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Abstract. In this paper we consider the persistence of lower dimensional tori of a class
of analytic perturbed Hamiltonian system,

H = 〈ω(ξ), I〉+ 1
2

Ω0 · (u2 + v2) + P(θ, I, z, z̄; ξ)

and prove that if the frequencies (ω0, Ω0) satisfy some non-resonance condition and
the Brouwer degree of the frequency mapping ω(ξ) at ω0 is nonzero, then there exists
an invariant lower dimensional invariant torus, whose frequencies are a small dilation
of ω0.
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1 Introduction

In this paper we consider small perturbations of an analytic Hamiltonian in a normal form

N = 〈ω(ξ), I〉+ 1
2

Ω0 · (u2 + v2),

on a phase space
(θ, I, z, z̄) ∈ P = Tn ×Rn ×R×R,

where Tn is the usual n-dimensional torus and the tangential frequencies ω(ξ) = (ω1, . . . , ωn)

are parameters dependent on ξ ∈ D ⊂ Rn with D a bounded simply connected open domain.
The associated symplectic form is

n

∑
j=1

dθj ∧ dIj + du ∧ dv.
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The Hamiltonian equations of motion of N are

θ̇ = ω(ξ), İ = 0, u̇ = Ω0v, v̇ = −Ω0u.

Thus for each ξ ∈ D, there exists an invariant n-dimensional torus Tn×{0}× {0} ⊂ R2n×R2

with tangential frequencies ω(ξ), which has an elliptic fixed point in the normal uv-space with
normal frequency Ω0. These tori are called lower dimensional invariant tori, split from resonant
ones lying in the resonance zone constituted by both stochastic trajectories and regular or-
bits. The persistence of lower dimensional invariant tori has been widely studied. See many
significant works [3, 4, 9, 11, 12, 14, 22].

The classical KAM theorem [1, 10, 13] asserts that, under Kolmogorov non-degeneracy
condition, namely,

det(∂ω/∂p) 6= 0,

if the perturbation is sufficiently small, a Cantor family of n-dimensional Lagrangian invariant
tori (so-called maximal dimensional invariant tori) persists with the frequencies ω satisfying
Diophantine conditions:

|〈k, ω〉| ≥ α

|k|τ , 0 6= k ∈ Zn.

When we consider the persistence of low dimensional invariant tori, the well known first
and second Mel’nikov conditions [11, 12] are formulated to deal with the resonance between
tangential and normal frequencies. The KAM theorem ensures that a large proportion of lower
dimensional invariant tori (in the sense of Lebesgue measure) can survive during sufficiently
small perturbations at the cost of removing a series of parameter sets with small measure,
which gives rise to the inability of prescribing frequencies.

The classical KAM theorem is extended to the case of Rüssmann’s non-degeneracy condi-
tion

a1ω1(p) + a2ω2(p) + · · ·+ anωn(p) 6≡ 0 on D̄, (1.1)

for all (a1, a2, · · · an) ∈ Rn \ {0}. See [2, 6, 16, 17, 18, 21]. However, in the case of
Rüssmann’s non-degeneracy, generally speaking, we cannot expect any more information on
the persistence of both maximal and lower dimensional invariant tori with a given
Diophantine frequency vector without adding any other extra condition to the Hamiltonian,
since the image of the frequency map may be on a sub-manifold.

Very recently, Sevryuk [20] obtained partial preservation of unperturbed frequencies of
maximum invariant torus for perturbed Hamiltonian systems under Rüssmann’s non-degen-
eracy condition, whose proof is based on external parameters and some Diophantine approx-
imations properties.

Similarly, by introducing external parameters and applying the KAM method, Xu and You
[23] showed the persistence of maximum invariant torus for a class of nearly integral Hamil-
tonian systems with a given Diophantine frequency vector ω(p0) satisfying deg(ω, D, ω0) 6= 0
without assuming Kolmogorov non-degeneracy condition, just provided the perturbation is
sufficiently small. Meanwhile, they also pointed out that, their results could not be general-
ized to the lower dimensional elliptic case.

In [4], Bourgain showed the persistence of lower dimensional invariant torus Td × {0} ×
{0} ⊆ R2d ×R2r under Kolmogorov non-degeneracy condition by combining Nash–Moser
type method, introduced and developed by Craig and Wayne [3, 7, 8] and KAM method.
Furthermore, the author proved that for a fixed Diophantine frequency ω0, the perturbed
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Hamiltonian system admits a lower dimensional invariant torus, whose frequencies ω∗ are a
small dilation of ω0 with the dilation factor λ, that is,

ω∗ = λω0, λ ∈ R, λ ≈ 1,

which reveals some interesting dynamical behavior of object motions in the phase space that
the frequencies of quasi-periodic motions winding around invariant tori always lie in a fixed
direction, being a multiple of a given Diophantine vector.

Motivated by [4, 20, 23], in this paper, we aim at proving the persistence of elliptic lower
dimensional invariant tori with prescribed frequencies for small perturbations H = N + P
of the Hamiltonian N. To be more precise, we will show that if frequencies (ω0, Ω0) satisfy
some non-resonant conditions and the Brouwer degree of the frequency mapping ω(ξ) at ω0

is nonzero, then there exists a lower dimensional invariant torus, whose frequencies are a
small dilation of ω0.

To present our main theorem quantitatively, we make some preliminaries and introduce
some notations.

We first introduce complex conjugate variables

z = (u + iv)/
√

2, z̄ = (u− iv)/
√

2.

The corresponding symplectic form and Hamiltonian become ∑ dθi ∧ dIi + idz ∧ dz̄ and

H = 〈ω(ξ), I〉+ Ω0 · zz̄ + P(θ, I, z, z̄; ξ), (1.2)

respectively.
Denote a complex neighborhood of the torus Tn × {0} × {0} × {0} by

D(s, r) = {(θ, I) : |Imθ| < s, |I| < r2, |z|+ |z̄| ≤ r} ⊂ Cn ×Cn ×C×C.

Expand P(θ, I, z, z̄; ξ) as Fourier series with respect to θ and we have

P(ξ; θ, I) = ∑
k∈Zn

Pk(I, z, z̄; ξ) ei〈k,θ〉.

Define
‖P‖D(s, r)×Πσ

= ∑
k, l
‖Pk‖r;σ es|k|,

where ‖Pk‖r;σ = sup|I|<r2,|z|+|z̄|≤r supξ∈Πσ
|Pk(I, z, z̄; ξ)|.

Let
Π = {ξ ∈ D : |ξ − ∂D| ≥ σ},

where σ > r > 0 is a small constant, and Πσ a complex closed neighborhood of Π with the
radius σ, that is,

Πσ = {ξ ∈ Cn : |ξ −Π| ≤ σ}.

For ξ ∈ Πσ, denote by d the diameter of the image set of ω(ξ), and a cover of ω(Π) by

O =
(
∪ξ∈ΠB(ω(ξ), d)

)
∩Rn,

where B(ω, d) = {v ∈ Cn : |v−ω| < d}. Define a positive constant L, such that |ω(ξ)|+ 1 ≤
L for all ξ ∈ D.

For integer vectors (k, l) ∈ Zn ×Z with |l| ≤ 2, we use the notation | · | to denote its | · |1
norm. Set Z = {(k, l) 6= 0, |l| ≤ 2} ⊂ Zn ×Z.
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Theorem 1.1. Suppose that the following Hamiltonian system

H = 〈ω(ξ), I〉+ Ω0 · zz̄ + P(θ, I, z, z̄; ξ) (1.3)

is real analytic on D(s, r)×D. Let ω0 = ω(ξ0), ξ0 ∈ D. Suppose that frequencies ω0 and Ω0 satisfy
the following non-resonance condition:

|〈k, ω0〉+ l ·Ω0| ≥
α

Ak
, (k, l) ∈ Z ,

where 〈·, ·〉 is the usual scalar product and Ak = 1 + |k|τ with τ ≥ n + 1; and the Brouwer degree of
the frequency mapping ω at ω0 on D is not zero, i.e.

deg(ω, D, ω0) 6= 0.

Then there exists a sufficiently small constant ε > 0, such that if ‖P‖D(s, r)×Πσ
≤ ε, (1.3) has an

elliptic invariant torus with non-resonant frequencies (ω∗, Ω∗) = (1 + µ∗)(ω0, Ω0), where µ∗ is a
small dilation depending on ε.

Remark 1.2. The above theorem can apply to the following example. Set ω(ξ) = ω0 +

(ξ2d1+1
1 , . . . , ξ2dn+1

n ), where d1, . . . , dn are positive integers. Note that ω(ξ) does not satisfy
the Kolmogorov non-degeneracy condition at ξ = 0 (only with Rüssmann’s non-degeneracy
condition satisfied). However, the previous KAM theorem cannot provide any information
about the frequencies of invariant tori of perturbed systems. When applying Theorem 1.1, we
know that the Hamiltonian system possesses an invariant torus along the prescribed direction
ω0.

Remark 1.3. In fact, the normal frequency Ω0 of the system (1.3) can depend on the parameter
ξ. But we should add certain restriction to the derivative of Ω0(ξ) in order to make sure the
shift of Ω0(ξ) does not affect the Brouwer degree of ω(ξ) at ω0. The extra restriction will be
determined by the extent of degeneracy of ω(ξ). Here we do not explore this situation and
assume Ω to be a constant.

Remark 1.4. In this paper we aim at the persistence of elliptic lower dimensional invariant
tori with one normal frequency. In this case we come across essentially the first Mel’nikov
condition, which can be solved by introducing external parameters and Brouwer degree as-
sumption. Once two or more normal frequencies are involved, without any non-degeneracy
condition we cannot manage the second Mel’nikov condition and preserve the frequencies at
the same time.

2 Proof of the theorems

First we introduce an external parameter vector λ and consider the Hamiltonian

H(θ, I, z, z̄; ξ, λ) = 〈ω(ξ) + λ, I〉+ Ω0 · zz̄ + P(θ, I, z, z̄; ξ). (2.1)

In what follows we abbreviate H(θ, I, z, z̄; ξ, λ) as H(·; ξ, λ). The method of introducing pa-
rameter was used in [19, 20] to deal with Rüssmann’s non-degeneracy condition and remove
degeneracy. The Hamiltonian system (2.1) then corresponds to (1.3) with λ = 0.

We subsequently give a KAM theorem for (2.1) with parameters (ξ, λ) and obtain an ellip-
tic torus with prearranged frequencies direction. Topology degree theory ensures the existence



Elliptic lower dimensional tori with prescribed frequency 5

of certain ξ such that λ(ξ) = 0, which implies the obtained invariant torus is actually one of
the original perturbed Hamiltonian system.

For fixed Ω0, define

O =

{
ω : |〈k, ω〉+ l ·Ω0| ≥

α

Ak
, (k, l) ∈ Z

}
. (2.2)

Let M = Πσ × B(0, 2d + 1). Then the Hamiltonian H(·; ξ, λ) is real analytic on D(s, r)×M.

Theorem 2.1. There exists a small ε > 0 such that if

‖P‖D(s,r)×M ≤ ε,

we have a Cantor-like family of analytic curves in M:

Γv = {(ξ, λ(ξ)) : ξ ∈ Π},

which are implicitly determined by the following equation

λ + ω(ξ) + g(ξ, λ) = (1 + µ(ξ, λ))v,

for v ∈ O, where g(ξ, λ), µ(ξ, λ) are C∞ smooth on M with estimates

|g(ξ, λ)| ≤ 2ε

r
, |gλ(ξ, λ)|+ |gξ(ξ, λ)| ≤ 1

2
,

and

|µ(ξ, λ) ·Ω0| ≤
2ε

r2 , |µλ(ξ, λ)|+ |µξ(ξ, λ)| ≤ 1
4L

,

and a parameterized family of symplectic mappings

Φ(·; ξ, λ) : D(s/2, r/2)→ D(s, r), (ξ, λ) ∈ Γ = ∪v∈OΓv,

where Φ is C∞ smooth in (ξ, λ) on Γ in the sense of Whitney and analytic in (θ, I, z, z̄) on D(s/2, r/2),
such that for (ξ, λ) ∈ Γv,

H(·; ξ, λ) ◦Φ(·; ξ, λ) = N∗(·; ξ, λ) + P∗(·; ξ, λ),

where
N∗(·; ξ, λ) = 〈ω∗, I〉+ Ω∗(ξ, λ)zz̄,

with tangential frequencies

ω∗ = (1 + µ(ξ, λ))v, Ω∗ = (1 + µ(ξ, λ))Ω0,

and
∂l

I∂
p
u∂

q
vP∗
∣∣

I,u,v=0 = 0, 2|l|+ |p + q| ≤ 2.

Therefore, (2.1) possesses an elliptic invariant torus Φ(Tn×{0, 0, 0}; ξ, λ) with tangential frequencies
ω∗ = (1 + µ(ξ, λ))v for each (ξ, λ) ∈ Γv.
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Now we first use Theorem 2.1 to prove Theorem 1.1 and delay the proof of Theorem 2.2
later. In fact, let v = ω0 and then we have an analytic curve Γω0 : ξ ∈ Π → λ(ξ), implicitly
determined by the following equation

λ + ω(ξ) + g(ξ, λ) = (1 + µ(ξ, λ))ω0.

The implicit function theorem shows

λ(ξ) = ω0 −ω(ξ) + λ̂(ξ), ∀ξ ∈ Π.

Moreover, if ε is sufficiently small, we have

|λ̂(ξ)| ≤ 2L
|Ω0|

· ε

r2 and |λ̂ξ(ξ)| ≤
8L
|Ω0|

· ε

r2 .

It follows from the assumption that

deg(ω0 −ω, Π, 0) 6= 0.

Therefore, if ε is sufficiently small, we have

deg(λ, Π, 0) = deg(ω0 −ω, Π, 0) 6= 0.

Then there exists ξ∗ ∈ Π such that λ(ξ∗) = 0. The Hamiltonian system (2.1) with H(·; ξ∗) =

H(·; ξ∗, λ(ξ∗)) has an elliptic invariant torus Φ(Tn × {0, 0, 0}; ξ∗, λ(ξ∗)) with tangential fre-
quency

(
1 + µ(ξ∗, λ(ξ∗))

)
ω0.

Below we are to prove Theorem 2.1. In order to verify the Hamiltonian flow on the per-
sisted tori winds along the prearranged direction v, we tend to adjust tangential frequencies
w(ξ, λ) at each KAM step to guarantee the consistent direction; and for this goal the external
parameter λ and internal parameter ξ are varying in decreasing domains.

The KAM iteration scheme mostly follows the classical papers [14, 15]. We also highlight a
recent work by Berti and Biasco [5], which deals not only with various, weak small perturba-
tions of elliptic tori to obtain the existence of KAM tori, but can apply to both our circumstance
and PDEs with Hamiltonian structure. Consequently, we just provide admissible definition
domain for (ξ, λ), and omit the other standard parts of KAM step, as readers can refer to
[5, 14, 15] for concrete estimates.

KAM step. The following iteration lemma can be regarded as one KAM step. If the estimates
(2.3)–(2.7) and (2.11) hold, then the assumptions A1 and A2 hold for H+ and so the KAM step
can be iterated infinitely.

Lemma 2.2 (Iteration lemma). Consider the following Hamiltonian

H(·; ξ, λ) = 〈w(ξ, λ), I〉+ Ω(ξ, λ)zz̄ + P(·; ξ, λ),

where w(ξ, λ) = ω(ξ) + λ + g(ξ, λ) and Ω(ξ, λ) = Ω0 + µ(ξ, λ)Ω0. Assume:

(A1) the Hamiltonian H is analytic on M× D(s, r) with ‖P‖M×D(s,r) ≤ ε;

(A2) the functions g and µ satisfy the following estimates:

|gλ(ξ, λ)|+ |gξ(ξ, λ)| < 1
2

, ∀(ξ, λ) ∈ M, (2.3)

|µ(ξ, λ)| ≤ 1
4

and |µλ(ξ, λ)|+ |µξ(ξ, λ)| < 1
4L

, ∀(ξ, λ) ∈ M. (2.4)
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For each v ∈ O, the equation

w(ξ, λ) = ω(ξ) + λ + g(ξ, λ) = (1 + µ(ξ, λ))v

implicitly defines an analytic mapping

λ : ξ ∈ Πσ → λ(ξ) ∈ B(0, 2d + 1)

such that Γv = {(ξ, λ(ξ)) : ξ ∈ Πσ} ⊂ M. Let e−Kρ = 1
6 ε

1
2 , h = α

4Kτ+1 and δ = 2
3 h.

Thus,
U(Γv, δ) =

{
(ξ, λ′) ∈ Πσ ×Cn : |λ′ − λ(ξ)| ≤ δ

}
⊂ M.

Suppose

ε < min
{

2−3cαrρτ+n+1, 2−16c2
}

, (2.5)

ε < (32L)−1|Ω0|r2δ, (2.6)

ε
1
2 < (3c)−1αrρτ+n+1, (2.7)

where the constant c is twice the largest constant appearing in the following iterative process and is
independent of KAM steps. Set

s+ = s− 5ρ, η3 = (3c)−1ε
1
2 , ρ+ =

1
2

ρ, r+ = ηr, ε+ = ε
3
2 ,

where 0 < ρ < s/5, and

M+ =

{
(ξ, λ′) ∈ Cn ×Cn : ξ ∈ Πσ− 1

2 δ, (ξ, λ) ∈ Γ, |λ′ − λ| ≤ 1
2

δ

}
, (2.8)

where Γ =
⋃

v∈O Γv. Then for any (ξ, λ) ∈ M+ there exists a symplectic mapping

Φ(·; ξ, λ) : D(s+, r+)→ D(s, r),

where Φ is real analytic on D(s+, r+)×M+, such that

H+(·; ξ, λ) = H(·; ξ, λ) ◦Φ(·; ξ, λ) = 〈w+(ξ, λ), I〉+ Ω+(ξ, λ) · zz̄ + P+(·; ξ, λ),

where
w+(ξ, λ) = ω(ξ) + λ + g(ξ, λ) + ĝ(ξ, λ),

and
Ω+(ξ, λ) = Ω0 + (µ(ξ, λ) + µ̂(ξ, λ))Ω0

Furthermore, the following estimates hold.

(i) The new perturbation term P+ satisfies ‖P+‖D(s+,r+)×M+
≤ ε+.

The mapping Φ has the following estimates:

‖W(Φ− id)‖D(s+,r+)×M+
+ ‖W(DΦ− Id)W−1‖D(s+,r+)×M+

≤ cε

αrρτ+n+1 ,

where D is the differentiation operator with respect to (θ, I, z, z̄) and W = diag(ρ−1 In, r−2 In,
r−1, r−1) with In the n-th order unit matrix.
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(ii) ĝ satisfies that
|ĝ(ξ, λ)| ≤ ε

r
, ∀(ξ, λ) ∈ M,

and
|ĝλ(ξ, λ)|+ |ĝξ(ξ, λ)| ≤ 2ε

rδ
, ∀(ξ, λ) ∈ M+;

µ̂ satisfies that
|µ̂(ξ, λ) ·Ω0| ≤

ε

r2 , ∀(ξ, λ) ∈ M,

and
|µ̂λ(ξ, λ)|+ |µ̂ξ(ξ, λ)| ≤ 2ε

|Ω0| · r2δ
, ∀(ξ, λ) ∈ M+.

The equation
w+(ξ, λ) = ω(ξ) + λ + g+(ξ, λ) = (1 + µ+(ξ, λ))v

implicitly determines an analytic mapping

λ+ : ξ ∈ Πσ+ → λ+(ξ) ∈ B(0, 2d + 1) with σ+ = σ− 1
2

δ,

satisfying

|λ+(ξ)− λ(ξ)| ≤ 8L
|Ω0|

· ε

r2 ≤
1
4

δ (2.9)

and
Γ+

v = {(ξ, λ+(ξ)) : ξ ∈ Πσ+} ⊂ M+. (2.10)

Let h+ = α
4Kτ+1

+
and δ+ = 2

3 h+, where K+ satisfies e−K+ρ+ = 1
6 ε

1
2 . If

δ+ <
1
4

δ, (2.11)

then for all v ∈ O we have U(Γ+
v , δ+) ⊂ M+.

Proof of the Iteration lemma. Assumption (A2) shows that w(ξ, λ) = (1 + µ(ξ, λ))v on Γ with
v ∈ O. Noting (2.2) and Ω(ξ, λ) = (1 + µ(ξ, λ))Ω0, then on Γ,

|〈k, w(ξ, λ)〉+ l ·Ω(ξ, λ)| = (1 + µ(ξ, λ)) · |〈k, v〉+ l ·Ω0|

≥ (1− |µ(ξ, λ)|) · α

Ak
≥ 3

4
· α

Ak
(2.12)

for (k, l) ∈ Z and |k| ≤ K.
Moreover, for (ξ, λ) ∈ U(Γ, δ), there exists w0 = (1 + µ(ξ, λ))v0 with v0 ∈ O such that

|w− w0| ≤ h. Thus, for (ξ, λ) ∈ U(Γ, δ), (k, l) ∈ Z and |k| ≤ K,

|〈k, w(ξ, λ)〉+ l ·Ω(ξ, λ)| ≥ |〈k, w0〉+ l ·Ω(ξ, λ)| − |k| · |w− w0|

≥ 3α

4Ak
− h · |k| ≥ α

2Ak
, (2.13)

where the last inequality follows from (2.12) and h = α
4Kτ+1 .

Once the non-resonance condition (2.13) holds, we can simulate the proof of [5, Theorem
5.1] to conduct a detailed KAM step. The relevant estimates here are standard and analogous.
The conclusion (i) holds subsequently.
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Recall the small shift of frequencies ĝ(ξ, λ) = P0100(ξ, λ) and µ̂(ξ, λ) = P0011(ξ, λ); then the
estimates of ĝ and µ̂ hold obviously. Cauchy estimate also yields the estimates for ĝξ and ĝλ

in conclusion (ii). Set g+ = g + ĝ and µ+ = µ + µ̂. Define M+ as in (2.8). It follows from the
closeness of the set O that M+ is also closed. Note that dist(M+, ∂M) ≥ δ/2. Cauchy estimate
again shows

|g+λ(ξ, λ)| ≤ 1
2

, |µ+λ(ξ, λ)| ≤ 1
4L

, ∀(ξ, λ) ∈ M+.

Implicit function theorem and (2.6) also imply that the equation

w+(ξ, λ) = ω(ξ) + λ + g+(ξ, λ) = (1 + µ+(ξ, λ))v

determines an analytic mapping

λ+ : ξ ∈ Πσ+ → λ+(ξ) ∈ B(0, 2d + 1).

It is easy to see the estimates (2.9)–(2.10) hold. Inequality (2.11) yields U(Γ+
v , δ+) ⊂ M+.

Hence, the conclusion (ii) holds.

Iteration and convergence. Now we choose some suitable parameters so that the above step
can be iterated infinitely. At the initial step, let

s0 = s, ρ0 =
1

20
s, r0 = r, ε0 = ε, σ0 = σ.

Let K0 and η0 satisfy e−K0ρ0 = 1
6 ε

1
2
0 and η3

0 = 1
3c ε

1
2
0 , respectively. Furthermore, we choose ε0

sufficiently small such that

ε0 ≤
(
212τ+12n+36c6)−1, ε0 ·

(
ln 6− ln ε

1
2
0

)τ

<
(
210L

)−1|Ω0|αr2
0ρτ

0 . (2.14)

For j ≥ 0, we define

hj =
α

4Kτ
j

, δj =
2
3

hj, σj+1 = σj −
1
2

δj; (2.15)

ρj+1 =
1
2

ρj, rj+1 = ηjrj, sj+1 = sj − 5ρj; (2.16)

εj+1 = ε
3
2
j , e−Kj+1ρj+1 =

1
6

ε
1
2
j+1, η3

j+1 =
1
3c

ε
1
2
j+1. (2.17)

Then all the above parameters are well defined for j.
For conciseness, we merely provide the details concerning frequencies shift and admissible

parameter domains, and recommend readers to refer to [5] for the other estimates.
Let H0 = H and M0 = Πσ × B(0, 2d + 1). The iteration lemma introduces a monotonous

decreasing sequence of closed sets {Mj}, and a sequence of symplectic mappings {Φj(·; ξ, λ)}
defined on D(sj+1, rj+1) for (ξ, λ) ∈ Mj+1.

Set Φj = Φ0 ◦ · · · ◦Φj−1 with Φ0 = id, and Hj = H ◦Φj = Nj + Pj, where

Nj(·; ξ, λ) = 〈wj(ξ, λ), I〉+ Ωj(ξ, λ) · zz̄,

with wj(ξ, λ) = ω(ξ) + λ + gj(ξ, λ) and Ωj(ξ, λ) = Ω0 + µj(ξ, λ)Ω0.
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The iteration lemma shows, for v ∈ Oα, the equation

wj(ξ, λ) = ω(ξ) + λ + hj(ξ, λ) = (1 + µj(ξ, λ))v

on Mj implicitly defines an analytic mapping λ = λj(ξ), ξ ∈ Πσj , whose graph in Mj forms an

analytic curve Γj
v. Denote by Γj =

⋃
v∈Oα

Γj
v. Recall that

Mj+1 =

{
(ξ, λ′) ∈ Cn ×Cn : ξ ∈ Πσj+1 , |λ′ − λ| ≤ 1

2
δj, (ξ, λ) ∈ Γj

}
,

which yields Mj+1 ⊂ Mj and dist(Mj+1, ∂Mj) ≥ 1
2 δj.

Note

ĝj(ξ, λ) = wj+1(ξ, λ)− wj(ξ, λ) and µ̂j(ξ, λ) =
(
Ωj+1(ξ, λ)−Ωj(ξ, λ)

)
/Ω0.

Then for (ξ, λ) ∈ Mj, we arrive at

|ĝj(ξ, λ)| ≤
εj

rj
and |µ̂j(ξ, λ) ·Ω0| ≤

εj

r2
j
.

Cauchy estimate shows, for (ξ, λ) ∈ Mj+1,

|ĝjξ(ξ, λ)|+ |ĝjλ(ξ, λ)| ≤
2εj

rjδj
and |µ̂jξ(ξ, λ)|+ |µ̂jλ(ξ, λ)| ≤ 2

|Ω0|
·

εj

r2
j δj

.

Furthermore, we have

|λj+1(ξ)− λj(ξ)| ≤
8L
|Ω0|

·
εj

r2
j δj

, ∀(ξ, λ) ∈ Mj+1. (2.18)

Based on the initial value and induction, it is easy to verify assumptions (2.5)–(2.7) in the
iteration process. Noting (2.15)–(2.17) and the above estimates, we are able to verify (2.3), (2.4)
and that all the sequences are Cauchy sequences. Hence, the defined variable sequences are
ultimately convergent.

Let D∗ = D(0, 1
2 s), M∗ =

⋂
j≥0 Mj and σ∗ = σ− 1

2 ∑∞
j=0 δj. Choose ε0 sufficiently small such

that δ0 ≤ σ, and then σ∗ ≥ σ− 2
3 δ0 ≥ 1

3 σ. As a consequence, Πσ∗ ⊂
⋂

j≥0 Πσj .
Furthermore, let

Φ = lim
j→∞

Φj, λ(ξ) = lim
j→∞

λj(ξ); g(ξ, λ) = lim
j→∞

gj(ξ, λ) and µ(ξ, λ) = lim
j→∞

µj(ξ, λ)

respectively, for ξ ∈ Πσ∗ and (ξ, λ) ∈ M∗. Then we have the estimates for g(ξ, λ) and µ(ξ, λ)

for (ξ, λ) ∈ M∗ in Theorem 2.1.
Recall Γj

v =
{
(ξ, λj(ξ)) : ξ ∈ Πσj

}
⊂ Mj and λj is analytic on Πσ∗ . Then we obtain the

analyticity of λ(ξ) on Πσ∗ and

|λ(ξ)− λj(ξ)| ≤
δj

2
,

by using (2.18). This indicates that

Γ∗v = {(ξ, λ(ξ)) : ξ ∈ Πσ∗} ⊂ Mj and Γ∗ =
⋃

v∈O
Γ∗v ⊂ Mj.
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Consequently, Γ∗ ⊂ M∗ =
⋂

j≥0 Mj. For (ξ, λ) ∈ Γ∗v,

λ + ω(ξ) + g(ξ, λ) = (1 + µ(ξ, λ))v.

Note that M∗ is not an open set. Hence, the smoothness of g, µ and P∗ with respect to
(ξ, λ) on M∗ should be understood in the sense of Whitney. Applying Whitney extension
theorem [24], we can extend g, µ and P∗ to be C∞ smooth on M, which only makes sense on
M∗. Hence, we have completed the proof of Theorem 2.1.
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