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Université Versailles-Saint-Quentin-en-Yvelines

45 avenue des États-Unis
78035 Versailles cedex, France.

e-mail: Philippe.Cieutat@math.uvsq.fr,

Samir FATAJOU
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Abstract

We study some properties of bounded and C(1)-almost automor-
phic solutions of the following Liénard equation:

x′′ + f(x)x′ + g(x) = p(t),

where p : R −→ R is an almost automorphic function, f , g : (a, b) −→
R are continuous functions and g is strictly decreasing.

AMS classification: 34C11, 34C27, 34D05.
Key words: Almost automorphic solutions, bounded solutions, Lié-
nard equations.

1 Introduction

In this paper, we study some properties of bounded or C(1)-almost automor-
phic solutions of the following Liénard equation:

x′′ + f(x)x′ + g(x) = p(t), (1.1)

where p : R −→ R is an almost automorphic function and f, g : (a, b) → R,
(−∞ ≤ a < b ≤ +∞) are continuous functions. The following assumptions
will be used in proving the main results:

(H1) f and g : (a, b) −→ R are locally Lipschitz continuous.

(H2) g is strictly decreasing.

(H3) f(x) ≥ 0 for all x ∈ (a, b).

The model of Equation (1.1) is

x′′ + cx′ +
1

xα
= p(t) (1.2)

where c ≥ 0, α > 0 and p : R −→ R is an almost automorphic function, that
appears when the restoring force is a singular nonlinearity which becomes
infinite at zero. Mart́ınez-Amores and Torres in [13], then Campos and Torres
in [5] describe the dynamics of Equation (1.1) in the periodic case, namely
the forcing term p is periodic. Recall that the existence of periodic solutions
of Equation (1.1) without friction term (f = 0) is proved by Lazer and
Solimini in [12] and by Habets and Sanchez in [11] for some Liénard equations
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with singularities, more general than Equation (1.1). In [5], Campos and
Torres prove that the existence of a bounded solution on (0,+∞) implies the
existence of a unique periodic solution that attracts all bounded solutions on
(0,+∞). Moreover, they proved that the set of initial conditions of bounded
solutions on (0,+∞) is the graph of a continuous nondecreasing function.
Then Cieutat extends these results to the almost periodic case in [6]. In
[5], Campos and Torres use topological tools, such as free homeomorphisms
(c.f. [4]), together with truncation arguments. The homeomorphisms used in
[5], are the Poincaré operators of Equation (1.1), therefore these topological
tools are not adapted to the almost periodic case. In [6], the method used
is essentially the recurrence property of the almost periodic functions. This
last property says that once a value is taken by φ(t) at some point t ∈ R, it
will be ”almost” taken arbitrarily far in the future and in the past. Later, Ait
Dads et al. [1] in the bounded case, namely the forcing term p is continuous
and bounded, prove the uniqueness of the bounded solutions on (−∞,+∞)
and describe the set of initial conditions of bounded solutions on (0,+∞).
Then they establish a result of existence and uniqueness of the pseudo almost
periodic solution.

The notion of almost automorphic is a generalization of almost period-
icity. It has been introduced in the literature by Bochner in relation to
some aspect of differential geometry [2, 3] and more recently, this notion was
developed by N’Guérékata (see for instance [14, 15]).

Our aim is to extend some results of [5, 6] to the almost automorphic
case, namely to prove that the existence of a bounded solution on (0,+∞)
implies the existence of a unique almost automorphic solution that attracts
all bounded solutions on (0,+∞). Then we state and prove a result on the
existence of almost automorphic solutions.

Let us first fix some notations and definitions.
We say that a function u ∈ C(R) (continuous) is almost automorphic if

for any sequence of real numbers (t′n)n, there exists a subsequence of (t′n)n,
denoted (tn)n such that

v(t) = lim
n 7→+∞

u(t+ tn) (1.3)

is well defined for each t ∈ R and

lim
n 7→+∞

v(t− tn) = u(t) (1.4)
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for each t ∈ R.
If we denote by AA(R) the space of all almost automorphic R-valued

functions, then it turns out to be a Banach space under the sup-norm.
Because of pointwise convergence, the function v ∈ L∞(R) (the space of

essentially bounded measurable functions in R), but not necessarily contin-
uous. It is also clear from the definition above that almost periodic func-
tions (in the sense of Bochner [2, 10]) are almost automorphic. If we de-
note AP (R), the space of all almost periodic R-valued functions, we have
AP (R) ⊂ AA(R).

A function u ∈ C(R) is said to be C(n)-almost automorphic if it is al-
most automorphic up to its nth derivative. We denote the space of all such
functions by AA(n)(R) (see [8]).

If the limit in (1.3) is uniform on any compact subset K ⊂ R, we say
that u is compact almost automorphic. If we denote AAc(R), the space of
compact almost automorphic R-valued functions and BC(R) the space of
bounded and continuous R-valued functions, we have

AP (R) ⊂ AAc(R) ⊂ AA(R) ⊂ BC(R). (1.5)

Similarly AA(n)
c (R) will denote the space of all C(n)-compact almost auto-

morphic functions. For more details on almost automorphic functions, we
refer to [14, 15].

The bounded solutions considered in this paper, are the solutions such
that their range is relatively compact in the domain (a, b) of Equation (1.1).
More precisely, for a bounded solution x, we impose the existence of a com-
pact set such that

∀t ∈ R, x(t) ∈ K ⊂ (a, b).

In the almost periodic case, this type of conditions was assumed by Cor-
duneanu in [7, Chapter 4] and by Yoshizawa in [18, Chapter 3]. Without
these conditions, the tools of the study of almost automorphic solutions of
differential equations are often unusable.

For these reasons, we say that a function x : R −→ R is bounded on R if
there exist A and B ∈ R such that

a < A ≤ x(t) ≤ B < b for all t ∈ R,

where a and b are the two constants defined in Hypothesis (H1).
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We also say that a function x : (c,+∞) −→ R (with −∞ ≤ c < +∞) is
bounded in the future if there exist A, B ∈ R and t0 > c such that

a < A ≤ x(t) ≤ B < b for all t > t0.

Remark that if x is a periodic solution of Equation (1.1), then x is bounded
on R (in the sense of above definition), but an almost periodic solution,
therefore an almost automorphic solution, is not necessarily bounded on R
(of course supt∈R | x(t) |< +∞), because there exists an almost periodic
solution x such that inft∈R x(t) = a (if a ∈ R). For example, we consider
x(t) := cos(t) − cos(2πt) + 2. Since x(t) > 0 for all t ∈ R, then x is an
almost periodic solution of Equation (1.1) where a := 0, b := +∞, f(x) := 0,
g(x) := −x and p(t) := ((2π)2 + 1) cos(2πt) − 2 cos(t) − 2. Moreover there
exists a sequence (an)n of integers such that limn→+∞ cos(an) = −1, therefore
limn→+∞ x(an) = 0, so x is not bounded on R.

The paper is organized as follows: we announce the main results (Theo-
rem 2.1) in Section 2 and we give its proof in Section 3. Section 4 is devoted
to an example.

2 Main Result

Theorem 2.1. Assume that hypotheses (H1)-(H3) hold, and let p ∈ AA(R).
In addition, assume that Equation (1.1) has at least one solution that is
bounded in the future. Then the following statements hold true:

i) Equation (1.1) has exactly one solution φ that is bounded on R. More-
over φ ∈ AA(1)

c (R).

ii) Every solution x bounded in the future of Equation (1.1) is asymptot-
ically almost automorphic, in the sense that:

lim
t→+∞

(| x(t) − φ(t) | + | x′(t) − φ′(t) |) = 0. (2.1)

The proof of Theorem 2.1 will be given in Section 3.

Remark. For the proof of Theorem 2.1, we use a result on the structure
of solutions that are bounded in the future and on the uniqueness of the
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bounded solution on R when the second member p is bounded and continuous
(c.f. Proposition 3.1). This last proposition is established in [1]. Firstly,
for the proof of Theorem 2.1, we state the existence of a solution that is
bounded in the future implies the existence of a bounded solution on the
whole real line. This result is well-known when the second member p is almost
periodic (for instance [9, 10]). In the almost automorphic case, this result
is stated when p is compact almost automorphic. For example, Fink has
established similar result [9, Lemma 2], which is valid even for the following
differential system in Rn: x′(t) = F (t, x(t)). We cannot use [9, Lemma 2]
because we do not assume that p is compact almost automorphic, but only
almost automorphic. Secondly, we prove that the unique bounded solution is
compact almost periodic. Since we assume that p is only almost automorphic,
we cannot use [9, Corollary 1].

Corollary 2.2. Assume that hypotheses (H1)-(H3) hold. In addition
suppose that p ∈ AA(R). If inft∈R p(t) and supt∈R p(t) are in the range of g:
g(a, b), then Equation (1.1) has a unique bounded solution x on R which is
compact almost automorphic. Moreover this solution is asymptotically almost
automorphic and its derivative is also compact almost automorphic.

Remark. In the particular case of Equation (1.2), one has the existence
and uniqueness of compact almost automorphic solution, when the second
member p satisfies 0 < inft∈R p(t) ≤ supt∈R p(t) < +∞ and p is almost
automorphic.

Proof of Corollary 2.2. We use Theorem 2.1. It suffices to prove the
existence of a solution of Equation (1.1) that is bounded on R. For that
we adapt a result of Opial [16, Théorème 2]. In the particular case where
p(t) = p0 for each t ∈ R, i.e. inft∈R p(t) = supt∈R p(t), there exists x0 ∈ (a, b)
such that g(x0) = p0, therefore x(t) = x0 for each t ∈ R, is a solution that is
bounded on the R.

Now we assume that inft∈R p(t) < supt∈R
p(t). By hypothesis on the range

of g and by (H2), there exist A and B ∈ R such that g(A) = supt∈R
p(t) and

g(B) = inft∈R p(t) and a < A < B < b. Let f̃ and g̃ be extensions of f/[A,B]

and g/[A,B]. The extension f̃ is defined by f̃ : R −→ R with

f̃(x) =











f(x) if A ≤ x ≤ B

f(A) if x < A

f(B) if x > B.
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In a similar way we define g̃. Obviously f̃ and g̃ are continuous.
Now set

F (t, x, y) := p(t) − f̃(x)y − g̃(x),

V (y) := 2+ | y |,

T (t) := max

(

| p(t) |, sup
A≤x≤B

f(x), sup
A≤x≤B

| g(x) |
)

,

for each t, x and y ∈ R. Then

i) F ∈ C(R3,R) and F (t, A, 0) ≤ 0 ≤ F (t, B, 0) for each t ∈ R,

ii) V and T are nonnegative and continuous functions on R such that V
satisfies

∫+∞

0
y

V (y)
dy = +∞, V (−y) = V (y) and V (y) ≥ 1 for each y ∈ R,

iii) | F (t, x, y) |≤ T (t)V (y) for each t, y ∈ R and x ∈ [A,B].

By using [16, Théorème 2], we can assert that the equation

x′′ = F (t, x, x′)

admits at least a solution x satisfying A ≤ x(t) ≤ B for each t ∈ R, therefore
x is a solution of Equation (1.1) that is bounded on R. This ends the proof.

3 Proof of Theorem 2.1

The object of this section is to prove Theorem 2.1. For the reader’s conve-
nience, we recall the following results.

Proposition 3.1. (Ait Dads, Lhachimi and Cieutat [1]). Assume that
hypotheses (H1)-(H3) hold. We also suppose that p ∈ BC(R). Then we get:

i) Any pair of distinct solutions of Equation (1.1) x1 and x2 bounded in
the future, satisfy

(x1(t) − x2(t))(x
′
1(t) − x′2(t)) < 0 (3.1)

for every t where both solutions are defined and

lim
t→+∞

(| x1(t) − x2(t) | + | x′1(t) − x′2(t) |) = 0, (3.2)

ii) Equation (1.1) has at most one bounded solution on R.
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Remark. Relation (3.1) implies that t −→| x1(t) − x2(t) | is strictly
decreasing and any two distinct solutions bounded in the future have no
common point.

Lemma 3.2. (Cieutat [6]). Assume that p ∈ BC(R), f and g ∈ C(a, b).
Let I = (t0,+∞) with t0 = −∞ or t0 ∈ R. If x is a solution of Equa-
tion (1.1) which is bounded in the future (respectively bounded on R), i.e.
a < A ≤ x(t) ≤ B < b for all t > t0 (respectively t ∈ R), then the deriva-
tives x′ and x′′ are bounded in the future (respectively bounded on R), i.e.
supt∈I | x′(t) |≤ c1 < +∞ and supt∈I | x′′(t) |≤ c2 < +∞ where

c0 := max(| A |, | B |), (3.3)

c1 :=
1

2
sup
t∈R

| p(t) | +
1

2
sup

A≤z≤B
| g(z) |

+2c0 + 4c0 sup
A≤z≤B

| f(z) |< +∞ (3.4)

and
c2 := sup

t∈I
| p(t) | + sup

A≤z≤B
| g(z) |

+c1 sup
A≤z≤B

| f(z) |< +∞. (3.5)

Lemma 3.3 wil play a crucial role in the proof of Theorem 2.1. When
p ∈ C(R), recall that x is a (classical) solution on R of the differential
equation (1.1), if x ∈ C2(R) (of class C2) and x(t) satisfies Equation (1.1)
for each t ∈ R.

Let p ∈ L∞(R). We say that x is a weak solution on R of Equation (1.1),
if x ∈ C1(R) (of class C1) and satisfies

x′(t) +
∫ t

s
{f(x(σ))x′(σ) + g(x(σ))} dσ = x′(s) +

∫ t

s
p(σ) dσ, (3.6)

for each s and t ∈ R such that s ≤ t.
Obviously a classical solution is a weak solution and in the particular case

where p is continuous, the notion of weak solution and classical solution are
equivalent.
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Lemma 3.3. Let e ∈ L∞(R) and f , g ∈ C(R). We assume that u is a
weak solution bounded on R of

u′′ + f(u)u′ + g(u) = e(t), (3.7)

such that u′ ∈ L∞(R) and u′ is k-Lipschitzian on R for some constant k. If
there exist a numerical sequence (t′n)n and e∗ ∈ L∞(R) such that

∀t ∈ R, lim
n→+∞

| e(t+ t′n) − e∗(t) |= 0, (3.8)

then there exists a subsequence of (t′n)n denoted (tn)n such that

u(t+ tn) → v(t) as n→ +∞, (3.9)

u′(t+ tn) → v′(t) as n→ +∞ (3.10)

uniformly on each compact subset of R, where v is a weak solution bounded
on R of

v′′ + f(v)v′ + g(v) = e∗(t), (3.11)

such that v′ ∈ L∞(R) and v′ is k-Lipschitzian on R.

Proof. Since u is a bounded on R, there exist A and B ∈ R such that
for each t ∈ R

a < A ≤ u(t) ≤ B < b.

If we denote by
un(t) := u(t+ t′n), (3.12)

then un ∈ C1(R) and satisfies, for each t ∈ R and n ∈ N

a < A ≤ un(t) ≤ B < b. (3.13)

Moreover, since u′ ∈ L∞(R), then for each t ∈ R

| u′n(t) |≤ c := sup
t∈R

| u′(t) |< +∞, (3.14)

and thus we obtain
| un(t) − un(s) |≤ c | t− s | (3.15)

for each s, t ∈ R and n ∈ N. From (3.13) and (3.15), we deduce that for
each t ∈ R, {un(t);n ∈ N} is a bounded subset of R and the sequence (un)n

is equicontinuous. By help of Arzela Ascoli’s theorem [17, p. 312], we can
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assert that {un;n ∈ N} is a relatively compact subset of C(R) endowed
with the topology of compact convergence. From the sequence (t′n)n, we can
extract a subsequence (tn)n such that there exists v ∈ C(R) and (3.9) holds.
Moreover since u′ is k-Lipschitzian on R, then one has

| u′(t+ tn) − u′(s+ tn) |≤ k | t− s | (3.16)

for each s, t ∈ R and n ∈ N. Using (3.14), (3.16) and applying Arzela
Ascoli’s theorem, we deduce that there exist w ∈ C(R) and a subsequence
of (tn)n (which we denote by the same) such that

u′(t+ tn) → w(t) as n→ +∞

uniformly on each compact subset of R. With (3.9), we deduce that w = v′,
consequently (3.10) holds. By assumptions, u ∈ C1(R), u′ ∈ L∞(R) and u′

is k-Lipschitzian, then the convergence (3.9) and (3.10) and relations (3.13),
(3.14) and (3.16) imply that v ∈ C1(R), v is bounded on R, v′ ∈ L∞(R) and
v′ is k-Lipschitzian.

It remains to prove that v is a weak solution of Equation (3.11). Since u
is a weak solution of Equation (3.7), then for each s ≤ t, we have

u′(t) +
∫ t

s
{f(u(σ))u′(σ) + g(u(σ))} dσ = u′(s) +

∫ t

s
e(σ) dσ,

therefore

u′(t+ tn) +
∫ t

s
{f(u(σ + tn))u′(σ + tn) + g(u(σ + tn))} dσ

= u′(s+ tn) +
∫ t

s
e(σ + tn) dσ. (3.17)

Moreover, we have | e(σ + tn) |≤ sup
t∈R

| e(t) |< +∞ for each σ ∈ [s, t] and by

Lebesgue’s dominated convergence theorem, we obtain

lim
n→+∞

∫ t

s
e(σ + tn) dσ =

∫ t

s
e∗(σ) dσ. (3.18)

By (3.9), (3.10), (3.17) and (3.18), we deduce that

v′(t) +
∫ t

s
{f(v(σ)v′(σ) + g(v(σ))} dσ = v′(s) +

∫ t

s
e∗(σ) dσ,
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therefore v is a weak solution of Equation (3.11).

Proof of Theorem 2.1. i) let (tn)n a sequence of real numbers such
that

lim
n→+∞

tn = +∞. (3.19)

Since p is almost automorphic, then there exists a subsequence of (tn)n (which
denote by the same)) such that for each t ∈ R

lim
n→+∞

p(t+ tn) = p∗(t), (3.20)

lim
n→+∞

p∗(t− tn) = p(t). (3.21)

Let x be a solution that is bounded in the future; therefore there exist A,
B and t0 ∈ R such that

a < A ≤ x(t) ≤ B < b for all t > t0 (3.22)

and for each s and t ∈ R such that t0 < s ≤ t

x′(t) +
∫ t

s
{f(x(σ)x′(σ) + g(x(σ))} dσ = x′(s) +

∫ t

s
p(σ) dσ. (3.23)

By Lemma 3.2, there exists c1 and c2 > 0 such that

sup
t>t0

| x′(t) |≤ c1 < +∞, (3.24)

sup
t>t0

| x′′(t) |≤ c2 < +∞ (3.25)

and by using the mean value theorem, we obtain

| x′(t) − x′(s) |≤ c2 | t− s | (3.26)

for each s and t ∈ R such that s, t > t0. Given any interval (τ,+∞), for
n ∈ N sufficiently large (τ + tn ≥ t0), t → x(. + tn) is defined on (τ,+∞).
Moreover (3.22), (3.24) and (3.25) imply

a < A ≤ x(t+ tn) ≤ B < b for all t ∈ (τ,+∞), (3.27)

| x′(t+ tn) |≤ c1 for all t ∈ (τ,+∞), (3.28)

| x′′(t+ tn) |≤ c2 for all t ∈ (τ,+∞). (3.29)
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Taking τ as a sequence going to −∞ and applying Arzela Ascoli’s theorem
and using a diagonal argument, we can assert that there exist x∗ ∈ C1(R)
and a subsequence of (tn)n such that

x(t+ tn) → x∗(t) as n→ +∞, (3.30)

x′(t+ tn) → x′∗(t) as n→ +∞ (3.31)

uniformly on each compact subset of R. Since x satisfies (3.23), then for
each s ≤ t and for n ∈ N sufficiently large, we have

x′(t+ tn) +
∫ t

s
{f(x(σ + tn)x′(σ + tn) + g(x(σ + tn))} dσ

= x′(s+ tn) +
∫ t

s
p(σ + tn) dσ. (3.32)

Now applying the Lebesgue’s dominated convergence theorem, we obtain
that (3.20) implies

lim
n→+∞

∫ t

s
p(σ + tn) dσ =

∫ t

s
p∗(σ) dσ, (3.33)

thus with (3.30)-(3.33), we deduce that x∗ is a weak solution on R of

x′′∗ + f(x∗)x
′
∗ + g(x∗) = p∗(t). (3.34)

From (3.26)-(3.28), (3.30) and (3.31), we deduce that x∗ is bounded on R and
x′∗ ∈ L∞(R) and x′∗ is Lipschitzian. Applying Lemma 3.3, u = x∗, e = p∗ and
the sequence (−tn)n (c.f. (3.21)), we obtain the existence of a weak solution
φ of Equation (1.1) that is bounded on R. Since p is a continuous function,
then φ is a classical solution on R of Equation (1.1). The uniqueness of the
bounded solution of Equation (1.1) follows from Proposition 3.1.

To check that φ and its derivative φ′ are compact almost automorphic,
we have to prove that if (tn)n is any sequence of real numbers, then one can
pick up a subsequence of (tn)n such that

φ(t+ tn) → φ∗(t) as n→ +∞, (3.35)

φ′(t+ tn) → φ′
∗(t) as n→ +∞ (3.36)

uniformly on each compact subset of R and

∀t ∈ R, lim
n 7→+∞

φ∗(t− tn) = φ(t), (3.37)
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∀t ∈ R, lim
n 7→+∞

φ′
∗(t− tn) = φ′(t). (3.38)

In fact by assumption, we can choose a subsequence of (tn)n such that (3.20)
and (3.21) hold. By applying Lemma 3.3 with u = φ, e = p and the sequence
(tn)n we obtain (3.35) and (3.36) where φ∗ is a weak solution on R of Equation
(3.34), which satisfies all hypotheses of Lemma 3.3. Applying again Lemma
3.3 to u = φ∗, e = p∗ and the sequence (−tn)n, we obtain that

∀t ∈ R, lim
n 7→+∞

φ∗(t− tn) = ψ(t), (3.39)

∀t ∈ R, lim
n 7→+∞

φ′
∗(t− tn) = ψ′(t) (3.40)

(for a subsequence) where ψ is a weak solution on R of Equation (1.1). Since
p is continuous, then ψ is a classical solution on R of Equation (1.1). By
uniqueness of the solution of Equation (1.1) that is bounded on R, we deduce
that ψ = φ, therefore (3.35)-(3.38) are fulfilled, thus φ and φ′ are compact
almost automorphic.

ii) It is straightforward from Proposition 3.1.

4 Example

For illustration, we propose the following Liénard equation:

x′′(t) + x2(t)x′(t) +
1

xα(t)
= 1 + ε+ sin

1

2 + cos t+ cos
√

2t
, (4.1)

where α and ε > 0. Equation (4.1) presents a singular nonlinearity g :

(0,+∞) −→ R with g(x) =
1

xα
, which becomes infinite at zero. Its second

member p defined by

p(t) = 1 + ε+ sin
1

2 + cos t+ cos
√

2t

is almost automorphic, but not almost periodic. (Example due to Levitan; see
also [14]). Since g(0,+∞) = (0,+∞) and 0 < inf

t∈R

p(t) = ε < sup
t∈R

p(t) < +∞,

by Corollary 2.2, we deduce that Equation (4.1) admits a unique bounded
solution x on R:

0 < inf
t∈R

x(t) = ε ≤ sup
t∈R

x(t) < +∞.
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Moreover x ∈ AA1
c(R) and x is asymptotically almost automorphic (in the

sense of Theorem 2.1).
Acknowledgements. We are grateful to the referee for his valuable

comments and suggestions.
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