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PRINCIPAL SOLUTION OF HALF-LINEAR DIFFERENTIAL

EQUATION: LIMIT AND INTEGRAL CHARACTERIZATION

ZUZANA DOŠLÁ AND ONDŘEJ DOŠLÝ

Abstract. We investigate integral and limit characterizations of the principal so-
lution of the nonoscillatory half-linear differential equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−2, p > 1.

In particular, we supplement and extend the results of the previous papers [2, 3, 5,
8, 11].

1. Introduction

In this paper we deal with the second order half-linear differential equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−2, p > 1,(1)

where r, c are continuous functions for t ≥ 0 and r(t) > 0.
The qualitative theory of (1) attracted considerable attention in recent years. It

was shown that many properties of solutions of (1) are very similar to those of the
linear Sturm-Liouville differential equation (which is the special case p = 2 in (1))

(r(t)x′)′ + c(t)x = 0.(2)

On the other hand, several phenomena have been indicated, where the behavior of
solutions of (1) and (2) is completely different. We refer to the recent book [12] for the
comprehensive treatment of the theory of half-linear differential equations. For the
reader who is not familiar with the elements of the theory of half-linear equations let
us recall at least that the terminology half-linear equation comes from the Hungarian
mathematicians I. Bihari [1] and Á. Elbert [13] and it is motivated by the fact that the
solution space of (1) has just one half of the properties which characterize linearity,
namely homogeneity, but generally not additivity.

Our principal concern is to investigate properties of the so-called principal solution

of (1). The concept of the principal solution of the linear equation (2) was introduced
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by Leighton and Morse [18] and basic properties of this solution were investigated by
Hartman (see [16] for a basic survey). It was shown, that nonoscillatory equation (2)
(i.e., there exists T ∈ R, such that any nontrivial solution of (2) has at most one zero
point on [T,∞)) possesses a unique (up to a nonzero multiplicative factor) solution
x̃, called the principal solution, with the property that

lim
t→∞

x̃(t)

x(t)
= 0(3)

for any solution x linearly independent of x̃. An equivalent characterization of the
principal solution x̃ is

∫ ∞ dt

r(t)x̃2(t)
= ∞(4)

since this integral is convergent for any solution linearly independent of x̃.
A closer examination of the treatment given in [16, Chap. XI] reveals that char-

acterizations (3) and (4) are based on the additivity of the solution space and the
Wronskian identity for solutions of (2), respectively, but none of these two properties
extends to (1). However, as observed Mirzov [19] and later independently Elbert and
Kusano [15], there is another equivalent characterization of the principal solution of
(2) (less known than (3) and (4)) that does extend to (1). It is based on the fact that
the solution w̃ := rx̃′/x̃ of the Riccati equation

w′ + c(t) +
w2

r(t)
= 0(5)

corresponding to the principal solution x̃ of (1) is smaller than any other solution of
(5) for large t .

Mirzov [19] observed that a similar situation holds for the half-linear equation (1)
and the associated Riccati equation

w′ + c(t) + (p − 1)
|w|q

rq−1(t)
= 0, q =

p

p − 1
,(6)

which is related to (1) by the Riccati substitution

w̃(t) = r(t)Φ(x̃′(t)/x̃(t)).

More precisely, Mirzov showed that among all solutions w of (6) there exists the
minimal one w̃, minimal in the sense that for any other solution w of (6) we have

w̃(t) < w(t) for large t.(7)
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The principal solution of (1) is that solution x̃ which “generates” the minimal solution
w̃ via the Riccati substitution, i.e., it is given by the formula

x̃(t) = C exp

{
∫ t

r1−q(s)Φ−1(w̃(s)) ds

}

,

where Φ−1(x) = |x|q−2x is the inverse function of Φ. Obviously, the principal solution
is unique up to a constant factor.

Comparing the above three properties of principal solutions of (2) – the “Riccati
property” (7), the limit property (3) and the integral property (4), the last one is
specific: it involves just one solution x̃, without comparing it with other solutions.
The extension of the integral property to half-linear equations seems to be a difficult
problem. As we will show, the universal integral characterization which would contain
only one solution likely does not exist in general.

In this paper we continue in the investigation initiated in [2, 3, 4, 5, 6, 8, 11], where
various integral characterizations of the principal solution of (1) have been offered
and the limit characterization (3) has been investigated (see [2]–[5]). Our main result
shows how the limit characterization (3) of the principal solution x̃ is related with
two types of integral characterizations. We also present an example showing that one
of the results of the paper [8] is not correct.

We will use the following notation:

Jr =

∫ ∞ dt

rq−1(t)
, Jc =

∫ ∞

|c(t)| dt.

Note that if both integrals Jr and Jc are divergent, then (1) is oscillatory, see [12].

2. Survey of the known results

We recall known results concerning integral and limit characterizations of the prin-
cipal solution of (1). The first attempt to find an integral characterization of the
principal solution of (1) was made in the paper of Mirzov [19]. To introduce it, de-
note

F (t) :=

{

1−|t|q

1−t
+ Φ−1(1 − t) t 6= 1,

q t = 1,

and

m∗ = min{F (t) : t ∈ [0, 1]}, m∗ = max{F (t) : t ∈ [0, 1]}.

Mirzov’s integral characterization of the pricipal solution of (1) is given in the next
proposition.
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Proposition 1. Suppose that Jr = ∞. If x̃ is the principal solution, then
∫ ∞ dt

rq−1(t)|x̃(t)|m∗

= ∞,

and, conversely, if
∫ ∞ dt

rq−1(t)|x̃(t)|m∗
= ∞,

then x̃ is the principal solution of (1).

However, the exponents m∗, m∗ coincide (and m∗ = m∗ = 2) only in the linear case
p = 2 and generally m∗ > m∗, so Mirzov’s integrals characterize principal solution of
(1) equivalently only in the linear case.

The second attempt to find an integral characterization of the principal solution of
(1) comes from the paper [8]. The main result of that paper reads as follows.

Proposition 2. Let x̃ be a solution of (1) such that x̃′(t) 6= 0 for large t. Then we

have the following statements:

(i) Let p ∈ (1, 2]. If

I(x̃) :=

∫ ∞ dt

r(t)x̃2(t)|x̃′(t)|p−2
= ∞,(8)

then x̃ is the principal solution of (1).
(ii) Let p ≥ 2. If x̃ is the principal solution of (1) then (8) holds.

(iii) Suppose that p ≥ 2, Jr = ∞, the function γ(t) :=
∫ ∞

t
c(s) ds exists, and

γ(t) ≥ 0, but γ(t) 6≡ 0 for large t. Then x̃ is the principal solution of (1) if

and only if (8) holds.

Note that the statement (iii) of the previous proposition is stated in [8] without the
assumption p ≥ 2. As the next example shows, the implication: “x̃ is the principal
solution =⇒ I(x̃) = ∞” may fail to hold for p ∈ (1, 2).

Example 1. Consider the equation

((x′)1/2)′ +
15t−3/2

(t9 − 1)1/2
x1/2 = 0, t ≥ 1.(9)

This equation has a solution x̃(t) = 1 − 1/t9 which satisfies x̃(t) → 1 and its
quasiderivative

x̃[1] := (x̃′)1/2 = 3/t5 → 0

as t → ∞. According to the uniqueness result of [17] (see also [3, Theorem B]), all
bounded solutions of (1) are uniquely determined up to a multiplicative constant.
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Hence,

lim
t→∞

x̃(t)

x(t)
= 0(10)

for any solution x 6= λx̃. Suppose that x̃ is not a principal solution of (9) and let x0

be a positive principal solution. By (7) we have

x′
0(t)/x0(t) < x̃′(t)/x̃(t) for large t,

that is the function x̃/x0 is positive and increasing for large t. On the other hand, we
have by (10) that x̃/x0 → 0, which is a contradiction. Thus x̃ is the principal solution
of (9). However

I(x̃) =

∫ ∞ x̃′(t)

x̃2(t)x̃[1](t)
dt ∼

∫ ∞

(x̃′(t))1/2 dt ∼ 3

∫ ∞

1

dt

t5
< ∞.

Hence, Proposition 2, part (iii), is not generally true for p ∈ (1, 2).

Another integral characterization of the principal solution has been suggested in the
papers [2, 3, 4], and the main results of these papers along this line are summarized
in the next statement.

Proposition 3. Suppose that either

(i) c(t) < 0 for large t, or

(ii) both integrals Jr, Jc are convergent.

Then a solution x̃ of (1) is principal if and only if
∫ ∞ dt

rq−1x̃2(t)
= ∞.(11)

Note that if Jr = ∞, c(t) > 0, and p > 2, then the principal solution of (1) need
not satisfy (11), as the next example shows.

Example 2. Consider the half-linear Euler equation

(Φ(x′))′ +
(γ

t

)p

Φ(x) = 0, γ = (p − 1)/p

The solution x̃(t) = tγ of this equation is principal (see e.g. [12, p. 40]) but does not
satisfy (11) for p > 2. Note that any linearly independent nonprincipal solution is
given by the asymptotic formula

x(t) = tγ(log t)
2

p

(

1 + O(log−1 t)
)

,

i.e., the limit characterization of the principal solution (10) holds in this case.
EJQTDE, Proc. 8th Coll. QTDE, 2008 No. 7, p. 5



When c(t) > 0 for large t and one of the integrals Jr or Jc is divergent, the integral
characterization of the principal solution of (1) has been studied in [3, 5] and is
summarized in the following two statements (see [5, Theorem 2 and Theorem 3]):

Proposition 4. Suppose that c(t) > 0 for large t, (1) is nonoscillatory and Jr = ∞.

In addition, if both integrals
∫ ∞ 1

rq−1(t)

(

∫ ∞

t

c(s) ds
)q−1

dt,

∫ ∞

c(t)
(

∫ t ds

rq−1(s)

)p−1

dt(12)

are divergent, assume p > 2. Then a solution x̃ of (1) is principal if and only if
∫ ∞ c(t)(x̃(t))p−2

(

r(t)Φ(x̃′(t)
)2 dt = ∞.

Proposition 5. Suppose that c(t) > 0 for large t, (1) is nonoscillatory and Jc = ∞.

In addition, if both integrals
∫ ∞ 1

rq−1(t)

(

∫ t

c(s) ds
)q−1

dt,

∫ ∞

c(t)
(

∫ ∞

t

ds

rq−1(s)

)p−1

dt(13)

are divergent, assume p < 2. Then a solution x̃ of (1) is principal if and only if (8)
holds.

Concerning the limit characterization of the half-linear principal solution, we have
following statement proved in [2] (the case c(t) < 0), [3, 5] (the case c(t) > 0), and
[4] (the case when c is allowed to change its sign).

Proposition 6. Suppose that one of the following conditions holds:

(i) c(t) < 0 for large t;
(ii) Both integrals Jr, Jc are convergent;

(iii) Assumptions of Proposition 4 or 5 are satisfied.

Then a solution x̃ of (1) is principal if and only if

lim
t→∞

x̃(t)

x(t)
= 0(14)

for every solution x of (1) linearly independent of x̃.

We complete this section by the following statement which is a new result so we
present it including the proof.

Proposition 7. Suppose that c(t) > 0 for large t and one of the following conditions

holds:

(i) Jr = ∞ and both integrals in (12) are convergent;

(ii) Jc = ∞ and both integrals in (13) are convergent.
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If x̃ is the principal solution of (1), then
∫ ∞ dt

rq−1|x̃(t)|m
= ∞(15)

for any m > 1. Conversely, if x̃ is a solution of (1) satisfying (15) for some m > 1,
then x̃ is the principal solution.

Proof. First assume (i). By [5, Corolary 1], the principal solution x̃ tends to a nonzero
constant and so (15) holds for any m > 1. By [6, Theorem 7] and [5, Corolary 1], any
linearly independent solution x satisfies

lim
t→∞

x(t)
∫ t

r1−q(s)ds
= c, 0 < |c| < ∞,

thus
∫ ∞ dt

rq−1(t)|x(t)|m
< ∞ ⇐⇒

∫ ∞ r1−q(t)

(
∫ t

r1−q(s)ds)m
dt < ∞

for any m > 1. Concerning the case (ii), we proceed by a similar way using the fact
that the principal solution x̃ and any other solution x satisfy

lim
t→∞

x̃(t)
∫ ∞

t
r1−q(s)ds

= c, 0 < |c| < ∞, lim
t→∞

x(t) = d, 0 < |d| < ∞.

�

Finally note that integral characterization (8) and limit characterization (14) have
been studied for the first time in [14, Theorem 4] for perturbed half-linear Euler
equations.

3. Auxiliary statements

Now we present some auxiliary results concerning certain functions of two and three
variables which we will need later. An important role in our investigation is played
by the functions

Q(u, v) :=
1

p
|u|q − Φ−1(u)v +

1

q
|v|q,

W (u, v) :=
[Φ−1(v) − Φ−1(u)](v − u)

Q(u, v)
,

and

H(x, u, v) :=
1

rq−1(t)xp

Q(u, v)

(u − v)2
.
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Observe that for p = 2 we have

Q(u, v) =
1

2
(v − u)2, W (u, v) ≡ 2, and H(x, u, v) =

1

2r(t)x2
.

Lemma 1. There exist positive constants K1 < K2 such that

0 < K1 ≤ W (u, v) ≤ K2(16)

for every u, v ∈ R.

Proof. We have W (0, v) = q for v ∈ R, hence (16) holds for u = 0. If u 6= 0, let
z = v/u. Then

W (u, v) = F (z) :=
|z|q − Φ−1(z) − z + 1

1
q
|z|q − z + 1

p

and it suffices to show that the function F satisfies the inequalities stated in the
Lemma. This function is nonnegative since

|z|q − Φ−1(z) − z + 1 = (Φ−1(z) − 1)(z − 1) ≥ 0

and 1
q
|z|q − z + 1

p
≥ 0 (Young’s inequality), and the required inequalities follow from

the fact that at the only zero point z = 1 of the denominator, we have

lim
z→1

|z|q − Φ−1(z) − z + 1
1
q
|z|q − z + 1

p

=
q(q − 1) + (q − 1)(q − 2)

q(q − 1)
=

2(q − 1)

q
,

i.e., this is a removable discontinuity, and from finiteness of the limit

lim
z→±∞

|z|q − Φ−1(z) − z + 1
1
q
|z|q − z + 1

p

= q.

The proof is complete. �

The next statement is a technical result concerning a certain identity for solutions
of (1) and of the associated Riccati equation (6).

Lemma 2. Let x, y be nonoscillatory solutions of (1) and let wx, wy be the associated

solutions of (6). Then
(

1

|x(t)|p(wy(t) − wx(t))

)′

= pH(x(t), wx(t), wy(t)).(17)

Proof. Without loss of generality we may suppose that x(t) > 0 for large t. Denote
by f(t) = xp(t)(wy(t) − wx(t)). Then, we have

f ′(t) = pΦ(x)x′(wy − wx) + xp(w′
y − w′

x)

= pΦ(x)r1−qΦ−1(wx)x(wy − wx) − (p − 1)xpr1−q(|wy|
q − |wx|

q)

= xpr1−q
[

pΦ−1(wx)(wy − wx) − (p − 1)(|wy|
q − |wx|

q)
]

,
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and hence

−
( 1

f(t)

)′

=
f ′(t)

f 2(t)
=

xpr1−q [pΦ−1(wx)(wy − wx) − (p − 1)(|wy|
q − |wx|

q)]

x2p(wy − wx)2

= −
(p − 1)|wy|

q + pwyΦ
−1(wx) − |wx|

q

rq−1xp(wy − wx)2

= −
p

rq−1xp

Q(wx, wy)

(wy − wx)2

= −pH(x, wx, wy)

and this completes the proof. �

4. Main result

Now we are in a position to formulate the main result of our paper. This result
relates various quantities involving nonoscillatory solutions of (1) and associated so-
lutions of the Riccati equation (6). As corollaries, it provides a unified view on the
various characterizations of the principal solutions of (1) presented in Section 2.

Theorem 1. Let x, y be a pair of independent solutions of (1) and let wx, wy be

the associated solutions of (6). Then the following integral and limit relations are

equivalent:

(i)
∫ ∞

H(x(t), wx(t), wy(t)) dt = ∞;

(ii)

∫ ∞ 1

rq−1(t)|x(t)|p
Φ−1(wy(t)) − Φ−1(wx(t))

wy(t) − wx(t)
dt = ∞;

(iii)

lim
t→∞

|x(t)|p(wy(t) − wx(t)) = 0 and wx(t) < wy(t) for large t;

(iv)

lim
t→∞

x(t)

y(t)
= 0.
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Proof. According to the homogeneity of the solution space of (1), we can suppose
that the relationship between x, y and wx, wy is

x(t) = exp

{
∫ t

T

r1−q(s)Φ−1(wx(s)) ds

}

,(18)

y(t) = exp

{
∫ t

T

r1−q(s)Φ−1(wy(s)) ds

}

,

for some T ∈ R.
(i) ⇐⇒ (ii): Using Lemma 1 we get

1

K2

Φ−1(v) − Φ−1(u)

v − u
≤

Q(u, v)

(u − v)2
≤

1

K1

Φ−1(v) − Φ−1(u)

v − u

for every u, v ∈ R. From this we get

1

K2
F (x(t), wx(t), wy(t)) ≤ H(x(t), wx(t), wy(t)) ≤

1

K1
F (x(t), wx(t), wy(t)),

where

F (x(t), wx(t), wy(t)) =
Φ−1(wy(t)) − Φ−1(wx(t))

rq−1(t)|x(t)|p(wy(t) − wx(t))
.

Integrating these inequalities, the equivalency between (i) and (ii) follows.
(i) ⇐⇒ (iii): Using Lemma 2, we get by integration of (17) from T to t, T < t,

1

|x(s)|p(wy(s) − wx(s))

∣

∣

∣

∣

t

T

= p

∫ t

T

H(x(s), wx(s), wy(s)) ds.(19)

Letting t → ∞, we get the conclusion.
(i) ⇐⇒ (iv): According to (18), we have for some T ∈ R

y(t)

x(t)
= exp

{
∫ t

T

r1−q(s)
[

Φ−1(wy(s)) − Φ−1(wx(s))
]

ds

}

.

Hence, it suffices to show the equivalency between (i) and

∫ ∞

T

r1−q(t)
[

Φ−1(wy(t)) − Φ−1(wx(t))
]

dt = ∞.(20)
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First suppose that (i) holds. Using the L’Hospital rule in the form lim inf(f/g) ≥
lim inf(f ′/g′), we get

L := lim inf
t→∞

∫ t

T
r1−q(s) [Φ−1(wy(s)) − Φ−1(wx(s))] ds

log
(

∫ t

T
H(x(s), wx(s), wy(s)) ds

)

≥ lim inf
t→∞

(

[Φ−1(wy(t)) − Φ−1(wx(t))] (wy(t) − wx(t))
2

px−p(t) Q(wx(t), wy(t))

∫ t

T

H(x(s), wx(s), wy(s)) ds

)

=
1

p
lim inf

t→∞

(

xp(t)[wy(t) − wx(t)]W (wx(t), wy(t))

∫ t

T

H(x(s), wx(s), wy(s)) ds

)

.

Lemma 2 yields (19) and thus

xp(t)
(

wy(t) − wx(t)
)

=
1

K +
∫ t

T
H(x(s), wx(s), wy(s)) ds

,

where K is a real constant. Taking into account (16), we have

L ≥
1

p
lim inf

t→∞

∫ t

T
H(x(s), wx(s), wy(s)) ds

K +
∫ t

T
H(x(s), wx(s), wy(s)) ds

W (wx(t), wy(t)) ≥
K1

p
> 0.

Consequently, (i) implies (20).
Conversely, suppose that (20) holds. Proceeding similarly as above,

L̃ := lim inf
t→∞

log
(

∫ t

T
H(x(s), wx(s), wy(s)) ds

)

∫ t

T
r1−q(s) [Φ−1(wy(s)) − Φ−1(wx(s))] ds

≥ p lim inf
t→∞

K +
∫ t

T
H(x(s), wx(s), wy(s)) ds

(

∫ t

T
H(x(s), wx(s), wy(s)) ds

)

W (wx(t), wy(t))

≥
p

K2
lim
t→∞

K +
∫ t

T
H(x(s), wx(s), wy(s)) ds

∫ t

T
H(x(s), wx(s), wy(s)) ds

> 0.

Thus, (20) implies (i). �

As an immediate consequence of Theorem 1 we have the following statement.

Corollary 1. Let x be a solution of (1) and wx be the associated solution of (6). If

any of conditions (i) – (iv) of Theorem 1 holds for every solution y of (1) and the

associated solution wy of (6), then x is the principal solution of (1).

Remark 1. In the linear case, i.e. p = 2, the conditions (i) and (ii) of Theorem 1 are
the same and reduces to (4).
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Corollary 2. Let any of assumptions (i)-(iii) of Proposition 6 hold, let x̃ be a principal

solution of (1), and w̃ be the associated minimal solution of (6). Then

lim
t→∞

|x̃(t)|p(w(t) − w̃(t)) = 0

for any other solution w of (6).

Based on the linear case, Corollary 2, and explicitly computable examples, we
conjecture that the converse statement to Corollary 1 holds.

Conjecture 1. Suppose that x̃ is the principal solution of (1) and w̃ is the associated

solution of (6). Then all conditions (i) – (iv) of Theorem 1 hold for any other solution

w of (6).

In Section 2 we have presented various characterizations of the principal solutions
of (1). Now, using condition (ii) from Theorem 1, we can relate these characterizations
if we have at our disposal some additional information about asymptotic behavior of
solutions of (6).

Corollary 3. Let x̃ be a solution of (1) such that x̃′(t) 6= 0 for large t and w̃ be the

associated solution of (6). Suppose that there exists a constant K > 0 such that

lim sup
t→∞

∣

∣

∣

∣

w(t)

w̃(t)

∣

∣

∣

∣

< K(21)

for every solution w of (6). Then the following statements are valid:

(i) (8) holds if and only if (10) holds for any solution x of (1) linearly independent

of x̃.

(ii) If (8) holds, then x̃ is the principal solution of (1).
(iii) If p ≥ 2, then x̃ is the principal solution of (1) if and only if (8) holds.

Proof. By Theorem 1, it is sufficient to prove that condition (8) is equivalent to
condition (ii) of this theorem for any solution w. We have

1

r(t)x̃2(t)|x̃′(t)|p−2
=

1

rq−1(t)|x̃(t)|p
Φ−1(w̃(t))

w̃(t)

and
Φ−1(w(t)) − Φ−1(w̃(t))

w(t) − w̃(t)
=

Φ−1(w̃(t))

w̃(t)
G

(w(t)

w̃(t)

)

where G(t) = Φ−1(t)−1
t−1

. Since the function G is is positive, bounded and bounded away

from zero on the interval [−K, K], there exist positive constants m1, m2 such that

m1 ≤ G
(w(t)

w̃(t)

)

≤ m2.
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Thus,

m1

r(t)x̃2(t)|x̃′(t)|p−2
≤

1

rq−1(t)|x̃(t)|p
Φ−1(w̃(t))

w̃(t)
G

(w(t)

w̃(t)

)

≤
m2

r(t)x̃2(t)|x̃′(t)|p−2
.

Hence (ii) is equivalent to (8). Now the conclusion follows from Corollary 1 and the
parts (ii)–(iv) of Theorem 1. �

Remark 2. The statement (i) of Corollary 3 does not hold without assumption (21),
as Example 1 illustrates. More precisely, one can check that the minimal solution of
the corresponding Riccati equation to (9) satisfies w̃(t) ∼ 3t−4. By [6, Theorems 4,7]
any other solution w satisfies w(t) ∼ t−1/2, thus (21) is not satisfied.
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