e., there exist r, δ > 0 and a sequence {yn} ⊂ ZN+1 such that

lim
n→∞

∫
B(yn,r)

|w+
n |2 ≥

δ

2
> 0. (2.4)

If {w+
n } is vanishing, then Lions’ concentration compactness principle [14] (also [32]) implies

w+
n → 0 in Lp for p ∈ (2, N∗). By (2.3) we know that Ψ(λw+

n ) → 0 as n → ∞ for all λ > 0.
Since λw+

n ∈ Ê(zn), then Lemma 2.3 implies that

M ≥ Φ(zn) ≥ Φ(λw+
n ) =

λ2

2
‖w+

n ‖2 −Ψ(λw+
n ) ≥

λ2

4
−Ψ(λw+

n )→
λ2

4
.

This yields a contradiction if λ is large enough. Hence, non-vanishing must hold and the
invariance of Φ and M under translation implies that {yn} can be selected to be bounded.
Then (2.4) implies w+ 6= 0. Hence w 6= 0, which implies that |zn| → ∞ as n → ∞. It follows
from (S3) and Fatou’s lemma that

Ψ(zn)

‖zn‖2 =
∫

R×RN

F(t, x, un) + G(t, x, vn)

|zn|2
|wn|2 → ∞

as n→ ∞. Therefore

0 ≤ Φ(zn)

‖zn‖2 =
1
2
(‖w+

n ‖2 − ‖w−n ‖2)− Ψ(zn)

‖zn‖2 → −∞

as n→ ∞, which is a contradiction. This completes the proof.

Now, we consider the reduced functional

Î : E+ \ {0} → R, Î(z) := Φ(m̂(z)) and I := Î|S+ .

Arguing as in Proposition 2.9 in [23], Î ∈ C1(E+ \ {0}, R) and

Î′(z)w :=
‖m̂(z)+‖
‖z‖ Φ′(m̂(z))w, for all z, w ∈ E+, z 6= 0.

Therefore, by the similar argument as Corollary 2.10 in [23], we have

Lemma 2.9 ([23, Corollary 2.10]). Suppose that the assumptions of Theorem 1.1 hold. Then

(a) I ∈ C1(S+, R) and

I′(z)w := ‖m(z)+‖Φ′(m(z))w for all w ∈ Tz(S+),

where Tz(S+) is the tangent space of S+ at z.

(b) If {zn} is a Palais–Smale sequence for I, then {m(zn)} is a Palais–Smale sequence for Φ. If
{zn} ⊂ M is a bounded Palais–Smale sequence for Φ, then {m−1(zn)} is a Palais–Smale sequence
for I.

(c) z is a critical point of I if and only if m(z) is a nontrivial critical point of Φ. Moreover, the
corresponding critical values coincide and infS+ I = infMΦ.
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3 The proof of Theorem 1.1

Proof of Theorem 1.1. Using Lemma 2.9, I ∈ C1(S+, R), {wn} ⊂ S+ is a (PS) sequence of I if
and only if {m(wn)} ⊂ M is a (PS) sequence of Φ, and w ∈ S+ is a critical point of I if
and only if m(w) ∈ M is a critical point of Φ, and the corresponding critical values coincide.
Hence we only show that there exists a minimizer u ∈ M of Φ|M.

By Ekeland’s variational principle, there exists a sequence {wn} ⊂ S+ such that

I(wn)→ inf
S+

I = c and I′(wn)→ 0.

Setting zn = m(wn) ∈ M, then

Φ(zn)→ c and Φ′(zn)→ 0.

By Lemma 2.8, {zn} is bounded and hence zn ⇀ z in E after passing to a subsequence.
Therefore, {u+

n } is either vanishing, i.e.,

lim
n→∞

sup
y∈R×RN

∫
B(y,1)

|z+n |2 = 0,

or non-vanishing, i.e., there exist r, δ > 0 and a sequence {yn} ⊂ ZN+1 such that

lim
n→∞

∫
B(yn,r)

|z+n |2 ≥
δ

2
> 0.

If {z+n } is vanishing, then Lions’ concentration compactness principle [14] implies z+n → 0 in
Lp for p ∈ (2, N∗). It follows from (2.2) that Ψ′(zn)z+n = o(‖z+n ‖), and hence

o(‖z+n ‖) = Φ′(zn)z+n = ‖z+n ‖2 −Ψ′(zn)z+n = ‖z+n ‖2 − o(‖z+n ‖),

which implies that ‖z+n ‖2 = o(1). On the other hand, since zn ∈ M, by (S4) we get

c ≤ Φ(zn) =
1
2
(‖z+n ‖2 − ‖z−n ‖2)−

∫
R×RN

F(t, x, un) + G(t, x, vn)

≤ 1
2
(‖z+n ‖2 − ‖z−n ‖2),

which implies ‖z+n ‖2 ≥ 2c > 0. This is a contradiction. Therefore, {zn} is non-vanishing.
Using a similar translation argument in the proof of Lemma 2.8 and the fact that Φ and M
are ZN+1-invariant, without loss of generality, we can assume that z = (u, v) 6= 0. Hence
Φ′(z) = 0. Up to a subsequence, we assume that zn(t, x) → z(t, x) a.e. in R×RN . By (S4)

and Fatou’s lemma, we have

Φ(z) = Φ(z)− 1
2

Φ′(z)z

=
∫

R×RN

(
1
2

f (t, x, u)u− F(t, x, u) +
1
2

g(t, x, v)v− G(t, x, v)
)

≤ lim inf
n→∞

∫
R×RN

(
1
2

f (t, x, un)un − F(t, x, un) +
1
2

g(t, x, vn)vn − G(t, x, vn)

)
≤ lim

n→∞

(
Φ(zn)−

1
2

Φ′(zn)zn

)
= c.

This yields that c is achieved by z ∈ M. This completes the proof.
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